|
2 weeks ago | |
---|---|---|
.. | ||
1-Introduction | 2 weeks ago | |
2-Working-With-Data | 2 weeks ago | |
3-Data-Visualization | 2 weeks ago | |
4-Data-Science-Lifecycle | 2 weeks ago | |
5-Data-Science-In-Cloud | 2 weeks ago | |
6-Data-Science-In-Wild | 2 weeks ago | |
docs | 4 weeks ago | |
quiz-app | 4 weeks ago | |
sketchnotes | 4 weeks ago | |
CODE_OF_CONDUCT.md | 4 weeks ago | |
CONTRIBUTING.md | 4 weeks ago | |
README.md | 2 weeks ago | |
SECURITY.md | 4 weeks ago | |
SUPPORT.md | 4 weeks ago | |
for-teachers.md | 2 weeks ago |
README.md
วิทยาศาสตร์ข้อมูลสำหรับผู้เริ่มต้น - หลักสูตร
Azure Cloud Advocates ที่ Microsoft ยินดีนำเสนอหลักสูตร 10 สัปดาห์ 20 บทเรียนเกี่ยวกับวิทยาศาสตร์ข้อมูล แต่ละบทเรียนประกอบด้วยแบบทดสอบก่อนและหลังบทเรียน คำแนะนำที่เขียนไว้สำหรับการทำบทเรียน โซลูชัน และงานมอบหมาย วิธีการเรียนรู้แบบเน้นโครงการช่วยให้คุณเรียนรู้ผ่านการลงมือทำ ซึ่งเป็นวิธีที่พิสูจน์แล้วว่าทำให้ทักษะใหม่ๆ ติดตัวได้อย่างมีประสิทธิภาพ
ขอขอบคุณผู้เขียนของเรา: Jasmine Greenaway, Dmitry Soshnikov, Nitya Narasimhan, Jalen McGee, Jen Looper, Maud Levy, Tiffany Souterre, Christopher Harrison
🙏 ขอบคุณพิเศษ 🙏 สำหรับ Microsoft Student Ambassador ผู้เขียน ผู้ตรวจสอบ และผู้มีส่วนร่วมในเนื้อหา โดยเฉพาะ Aaryan Arora, Aditya Garg, Alondra Sanchez, Ankita Singh, Anupam Mishra, Arpita Das, ChhailBihari Dubey, Dibri Nsofor, Dishita Bhasin, Majd Safi, Max Blum, Miguel Correa, Mohamma Iftekher (Iftu) Ebne Jalal, Nawrin Tabassum, Raymond Wangsa Putra, Rohit Yadav, Samridhi Sharma, Sanya Sinha, Sheena Narula, Tauqeer Ahmad, Yogendrasingh Pawar, Vidushi Gupta, Jasleen Sondhi
![]() |
---|
วิทยาศาสตร์ข้อมูลสำหรับผู้เริ่มต้น - ภาพสเก็ตช์โดย @nitya |
🌐 การสนับสนุนหลายภาษา
รองรับผ่าน GitHub Action (อัตโนมัติและอัปเดตเสมอ)
French | Spanish | German | Russian | Arabic | Persian (Farsi) | Urdu | Chinese (Simplified) | Chinese (Traditional, Macau) | Chinese (Traditional, Hong Kong) | Chinese (Traditional, Taiwan) | Japanese | Korean | Hindi | Bengali | Marathi | Nepali | Punjabi (Gurmukhi) | Portuguese (Portugal) | Portuguese (Brazil) | Italian | Polish | Turkish | Greek | Thai | Swedish | Danish | Norwegian | Finnish | Dutch | Hebrew | Vietnamese | Indonesian | Malay | Tagalog (Filipino) | Swahili | Hungarian | Czech | Slovak | Romanian | Bulgarian | Serbian (Cyrillic) | Croatian | Slovenian | Ukrainian | Burmese (Myanmar)
หากคุณต้องการให้มีการสนับสนุนภาษาเพิ่มเติม รายการภาษาที่รองรับอยู่ ที่นี่
เข้าร่วมชุมชนของเรา
คุณเป็นนักเรียนหรือไม่?
เริ่มต้นด้วยทรัพยากรต่อไปนี้:
- หน้าศูนย์นักเรียน ในหน้านี้ คุณจะพบทรัพยากรสำหรับผู้เริ่มต้น ชุดเครื่องมือสำหรับนักเรียน และแม้กระทั่งวิธีการรับบัตรกำนัลการรับรองฟรี นี่คือหน้าที่คุณควรบุ๊กมาร์กและตรวจสอบเป็นระยะๆ เนื่องจากเรามีการเปลี่ยนแปลงเนื้อหาอย่างน้อยเดือนละครั้ง
- Microsoft Learn Student Ambassadors เข้าร่วมชุมชนระดับโลกของนักเรียนที่เป็นทูต นี่อาจเป็นทางเข้าสู่ Microsoft ของคุณ
เริ่มต้นใช้งาน
ครู: เราได้ รวมคำแนะนำบางส่วน เกี่ยวกับวิธีการใช้หลักสูตรนี้ เราอยากได้ความคิดเห็นของคุณ ในฟอรัมการสนทนาของเรา!
นักเรียน: หากต้องการใช้หลักสูตรนี้ด้วยตัวเอง ให้ fork repo ทั้งหมดและทำแบบฝึกหัดด้วยตัวเอง โดยเริ่มต้นด้วยแบบทดสอบก่อนการบรรยาย จากนั้นอ่านการบรรยายและทำกิจกรรมที่เหลือ พยายามสร้างโครงการโดยการทำความเข้าใจบทเรียนแทนที่จะคัดลอกรหัสโซลูชัน อย่างไรก็ตาม รหัสนั้นมีอยู่ในโฟลเดอร์ /solutions ในแต่ละบทเรียนที่เน้นโครงการ อีกแนวคิดหนึ่งคือการสร้างกลุ่มเรียนกับเพื่อนๆ และเรียนรู้เนื้อหาด้วยกัน สำหรับการศึกษาต่อ เราแนะนำ Microsoft Learn
พบกับทีมงาน
Gif โดย Mohit Jaisal
🎥 คลิกที่ภาพด้านบนเพื่อดูวิดีโอเกี่ยวกับโครงการและผู้ที่สร้างมันขึ้นมา!
วิธีการสอน
เราได้เลือกหลักการสอนสองข้อในการสร้างหลักสูตรนี้: การเน้นโครงการและการมีแบบทดสอบบ่อยครั้ง เมื่อจบซีรีส์นี้ นักเรียนจะได้เรียนรู้หลักการพื้นฐานของวิทยาศาสตร์ข้อมูล รวมถึงแนวคิดด้านจริยธรรม การเตรียมข้อมูล วิธีการทำงานกับข้อมูลที่แตกต่างกัน การสร้างภาพข้อมูล การวิเคราะห์ข้อมูล กรณีการใช้งานจริงของวิทยาศาสตร์ข้อมูล และอื่นๆ
นอกจากนี้ แบบทดสอบที่มีความเสี่ยงต่ำก่อนคลาสจะช่วยตั้งเป้าหมายของนักเรียนในการเรียนรู้หัวข้อหนึ่งๆ ในขณะที่แบบทดสอบที่สองหลังคลาสช่วยเพิ่มการจดจำ หลักสูตรนี้ถูกออกแบบมาให้ยืดหยุ่นและสนุกสนาน และสามารถเรียนได้ทั้งแบบเต็มหรือบางส่วน โครงการเริ่มต้นจากขนาดเล็กและมีความซับซ้อนมากขึ้นเมื่อจบวงจร 10 สัปดาห์
ค้นหา หลักปฏิบัติของเรา, การมีส่วนร่วม, แนวทางการแปล เรายินดีรับฟังความคิดเห็นที่สร้างสรรค์ของคุณ!
แต่ละบทเรียนประกอบด้วย:
- สเก็ตโน้ต (ตัวเลือก)
- วิดีโอเสริม (ตัวเลือก)
- แบบทดสอบอุ่นเครื่องก่อนเริ่มบทเรียน
- บทเรียนที่เขียนขึ้น
- สำหรับบทเรียนที่เน้นโครงการ: คู่มือทีละขั้นตอนในการสร้างโครงการ
- การตรวจสอบความรู้
- ความท้าทาย
- การอ่านเสริม
- งานที่มอบหมาย
- แบบทดสอบหลังบทเรียน
หมายเหตุเกี่ยวกับแบบทดสอบ: แบบทดสอบทั้งหมดอยู่ในโฟลเดอร์ Quiz-App รวมทั้งหมด 40 แบบทดสอบ โดยแต่ละแบบทดสอบมี 3 คำถาม แบบทดสอบเหล่านี้ถูกลิงก์จากภายในบทเรียน แต่แอปแบบทดสอบสามารถรันได้ในเครื่องหรือปรับใช้บน Azure; ทำตามคำแนะนำในโฟลเดอร์
quiz-app
แบบทดสอบกำลังถูกแปลเป็นภาษาท้องถิ่นอย่างต่อเนื่อง
บทเรียน
![]() |
---|
วิทยาศาสตร์ข้อมูลสำหรับผู้เริ่มต้น: แผนที่นำทาง - สเก็ตโน้ตโดย @nitya |
หมายเลขบทเรียน | หัวข้อ | กลุ่มบทเรียน | วัตถุประสงค์การเรียนรู้ | ลิงก์บทเรียน | ผู้เขียน |
---|---|---|---|---|---|
01 | การนิยามวิทยาศาสตร์ข้อมูล | บทนำ | เรียนรู้แนวคิดพื้นฐานของวิทยาศาสตร์ข้อมูลและความสัมพันธ์กับปัญญาประดิษฐ์ การเรียนรู้ของเครื่อง และข้อมูลขนาดใหญ่ | บทเรียน วิดีโอ | Dmitry |
02 | จริยธรรมในวิทยาศาสตร์ข้อมูล | บทนำ | แนวคิดเกี่ยวกับจริยธรรมในข้อมูล ความท้าทาย และกรอบแนวทาง | บทเรียน | Nitya |
03 | การนิยามข้อมูล | บทนำ | วิธีการจัดประเภทข้อมูลและแหล่งข้อมูลทั่วไป | บทเรียน | Jasmine |
04 | บทนำสู่สถิติและความน่าจะเป็น | บทนำ | เทคนิคทางคณิตศาสตร์ของความน่าจะเป็นและสถิติเพื่อทำความเข้าใจข้อมูล | บทเรียน วิดีโอ | Dmitry |
05 | การทำงานกับข้อมูลเชิงสัมพันธ์ | การทำงานกับข้อมูล | บทนำเกี่ยวกับข้อมูลเชิงสัมพันธ์และพื้นฐานการสำรวจและวิเคราะห์ข้อมูลเชิงสัมพันธ์ด้วย Structured Query Language หรือ SQL (ออกเสียงว่า "ซีเควล") | บทเรียน | Christopher |
06 | การทำงานกับข้อมูล NoSQL | การทำงานกับข้อมูล | บทนำเกี่ยวกับข้อมูลที่ไม่ใช่เชิงสัมพันธ์ ประเภทต่าง ๆ และพื้นฐานการสำรวจและวิเคราะห์ฐานข้อมูลเอกสาร | บทเรียน | Jasmine |
07 | การทำงานกับ Python | การทำงานกับข้อมูล | พื้นฐานการใช้ Python เพื่อสำรวจข้อมูลด้วยไลบรารี เช่น Pandas แนะนำให้มีความเข้าใจพื้นฐานเกี่ยวกับการเขียนโปรแกรม Python | บทเรียน วิดีโอ | Dmitry |
08 | การเตรียมข้อมูล | การทำงานกับข้อมูล | หัวข้อเกี่ยวกับเทคนิคการทำความสะอาดและแปลงข้อมูลเพื่อจัดการกับปัญหาข้อมูลที่ขาดหาย ไม่ถูกต้อง หรือไม่สมบูรณ์ | บทเรียน | Jasmine |
09 | การแสดงผลปริมาณข้อมูล | การแสดงผลข้อมูล | เรียนรู้วิธีใช้ Matplotlib เพื่อแสดงผลข้อมูลนก 🦆 | บทเรียน | Jen |
10 | การแสดงผลการแจกแจงข้อมูล | การแสดงผลข้อมูล | การแสดงผลการสังเกตและแนวโน้มภายในช่วงเวลา | บทเรียน | Jen |
11 | การแสดงผลสัดส่วน | การแสดงผลข้อมูล | การแสดงผลเปอร์เซ็นต์แบบแยกส่วนและแบบกลุ่ม | บทเรียน | Jen |
12 | การแสดงผลความสัมพันธ์ | การแสดงผลข้อมูล | การแสดงผลการเชื่อมโยงและความสัมพันธ์ระหว่างชุดข้อมูลและตัวแปร | บทเรียน | Jen |
13 | การแสดงผลที่มีความหมาย | การแสดงผลข้อมูล | เทคนิคและคำแนะนำในการทำให้การแสดงผลของคุณมีคุณค่าเพื่อการแก้ปัญหาและการให้ข้อมูลเชิงลึกที่มีประสิทธิภาพ | บทเรียน | Jen |
14 | บทนำสู่วงจรชีวิตของวิทยาศาสตร์ข้อมูล | วงจรชีวิต | บทนำเกี่ยวกับวงจรชีวิตของวิทยาศาสตร์ข้อมูลและขั้นตอนแรกในการรวบรวมและดึงข้อมูล | บทเรียน | Jasmine |
15 | การวิเคราะห์ | วงจรชีวิต | ขั้นตอนนี้ของวงจรชีวิตวิทยาศาสตร์ข้อมูลมุ่งเน้นไปที่เทคนิคการวิเคราะห์ข้อมูล | บทเรียน | Jasmine |
16 | การสื่อสาร | วงจรชีวิต | ขั้นตอนนี้ของวงจรชีวิตวิทยาศาสตร์ข้อมูลมุ่งเน้นไปที่การนำเสนอข้อมูลเชิงลึกจากข้อมูลในรูปแบบที่ช่วยให้ผู้ตัดสินใจเข้าใจได้ง่ายขึ้น | บทเรียน | Jalen |
17 | วิทยาศาสตร์ข้อมูลในระบบคลาวด์ | ข้อมูลในระบบคลาวด์ | ชุดบทเรียนนี้แนะนำวิทยาศาสตร์ข้อมูลในระบบคลาวด์และประโยชน์ของมัน | บทเรียน | Tiffany และ Maud |
18 | วิทยาศาสตร์ข้อมูลในระบบคลาวด์ | ข้อมูลในระบบคลาวด์ | การฝึกอบรมโมเดลโดยใช้เครื่องมือ Low Code | บทเรียน | Tiffany และ Maud |
19 | วิทยาศาสตร์ข้อมูลในระบบคลาวด์ | ข้อมูลในระบบคลาวด์ | การปรับใช้โมเดลด้วย Azure Machine Learning Studio | บทเรียน | Tiffany และ Maud |
20 | วิทยาศาสตร์ข้อมูลในโลกจริง | ในโลกจริง | โครงการที่ขับเคลื่อนด้วยวิทยาศาสตร์ข้อมูลในโลกจริง | บทเรียน | Nitya |
GitHub Codespaces
ทำตามขั้นตอนเหล่านี้เพื่อเปิดตัวอย่างนี้ใน Codespace:
- คลิกเมนูแบบเลื่อนลง Code และเลือกตัวเลือก Open with Codespaces
- เลือก + New codespace ที่ด้านล่างของแผง สำหรับข้อมูลเพิ่มเติม ดู เอกสาร GitHub.
VSCode Remote - Containers
ทำตามขั้นตอนเหล่านี้เพื่อเปิด repo นี้ใน container โดยใช้เครื่องในพื้นที่ของคุณและ VSCode ด้วยส่วนขยาย VS Code Remote - Containers:
- หากนี่เป็นครั้งแรกที่คุณใช้ container สำหรับการพัฒนา โปรดตรวจสอบให้แน่ใจว่าระบบของคุณตรงตามข้อกำหนดเบื้องต้น (เช่น ติดตั้ง Docker) ใน เอกสารการเริ่มต้นใช้งาน.
ในการใช้ repository นี้ คุณสามารถเปิด repository ใน Docker volume ที่แยกออกมา:
หมายเหตุ: เบื้องหลังจะใช้คำสั่ง Remote-Containers: Clone Repository in Container Volume... เพื่อโคลนซอร์สโค้ดใน Docker volume แทนที่จะเป็นระบบไฟล์ในเครื่อง Volumes เป็นกลไกที่แนะนำสำหรับการเก็บข้อมูล container
หรือเปิดเวอร์ชันที่โคลนหรือดาวน์โหลดในเครื่องของ repository:
- โคลน repository นี้ไปยังระบบไฟล์ในเครื่องของคุณ
- กด F1 และเลือกคำสั่ง Remote-Containers: Open Folder in Container...
- เลือกสำเนาที่โคลนของโฟลเดอร์นี้ รอให้ container เริ่มต้น และลองใช้งาน
การเข้าถึงแบบออฟไลน์
คุณสามารถรันเอกสารนี้แบบออฟไลน์โดยใช้ Docsify. Fork repo นี้, ติดตั้ง Docsify บนเครื่องในพื้นที่ของคุณ จากนั้นในโฟลเดอร์รากของ repo นี้ พิมพ์ docsify serve
. เว็บไซต์จะถูกให้บริการบนพอร์ต 3000 บน localhost ของคุณ: localhost:3000
.
หมายเหตุ โน้ตบุ๊กจะไม่ถูกแสดงผลผ่าน Docsify ดังนั้นเมื่อคุณต้องการรันโน้ตบุ๊ก ให้ทำสิ่งนั้นแยกต่างหากใน VS Code โดยใช้ kernel Python
หลักสูตรอื่น ๆ
ทีมของเราผลิตหลักสูตรอื่น ๆ! ดูที่:
- Generative AI for Beginners
- Generative AI for Beginners .NET
- Generative AI with JavaScript
- Generative AI with Java
- AI for Beginners
- Data Science for Beginners
- Bash for Beginners
- ML for Beginners
- Cybersecurity for Beginners
- Web Dev for Beginners
- IoT for Beginners
- Machine Learning for Beginners
- XR Development for Beginners
- Mastering GitHub Copilot for AI Paired Programming
- XR Development for Beginners
- Mastering GitHub Copilot for C#/.NET Developers
- Choose Your Own Copilot Adventure
ข้อจำกัดความรับผิดชอบ:
เอกสารนี้ได้รับการแปลโดยใช้บริการแปลภาษา AI Co-op Translator แม้ว่าเราจะพยายามให้การแปลมีความถูกต้อง แต่โปรดทราบว่าการแปลอัตโนมัติอาจมีข้อผิดพลาดหรือความไม่แม่นยำ เอกสารต้นฉบับในภาษาดั้งเดิมควรถือเป็นแหล่งข้อมูลที่เชื่อถือได้ สำหรับข้อมูลที่สำคัญ แนะนำให้ใช้บริการแปลภาษาจากผู้เชี่ยวชาญ เราจะไม่รับผิดชอบต่อความเข้าใจผิดหรือการตีความที่ผิดพลาดซึ่งเกิดจากการใช้การแปลนี้