# Vihesabu vya Chakula 1 Katika somo hili, utatumia dataset uliyohifadhi kutoka somo lililopita lililojaa data safi na iliyosawazishwa kuhusu aina za vyakula. Utatumia dataset hii na aina mbalimbali za vihesabu (classifiers) _kutabiri aina ya chakula cha kitaifa kulingana na kikundi cha viungo_. Wakati wa kufanya hivyo, utajifunza zaidi kuhusu baadhi ya njia ambazo algorithimu zinaweza kutumika kwa kazi za uainishaji. ## [Pre-lecture quiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/21/) # Maandalizi Kama umehitimisha [Somo la 1](../1-Introduction/README.md), hakikisha kuwa faili _cleaned_cuisines.csv_ ipo katika folda ya mizizi `/data` kwa ajili ya masomo haya manne. ## Zoezi - tabiri aina ya chakula cha kitaifa 1. Ukifanya kazi katika folda ya _notebook.ipynb_ ya somo hili, leta faili hilo pamoja na maktaba ya Pandas: ```python import pandas as pd cuisines_df = pd.read_csv("../data/cleaned_cuisines.csv") cuisines_df.head() ``` Data inaonekana hivi: | | Unnamed: 0 | cuisine | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | | --- | ---------- | ------- | ------ | -------- | ----- | ---------- | ----- | ------------ | ------- | -------- | --- | ------- | ----------- | ---------- | ----------------------- | ---- | ---- | --- | ----- | ------ | -------- | | 0 | 0 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | 1 | indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 2 | 2 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 3 | 3 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 4 | 4 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1. Sasa, leta maktaba zaidi kadhaa: ```python from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split, cross_val_score from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve from sklearn.svm import SVC import numpy as np ``` 1. Gawanya viwianishi vya X na y katika dataframes mbili kwa mafunzo. `cuisine` inaweza kuwa dataframe ya lebo: ```python cuisines_label_df = cuisines_df['cuisine'] cuisines_label_df.head() ``` Itaonekana hivi: ```output 0 indian 1 indian 2 indian 3 indian 4 indian Name: cuisine, dtype: object ``` 1. Ondoa `Unnamed: 0` column and the `cuisine` column, calling `drop()`. Hifadhi data iliyobaki kama sifa za kufundisha: ```python cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1) cuisines_feature_df.head() ``` Sifa zako zinaonekana hivi: | | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | artemisia | artichoke | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | | ---: | -----: | -------: | ----: | ---------: | ----: | -----------: | ------: | -------: | --------: | --------: | ---: | ------: | ----------: | ---------: | ----------------------: | ---: | ---: | ---: | ----: | -----: | -------: | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 **Onyo**: Hati hii imetafsiriwa kwa kutumia huduma za tafsiri za AI zinazotumia mashine. Ingawa tunajitahidi kwa usahihi, tafadhali fahamu kuwa tafsiri za kiotomatiki zinaweza kuwa na makosa au kutokubaliana. Hati ya asili katika lugha yake ya asili inapaswa kuzingatiwa kama chanzo cha mamlaka. Kwa taarifa muhimu, tafsiri ya kitaalamu ya kibinadamu inapendekezwa. Hatutawajibika kwa kutoelewana au tafsiri zisizo sahihi zinazotokana na matumizi ya tafsiri hii.