|
|
2 weeks ago | |
|---|---|---|
| .. | ||
| 1-Introduction | 2 weeks ago | |
| 2-Working-With-Data | 2 weeks ago | |
| 3-Data-Visualization | 2 weeks ago | |
| 4-Data-Science-Lifecycle | 2 weeks ago | |
| 5-Data-Science-In-Cloud | 2 weeks ago | |
| 6-Data-Science-In-Wild | 2 weeks ago | |
| docs | 2 weeks ago | |
| examples | 2 weeks ago | |
| quiz-app | 2 weeks ago | |
| sketchnotes | 2 weeks ago | |
| .co-op-translator.json | 2 weeks ago | |
| AGENTS.md | 2 weeks ago | |
| CODE_OF_CONDUCT.md | 2 weeks ago | |
| CONTRIBUTING.md | 2 weeks ago | |
| INSTALLATION.md | 2 weeks ago | |
| README.md | 2 weeks ago | |
| SECURITY.md | 2 weeks ago | |
| SUPPORT.md | 2 weeks ago | |
| TROUBLESHOOTING.md | 2 weeks ago | |
| USAGE.md | 2 weeks ago | |
| for-teachers.md | 2 weeks ago | |
README.md
Data Science για Αρχάριους - Ένα Αναλυτικό Πρόγραμμα Σπουδών
Οι Πρεσβευτές του Azure Cloud στη Microsoft είναι χαρούμενοι να προσφέρουν ένα 10-εβδομάδων, 20-μαθημάτων αναλυτικό πρόγραμμα που καλύπτει όλη την Επιστήμη Δεδομένων. Κάθε μάθημα περιλαμβάνει κουίζ πριν και μετά το μάθημα, γραπτές οδηγίες για την ολοκλήρωση του μαθήματος, μια λύση και μια εργασία. Η μαθητοκεντρική προσέγγισή μας σας επιτρέπει να μαθαίνετε δημιουργώντας, έναν αποδεδειγμένο τρόπο για νέες δεξιότητες να «στερεωθούν».
Ειλικρινείς ευχαριστίες στους συγγραφείς μας: Jasmine Greenaway, Dmitry Soshnikov, Nitya Narasimhan, Jalen McGee, Jen Looper, Maud Levy, Tiffany Souterre, Christopher Harrison.
🙏 Ειδικές ευχαριστίες 🙏 στους συγγραφείς, αξιολογητές και συνεισφέροντες περιεχόμενο Microsoft Student Ambassador, ιδιαίτερα Aaryan Arora, Aditya Garg, Alondra Sanchez, Ankita Singh, Anupam Mishra, Arpita Das, ChhailBihari Dubey, Dibri Nsofor, Dishita Bhasin, Majd Safi, Max Blum, Miguel Correa, Mohamma Iftekher (Iftu) Ebne Jalal, Nawrin Tabassum, Raymond Wangsa Putra, Rohit Yadav, Samridhi Sharma, Sanya Sinha, Sheena Narula, Tauqeer Ahmad, Yogendrasingh Pawar , Vidushi Gupta, Jasleen Sondhi
![]() |
|---|
| Επιστήμη Δεδομένων για Αρχάριους - Sketchnote από @nitya |
🌐 Υποστήριξη σε Πολλαπλές Γλώσσες
Υποστηρίζεται μέσω GitHub Action (Αυτόματο & Πάντα Ενημερωμένο)
Arabic | Bengali | Bulgarian | Burmese (Myanmar) | Chinese (Simplified) | Chinese (Traditional, Hong Kong) | Chinese (Traditional, Macau) | Chinese (Traditional, Taiwan) | Croatian | Czech | Danish | Dutch | Estonian | Finnish | French | German | Greek | Hebrew | Hindi | Hungarian | Indonesian | Italian | Japanese | Kannada | Korean | Lithuanian | Malay | Malayalam | Marathi | Nepali | Nigerian Pidgin | Norwegian | Persian (Farsi) | Polish | Portuguese (Brazil) | Portuguese (Portugal) | Punjabi (Gurmukhi) | Romanian | Russian | Serbian (Cyrillic) | Slovak | Slovenian | Spanish | Swahili | Swedish | Tagalog (Filipino) | Tamil | Telugu | Thai | Turkish | Ukrainian | Urdu | Vietnamese
Προτιμάς να κάνεις Κλωνοποίηση Τοπικά;
Αυτό το αποθετήριο περιλαμβάνει 50+ μεταφράσεις σε γλώσσες που αυξάνουν σημαντικά το μέγεθος κατεβάσματος. Για κλωνοποίηση χωρίς τις μεταφράσεις, χρησιμοποίησε sparse checkout:
git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git cd Data-Science-For-Beginners git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'Αυτό σου δίνει όλα όσα χρειάζεσαι για να ολοκληρώσεις το μάθημα με πολύ πιο γρήγορο κατέβασμα.
Αν επιθυμείς να υποστηριχθούν επιπλέον γλώσσες μετάφρασης, αυτές παρατίθενται εδώ
Γίνε Μέλος της Κοινότητάς μας
Διοργανώνουμε μια σειρά Discord Learn with AI, μάθε περισσότερα και γίνε μέλος στο Learn with AI Series από 18 - 30 Σεπτεμβρίου, 2025. Θα λάβεις συμβουλές και κόλπα για τη χρήση του GitHub Copilot στην Επιστήμη Δεδομένων.
Είσαι φοιτητής;
Ξεκίνα με τους εξής πόρους:
- Student Hub σελίδα Σε αυτή τη σελίδα, θα βρεις πόρους για αρχάριους, πακέτα για φοιτητές και ακόμη και τρόπους να αποκτήσεις δωρεάν κουπόνι πιστοποίησης. Είναι μια σελίδα που θέλεις να προσθέσεις στα αγαπημένα σου και να την ελέγχεις τακτικά καθώς ανανεώνουμε το περιεχόμενο τουλάχιστον μηνιαίως.
- Microsoft Learn Student Ambassadors Γίνε μέλος μιας παγκόσμιας κοινότητας φοιτητών πρεσβευτών, αυτό μπορεί να είναι ο δρόμος σου για τη Microsoft.
Ξεκινώντας
📚 Τεκμηρίωση
- Οδηγός Εγκατάστασης - Βήμα-βήμα οδηγίες για αρχάριους
- Οδηγός Χρήσης - Παραδείγματα και συνηθισμένες εργασίες
- Αντιμετώπιση Προβλημάτων - Λύσεις σε συνηθισμένα προβλήματα
- Οδηγός Συμμετοχής - Πώς να συμβάλλετε στο έργο αυτό
- Για Εκπαιδευτικούς - Οδηγίες διδασκαλίας και πόροι για την τάξη
👨🎓 Για Φοιτητές
Απόλυτοι Αρχάριοι: Νέοι στην επιστήμη δεδομένων; Ξεκίνα με τα φιλικά για αρχάριους παραδείγματα! Αυτά τα απλά, καλά σχολιασμένα παραδείγματα θα σε βοηθήσουν να κατανοήσεις τις βάσεις πριν βουτήξεις στο πλήρες πρόγραμμα. Φοιτητές: για να χρησιμοποιήσετε αυτό το πρόγραμμα μόνοι σας, κάντε fork ολόκληρο το αποθετήριο και ολοκληρώστε τις ασκήσεις μόνοι σας, ξεκινώντας με ένα κουίζ προ-διάλεξης. Μετά διάβασε τη διάλεξη και ολοκλήρωσε τις υπόλοιπες δραστηριότητες. Προσπάθησε να δημιουργήσεις τα έργα κατανοώντας τα μαθήματα αντί να αντιγράφεις τον κώδικα λύσης· ωστόσο, αυτός ο κώδικας είναι διαθέσιμος στους φακέλους /solutions σε κάθε μάθημα προσανατολισμένο σε έργα. Μια άλλη ιδέα είναι να σχηματίσεις μια ομάδα μελέτης με φίλους και να πάτε μαζί το περιεχόμενο. Για περαιτέρω μελέτη, προτείνουμε το Microsoft Learn.
Γρήγορη Έναρξη:
- Δες τον Οδηγό Εγκατάστασης για να ρυθμίσεις το περιβάλλον σου
- Διάβασε τον Οδηγό Χρήσης για να μάθεις πώς να δουλεύεις με το πρόγραμμα
- Ξεκίνησε με το Μάθημα 1 και δούλεψε σειριακά
- Γίνε μέλος της κοινότητάς μας στο Discord για υποστήριξη
👩🏫 Για Εκπαιδευτικούς
Εκπαιδευτικοί: έχουμε περιλάβει κάποιες προτάσεις για το πώς να χρησιμοποιήσετε αυτό το πρόγραμμα. Θα χαρούμε πολύ να λάβουμε τα σχόλιά σας στο φόρουμ συζητήσεων!
Γνωρίστε την Ομάδα
Gif από Mohit Jaisal
🎥 Κάντε κλικ στην εικόνα παραπάνω για ένα βίντεο σχετικά με το έργο και τα άτομα που το δημιούργησαν!
Παιδαγωγική
Έχουμε επιλέξει δύο παιδαγωγικές αρχές κατά την κατασκευή αυτής της διδακτέας ύλης: να είναι βασισμένη σε έργα και να περιλαμβάνει συχνά κουίζ. Μέχρι το τέλος αυτής της σειράς, οι μαθητές θα έχουν μάθει βασικές αρχές της επιστήμης των δεδομένων, συμπεριλαμβανομένων ηθικών εννοιών, προετοιμασίας δεδομένων, διαφορετικών τρόπων εργασίας με δεδομένα, οπτικοποίησης δεδομένων, ανάλυσης δεδομένων, πραγματικών περιπτώσεων χρήσης της επιστήμης των δεδομένων και άλλα.
Επιπλέον, ένα κουίζ χαμηλής σημασίας πριν από το μάθημα θέτει την πρόθεση του μαθητή για την εκμάθηση ενός θέματος, ενώ ένα δεύτερο κουίζ μετά το μάθημα διασφαλίζει περαιτέρω διατήρηση. Αυτή η διδακτέα ύλη σχεδιάστηκε να είναι ευέλικτη και διασκεδαστική και μπορεί να ληφθεί ολόκληρη ή μεμονωμένα. Τα έργα ξεκινούν μικρά και γίνονται όλο και πιο πολύπλοκα μέχρι το τέλος του κύκλου των 10 εβδομάδων.
Βρείτε τις Οδηγίες Συμπεριφοράς μας, τις οδηγίες Συμβολής και Μετάφρασης. Εκτιμούμε τα εποικοδομητικά σας σχόλια!
Κάθε μάθημα περιλαμβάνει:
- Προαιρετική σημείωση σχεδίου (sketchnote)
- Προαιρετικό συμπληρωματικό βίντεο
- Προ-μαθηματικό κουίζ προθέρμανσης
- Γραπτό μάθημα
- Για μαθήματα βασισμένα σε έργα, βήμα-βήμα οδηγίες για το πώς να κατασκευάσετε το έργο
- Έλεγχοι γνώσεων
- Μια πρόκληση
- Συμπληρωματική ανάγνωση
- Ανάθεση εργασίας
- Μετα-μαθηματικό κουίζ
Μια σημείωση για τα κουίζ: Όλα τα κουίζ βρίσκονται στον φάκελο Quiz-App, με συνολικά 40 κουίζ των τριών ερωτήσεων το καθένα. Συνδέονται από τα μαθήματα, αλλά η εφαρμογή κουίζ μπορεί να τρέξει τοπικά ή να αναπτυχθεί στο Azure· ακολουθήστε τις οδηγίες στον φάκελο
quiz-app. Βρίσκονται σε διαδικασία σταδιακής τοπικοποίησης.
🎓 Παραδείγματα φιλικά προς αρχάριους
Νέοι στην Επιστήμη Δεδομένων; Δημιουργήσαμε έναν ειδικό κατάλογο παραδειγμάτων με απλό, καλά σχολιασμένο κώδικα για να σας βοηθήσει να ξεκινήσετε:
- 🌟 Γεια σου Κόσμε - Το πρώτο σας πρόγραμμα επιστήμης δεδομένων
- 📂 Φόρτωση Δεδομένων - Μάθετε να διαβάζετε και να εξερευνάτε σύνολα δεδομένων
- 📊 Απλή Ανάλυση - Υπολογίστε στατιστικά και βρείτε μοτίβα
- 📈 Βασική Οπτικοποίηση - Δημιουργήστε διαγράμματα και γραφήματα
- 🔬 Πραγματικό Έργο - Ολοκληρωμένη διαδικασία από την αρχή ως το τέλος
Κάθε παράδειγμα περιλαμβάνει λεπτομερή σχόλια που εξηγούν κάθε βήμα, καθιστώντας το ιδανικό για απόλυτους αρχάριους!
👉 Ξεκινήστε με τα παραδείγματα 👈
Μαθήματα
![]() |
|---|
| Επιστήμη Δεδομένων για Αρχάριους: Οδικός Χάρτης - Σημείωση σχεδίου από @nitya |
| Αριθμός Μαθήματος | Θέμα | Ομαδοποίηση Μαθήματος | Μαθησιακοί Στόχοι | Συνδεδεμένο Μάθημα | Συγγραφέας |
|---|---|---|---|---|---|
| 01 | Ορισμός της Επιστήμης Δεδομένων | Εισαγωγή | Μάθετε τις βασικές έννοιες πίσω από την επιστήμη δεδομένων και πώς σχετίζεται με την τεχνητή νοημοσύνη, τη μηχανική μάθηση και τα μεγάλα δεδομένα. | μάθημα βίντεο | Dmitry |
| 02 | Ηθική της Επιστήμης Δεδομένων | Εισαγωγή | Έννοιες Ηθικής Δεδομένων, Προκλήσεις & Πλαίσια. | μάθημα | Nitya |
| 03 | Ορισμός των Δεδομένων | Εισαγωγή | Πώς ταξινομούνται τα δεδομένα και οι κοινές πηγές τους. | μάθημα | Jasmine |
| 04 | Εισαγωγή στη Στατιστική & Πιθανότητες | Εισαγωγή | Οι μαθηματικές τεχνικές πιθανοτήτων και στατιστικής για την κατανόηση των δεδομένων. | μάθημα βίντεο | Dmitry |
| 05 | Εργασία με Σχεσιακά Δεδομένα | Εργασία με Δεδομένα | Εισαγωγή στα σχεσιακά δεδομένα και τα βασικά της εξερεύνησης και ανάλυσης σχεσιακών δεδομένων με τη Γλώσσα Δομημένων Ερωτημάτων, γνωστή και ως SQL (προφέρεται “σι-κουελ”). | μάθημα | Christopher |
| 06 | Εργασία με NoSQL Δεδομένα | Εργασία με Δεδομένα | Εισαγωγή σε μη σχεσιακά δεδομένα, τους διάφορους τύπους τους και τα βασικά της εξερεύνησης και ανάλυσης βάσεων δεδομένων εγγράφων. | μάθημα | Jasmine |
| 07 | Εργασία με Python | Εργασία με Δεδομένα | Βασικά της χρήσης της Python για εξερεύνηση δεδομένων με βιβλιοθήκες όπως η Pandas. Συνιστάται βασική κατανόηση προγραμματισμού Python. | μάθημα βίντεο | Dmitry |
| 08 | Προετοιμασία Δεδομένων | Εργασία με Δεδομένα | Θέματα τεχνικών δεδομένων για καθαρισμό και μετασχηματισμό των δεδομένων ώστε να αντιμετωπιστούν προκλήσεις όπως τα ελλιπή, ανακριβή ή ατελή δεδομένα. | μάθημα | Jasmine |
| 09 | Οπτικοποίηση Ποσοτήτων | Οπτικοποίηση Δεδομένων | Μάθετε πώς να χρησιμοποιείτε το Matplotlib για να οπτικοποιήσετε δεδομένα πουλιών 🦆 | μάθημα | Jen |
| 10 | Οπτικοποίηση Κατανομών Δεδομένων | Οπτικοποίηση Δεδομένων | Οπτικοποίηση παρατηρήσεων και τάσεων μέσα σε ένα διάστημα. | μάθημα | Jen |
| 11 | Οπτικοποίηση Αναλογιών | Οπτικοποίηση Δεδομένων | Οπτικοποίηση διακριτών και ομαδοποιημένων ποσοστών. | μάθημα | Jen |
| 12 | Οπτικοποίηση Συσχετίσεων | Οπτικοποίηση Δεδομένων | Οπτικοποίηση συνδέσεων και συσχετίσεων μεταξύ συνόλων δεδομένων και των μεταβλητών τους. | μάθημα | Jen |
| 13 | Σημαντικές Οπτικοποιήσεις | Οπτικοποίηση Δεδομένων | Τεχνικές και καθοδήγηση για να κάνετε τις οπτικοποιήσεις σας πολύτιμες για αποτελεσματική επίλυση προβλημάτων και εξαγωγή γνώσεων. | μάθημα | Jen |
| 14 | Εισαγωγή στον κύκλο ζωής της Επιστήμης Δεδομένων | Κύκλος Ζωής | Εισαγωγή στον κύκλο ζωής της επιστήμης δεδομένων και το πρώτο βήμα της απόκτησης και εξαγωγής δεδομένων. | μάθημα | Jasmine |
| 15 | Ανάλυση | Κύκλος Ζωής | Αυτή η φάση του κύκλου ζωής της επιστήμης δεδομένων εστιάζει σε τεχνικές ανάλυσης δεδομένων. | μάθημα | Jasmine |
| 16 | Επικοινωνία | Κύκλος Ζωής | Αυτή η φάση του κύκλου ζωής της επιστήμης δεδομένων εστιάζει στην παρουσίαση των ευρημάτων από τα δεδομένα με τρόπο που διευκολύνει τους λήπτες αποφάσεων να κατανοήσουν. | μάθημα | Jalen |
| 17 | Επιστήμη Δεδομένων στο Cloud | Cloud Δεδομένα | Αυτή η σειρά μαθημάτων εισάγει την επιστήμη δεδομένων στο cloud και τα οφέλη της. | μάθημα | Tiffany και Maud |
| 18 | Επιστήμη Δεδομένων στο Cloud | Cloud Δεδομένα | Εκπαίδευση μοντέλων χρησιμοποιώντας εργαλεία Low Code. | μάθημα | Tiffany και Maud |
| 19 | Επιστήμη Δεδομένων στο Cloud | Cloud Δεδομένα | Ανάπτυξη μοντέλων με το Azure Machine Learning Studio. | μάθημα | Tiffany και Maud |
| 20 | Επιστήμη Δεδομένων στην Πράξη | Στην Πράξη | Έργα επιστήμης δεδομένων στον πραγματικό κόσμο. | μάθημα | Nitya |
GitHub Codespaces
Ακολουθήστε αυτά τα βήματα για να ανοίξετε αυτό το παράδειγμα σε ένα Codespace:
- Κάντε κλικ στο αναπτυσσόμενο μενού Κώδικα και επιλέξτε την επιλογή Άνοιγμα με Codespaces.
- Επιλέξτε + Νέο codespace στο κάτω μέρος του παραθύρου. Για περισσότερες πληροφορίες, δείτε την τεκμηρίωση GitHub.
VSCode Remote - Containers
Ακολουθήστε αυτά τα βήματα για να ανοίξετε αυτό το αποθετήριο σε container χρησιμοποιώντας τον τοπικό σας υπολογιστή και το VSCode με την επέκταση VS Code Remote - Containers:
- Αν είναι η πρώτη φορά που χρησιμοποιείτε ένα development container, βεβαιωθείτε ότι το σύστημά σας πληροί τις προϋποθέσεις (π.χ. έχει εγκατασταθεί το Docker) στην τεκμηρίωση εκκίνησης.
Για να χρησιμοποιήσετε αυτό το αποθετήριο, μπορείτε είτε να το ανοίξετε μέσα σε έναν απομονωμένο τόμο Docker:
Σημείωση: Υπό το καπό, αυτό θα χρησιμοποιήσει την εντολή Remote-Containers: Clone Repository in Container Volume... για να κλωνοποιήσει τον κώδικα πηγής σε έναν τόμο Docker αντί για το τοπικό σύστημα αρχείων. Οι τόμοι είναι ο προτιμώμενος μηχανισμός για τη διατήρηση δεδομένων container.
Ή να ανοίξετε μια τοπικά κλωνοποιημένη ή κατεβασμένη έκδοση του αποθετηρίου:
- Κλωνοποιήστε αυτό το αποθετήριο στο τοπικό σας σύστημα αρχείων.
- Πατήστε F1 και επιλέξτε την εντολή Remote-Containers: Open Folder in Container....
- Επιλέξτε το κλωνοποιημένο αντίγραφο αυτού του φακέλου, περιμένετε να ξεκινήσει το container και δοκιμάστε.
Πρόσβαση εκτός σύνδεσης
Μπορείτε να τρέξετε αυτή την τεκμηρίωση εκτός σύνδεσης χρησιμοποιώντας το Docsify. Κάντε fork αυτό το αποθετήριο, εγκαταστήστε το Docsify στον τοπικό σας υπολογιστή, στη συνέχεια μέσα στο ριζικό φάκελο αυτού του αποθετηρίου, πληκτρολογήστε docsify serve. Η ιστοσελίδα θα σερβιριστεί στην πόρτα 3000 στον localhost σας: localhost:3000.
Σημείωση, τα notebooks δεν θα αποδίδονται μέσω Docsify, οπότε όταν χρειαστεί να τρέξετε ένα notebook, κάντε το ξεχωριστά στο VS Code με kernel Python.
Άλλες Διδακτικές Ενότητες
Η ομάδα μας παράγει και άλλες διδακτικές ενότητες! Δείτε:
LangChain
Azure / Edge / MCP / Agents
Σειρά Δημιουργικής Τεχνητής Νοημοσύνης
Βασική Μάθηση
Σειρά Copilot
Λήψη Βοήθειας
Αντιμετωπίζετε προβλήματα; Ελέγξτε τον Οδηγό Επίλυσης Προβλημάτων για λύσεις σε συνηθισμένα ζητήματα.
Εάν κολλήσετε ή έχετε οποιεσδήποτε ερωτήσεις σχετικά με την κατασκευή εφαρμογών τεχνητής νοημοσύνης, συμμετέχετε με άλλους μαθητές και έμπειρους προγραμματιστές σε συζητήσεις για το MCP. Είναι μια υποστηρικτική κοινότητα όπου οι ερωτήσεις είναι ευπρόσδεκτες και η γνώση μοιράζεται ελεύθερα.
Εάν έχετε σχόλια προϊόντος ή σφάλματα κατά την ανάπτυξη, επισκεφθείτε:
Αποποίηση ευθυνών:
Αυτό το έγγραφο έχει μεταφραστεί χρησιμοποιώντας την υπηρεσία μετάφρασης AI Co-op Translator. Παρόλο που προσπαθούμε για ακρίβεια, παρακαλούμε να σημειώσετε ότι οι αυτοματοποιημένες μεταφράσεις ενδέχεται να περιέχουν λάθη ή ανακρίβειες. Το πρωτότυπο έγγραφο στη γλώσσα του θεωρείται η αυθεντική πηγή. Για κρίσιμες πληροφορίες συνιστάται επαγγελματική ανθρώπινη μετάφραση. Δεν φέρουμε ευθύνη για οποιεσδήποτε παρεξηγήσεις ή λανθασμένες ερμηνείες που προκύπτουν από τη χρήση αυτής της μετάφρασης.



