You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/translations/sw/4-Classification/2-Classifiers-1/README.md

5.1 KiB

Vihesabu vya Chakula 1

Katika somo hili, utatumia dataset uliyohifadhi kutoka somo lililopita lililojaa data safi na iliyosawazishwa kuhusu aina za vyakula.

Utatumia dataset hii na aina mbalimbali za vihesabu (classifiers) kutabiri aina ya chakula cha kitaifa kulingana na kikundi cha viungo. Wakati wa kufanya hivyo, utajifunza zaidi kuhusu baadhi ya njia ambazo algorithimu zinaweza kutumika kwa kazi za uainishaji.

Pre-lecture quiz

Maandalizi

Kama umehitimisha Somo la 1, hakikisha kuwa faili cleaned_cuisines.csv ipo katika folda ya mizizi /data kwa ajili ya masomo haya manne.

Zoezi - tabiri aina ya chakula cha kitaifa

  1. Ukifanya kazi katika folda ya notebook.ipynb ya somo hili, leta faili hilo pamoja na maktaba ya Pandas:

    import pandas as pd
    cuisines_df = pd.read_csv("../data/cleaned_cuisines.csv")
    cuisines_df.head()
    

    Data inaonekana hivi:

Unnamed: 0 cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac ... whiskey white_bread white_wine whole_grain_wheat_flour wine wood yam yeast yogurt zucchini
0 0 indian 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
1 1 indian 1 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
2 2 indian 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
3 3 indian 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
4 4 indian 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 0
  1. Sasa, leta maktaba zaidi kadhaa:

    from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import train_test_split, cross_val_score
    from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve
    from sklearn.svm import SVC
    import numpy as np
    
  2. Gawanya viwianishi vya X na y katika dataframes mbili kwa mafunzo. cuisine inaweza kuwa dataframe ya lebo:

    cuisines_label_df = cuisines_df['cuisine']
    cuisines_label_df.head()
    

    Itaonekana hivi:

    0    indian
    1    indian
    2    indian
    3    indian
    4    indian
    Name: cuisine, dtype: object
    
  3. Ondoa Unnamed: 0 column and the cuisine column, calling drop(). Hifadhi data iliyobaki kama sifa za kufundisha:

    cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)
    cuisines_feature_df.head()
    

    Sifa zako zinaonekana hivi:

almond angelica anise anise_seed apple apple_brandy apricot armagnac artemisia artichoke ... whiskey white_bread white_wine whole_grain_wheat_flour wine wood yam yeast yogurt zucchini
0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 ... 0 0

Onyo: Hati hii imetafsiriwa kwa kutumia huduma za tafsiri za AI zinazotumia mashine. Ingawa tunajitahidi kwa usahihi, tafadhali fahamu kuwa tafsiri za kiotomatiki zinaweza kuwa na makosa au kutokubaliana. Hati ya asili katika lugha yake ya asili inapaswa kuzingatiwa kama chanzo cha mamlaka. Kwa taarifa muhimu, tafsiri ya kitaalamu ya kibinadamu inapendekezwa. Hatutawajibika kwa kutoelewana au tafsiri zisizo sahihi zinazotokana na matumizi ya tafsiri hii.