You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
77 lines
5.1 KiB
77 lines
5.1 KiB
# Vihesabu vya Chakula 1
|
|
|
|
Katika somo hili, utatumia dataset uliyohifadhi kutoka somo lililopita lililojaa data safi na iliyosawazishwa kuhusu aina za vyakula.
|
|
|
|
Utatumia dataset hii na aina mbalimbali za vihesabu (classifiers) _kutabiri aina ya chakula cha kitaifa kulingana na kikundi cha viungo_. Wakati wa kufanya hivyo, utajifunza zaidi kuhusu baadhi ya njia ambazo algorithimu zinaweza kutumika kwa kazi za uainishaji.
|
|
|
|
## [Pre-lecture quiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/21/)
|
|
# Maandalizi
|
|
|
|
Kama umehitimisha [Somo la 1](../1-Introduction/README.md), hakikisha kuwa faili _cleaned_cuisines.csv_ ipo katika folda ya mizizi `/data` kwa ajili ya masomo haya manne.
|
|
|
|
## Zoezi - tabiri aina ya chakula cha kitaifa
|
|
|
|
1. Ukifanya kazi katika folda ya _notebook.ipynb_ ya somo hili, leta faili hilo pamoja na maktaba ya Pandas:
|
|
|
|
```python
|
|
import pandas as pd
|
|
cuisines_df = pd.read_csv("../data/cleaned_cuisines.csv")
|
|
cuisines_df.head()
|
|
```
|
|
|
|
Data inaonekana hivi:
|
|
|
|
| | Unnamed: 0 | cuisine | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini |
|
|
| --- | ---------- | ------- | ------ | -------- | ----- | ---------- | ----- | ------------ | ------- | -------- | --- | ------- | ----------- | ---------- | ----------------------- | ---- | ---- | --- | ----- | ------ | -------- |
|
|
| 0 | 0 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|
|
| 1 | 1 | indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|
|
| 2 | 2 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|
|
| 3 | 3 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|
|
| 4 | 4 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
|
|
|
|
|
|
1. Sasa, leta maktaba zaidi kadhaa:
|
|
|
|
```python
|
|
from sklearn.linear_model import LogisticRegression
|
|
from sklearn.model_selection import train_test_split, cross_val_score
|
|
from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve
|
|
from sklearn.svm import SVC
|
|
import numpy as np
|
|
```
|
|
|
|
1. Gawanya viwianishi vya X na y katika dataframes mbili kwa mafunzo. `cuisine` inaweza kuwa dataframe ya lebo:
|
|
|
|
```python
|
|
cuisines_label_df = cuisines_df['cuisine']
|
|
cuisines_label_df.head()
|
|
```
|
|
|
|
Itaonekana hivi:
|
|
|
|
```output
|
|
0 indian
|
|
1 indian
|
|
2 indian
|
|
3 indian
|
|
4 indian
|
|
Name: cuisine, dtype: object
|
|
```
|
|
|
|
1. Ondoa `Unnamed: 0` column and the `cuisine` column, calling `drop()`. Hifadhi data iliyobaki kama sifa za kufundisha:
|
|
|
|
```python
|
|
cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)
|
|
cuisines_feature_df.head()
|
|
```
|
|
|
|
Sifa zako zinaonekana hivi:
|
|
|
|
| | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | artemisia | artichoke | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini |
|
|
| ---: | -----: | -------: | ----: | ---------: | ----: | -----------: | ------: | -------: | --------: | --------: | ---: | ------: | ----------: | ---------: | ----------------------: | ---: | ---: | ---: | ----: | -----: | -------: |
|
|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|
|
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|
|
| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0
|
|
|
|
**Onyo**:
|
|
Hati hii imetafsiriwa kwa kutumia huduma za tafsiri za AI zinazotumia mashine. Ingawa tunajitahidi kwa usahihi, tafadhali fahamu kuwa tafsiri za kiotomatiki zinaweza kuwa na makosa au kutokubaliana. Hati ya asili katika lugha yake ya asili inapaswa kuzingatiwa kama chanzo cha mamlaka. Kwa taarifa muhimu, tafsiri ya kitaalamu ya kibinadamu inapendekezwa. Hatutawajibika kwa kutoelewana au tafsiri zisizo sahihi zinazotokana na matumizi ya tafsiri hii. |