You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Data-Science-For-Beginners/translations/el
leestott 153371c81d
🌐 Update translations via Co-op Translator
2 weeks ago
..
1-Introduction 🌐 Update translations via Co-op Translator 2 weeks ago
2-Working-With-Data 🌐 Update translations via Co-op Translator 2 weeks ago
3-Data-Visualization 🌐 Update translations via Co-op Translator 2 weeks ago
4-Data-Science-Lifecycle 🌐 Update translations via Co-op Translator 2 weeks ago
5-Data-Science-In-Cloud 🌐 Update translations via Co-op Translator 2 weeks ago
6-Data-Science-In-Wild 🌐 Update translations via Co-op Translator 2 weeks ago
docs 🌐 Update translations via Co-op Translator 4 weeks ago
quiz-app 🌐 Update translations via Co-op Translator 4 weeks ago
sketchnotes 🌐 Update translations via Co-op Translator 4 weeks ago
CODE_OF_CONDUCT.md 🌐 Update translations via Co-op Translator 4 weeks ago
CONTRIBUTING.md 🌐 Update translations via Co-op Translator 4 weeks ago
README.md 🌐 Update translations via Co-op Translator 2 weeks ago
SECURITY.md 🌐 Update translations via Co-op Translator 4 weeks ago
SUPPORT.md 🌐 Update translations via Co-op Translator 4 weeks ago
for-teachers.md 🌐 Update translations via Co-op Translator 2 weeks ago

README.md

Επιστήμη Δεδομένων για Αρχάριους - Ένα Πρόγραμμα Σπουδών

Azure Cloud Advocates στη Microsoft είναι στην ευχάριστη θέση να προσφέρουν ένα πρόγραμμα σπουδών διάρκειας 10 εβδομάδων και 20 μαθημάτων που αφορά την Επιστήμη Δεδομένων. Κάθε μάθημα περιλαμβάνει κουίζ πριν και μετά το μάθημα, γραπτές οδηγίες για την ολοκλήρωση του μαθήματος, μια λύση και μια εργασία. Η παιδαγωγική μας προσέγγιση που βασίζεται σε έργα σας επιτρέπει να μαθαίνετε ενώ δημιουργείτε, ένας αποδεδειγμένος τρόπος για να αποκτήσετε νέες δεξιότητες που "μένουν".

Εγκάρδιες ευχαριστίες στους συγγραφείς μας: Jasmine Greenaway, Dmitry Soshnikov, Nitya Narasimhan, Jalen McGee, Jen Looper, Maud Levy, Tiffany Souterre, Christopher Harrison.

🙏 Ειδικές ευχαριστίες 🙏 στους Microsoft Student Ambassador συγγραφείς, κριτές και συνεισφέροντες περιεχομένου, όπως οι Aaryan Arora, Aditya Garg, Alondra Sanchez, Ankita Singh, Anupam Mishra, Arpita Das, ChhailBihari Dubey, Dibri Nsofor, Dishita Bhasin, Majd Safi, Max Blum, Miguel Correa, Mohamma Iftekher (Iftu) Ebne Jalal, Nawrin Tabassum, Raymond Wangsa Putra, Rohit Yadav, Samridhi Sharma, Sanya Sinha, Sheena Narula, Tauqeer Ahmad, Yogendrasingh Pawar , Vidushi Gupta, Jasleen Sondhi

Σκίτσο από @sketchthedocs https://sketchthedocs.dev
Επιστήμη Δεδομένων για Αρχάριους - Σκίτσο από @nitya

🌐 Υποστήριξη Πολλών Γλωσσών

Υποστηρίζεται μέσω GitHub Action (Αυτοματοποιημένο & Πάντα Ενημερωμένο)

French | Spanish | German | Russian | Arabic | Persian (Farsi) | Urdu | Chinese (Simplified) | Chinese (Traditional, Macau) | Chinese (Traditional, Hong Kong) | Chinese (Traditional, Taiwan) | Japanese | Korean | Hindi | Bengali | Marathi | Nepali | Punjabi (Gurmukhi) | Portuguese (Portugal) | Portuguese (Brazil) | Italian | Polish | Turkish | Greek | Thai | Swedish | Danish | Norwegian | Finnish | Dutch | Hebrew | Vietnamese | Indonesian | Malay | Tagalog (Filipino) | Swahili | Hungarian | Czech | Slovak | Romanian | Bulgarian | Serbian (Cyrillic) | Croatian | Slovenian | Ukrainian | Burmese (Myanmar)

Αν επιθυμείτε να υποστηριχθούν επιπλέον γλώσσες, οι διαθέσιμες γλώσσες παρατίθενται εδώ

Γίνετε Μέλος της Κοινότητάς μας

Azure AI Discord

Είστε φοιτητής;

Ξεκινήστε με τους παρακάτω πόρους:

  • Σελίδα Student Hub Σε αυτή τη σελίδα, θα βρείτε πόρους για αρχάριους, πακέτα για φοιτητές και ακόμη και τρόπους για να αποκτήσετε δωρεάν κουπόνι πιστοποίησης. Αυτή είναι μια σελίδα που θέλετε να προσθέσετε στους σελιδοδείκτες σας και να ελέγχετε από καιρό σε καιρό καθώς αλλάζουμε περιεχόμενο τουλάχιστον μηνιαία.
  • Microsoft Learn Student Ambassadors Γίνετε μέλος μιας παγκόσμιας κοινότητας φοιτητών πρεσβευτών, αυτό θα μπορούσε να είναι ο τρόπος σας να μπείτε στη Microsoft.

Ξεκινώντας

Καθηγητές: έχουμε συμπεριλάβει κάποιες προτάσεις για το πώς να χρησιμοποιήσετε αυτό το πρόγραμμα σπουδών. Θα θέλαμε τη γνώμη σας στο φόρουμ συζητήσεων μας!

Φοιτητές: για να χρησιμοποιήσετε αυτό το πρόγραμμα σπουδών μόνοι σας, κάντε fork ολόκληρο το repo και ολοκληρώστε τις ασκήσεις μόνοι σας, ξεκινώντας με ένα κουίζ πριν από το μάθημα. Στη συνέχεια, διαβάστε το μάθημα και ολοκληρώστε τις υπόλοιπες δραστηριότητες. Προσπαθήστε να δημιουργήσετε τα έργα κατανοώντας τα μαθήματα αντί να αντιγράφετε τον κώδικα λύσης. Ωστόσο, αυτός ο κώδικας είναι διαθέσιμος στους φακέλους /solutions σε κάθε μάθημα που βασίζεται σε έργο. Μια άλλη ιδέα θα ήταν να σχηματίσετε μια ομάδα μελέτης με φίλους και να περάσετε το περιεχόμενο μαζί. Για περαιτέρω μελέτη, προτείνουμε Microsoft Learn.

Γνωρίστε την Ομάδα

Promo video

Gif από Mohit Jaisal

🎥 Κάντε κλικ στην εικόνα παραπάνω για ένα βίντεο σχετικά με το έργο και τους ανθρώπους που το δημιούργησαν!

Παιδαγωγική

Επιλέξαμε δύο παιδαγωγικές αρχές κατά τη δημιουργία αυτού του προγράμματος σπουδών: να διασφαλίσουμε ότι είναι βασισμένο σε έργα και ότι περιλαμβάνει συχνά κουίζ. Μέχρι το τέλος αυτής της σειράς, οι φοιτητές θα έχουν μάθει βασικές αρχές της επιστήμης δεδομένων, συμπεριλαμβανομένων ηθικών εννοιών, προετοιμασίας δεδομένων, διαφορετικών τρόπων εργασίας με δεδομένα, οπτικοποίησης δεδομένων, ανάλυσης δεδομένων, πραγματικών περιπτώσεων χρήσης της επιστήμης δεδομένων και πολλά άλλα.

Επιπλέον, ένα κουίζ χαμηλού κινδύνου πριν από το μάθημα θέτει την πρόθεση του φοιτητή προς την εκμάθηση ενός θέματος, ενώ ένα δεύτερο κουίζ μετά το μάθημα διασφαλίζει περαιτέρω την απομνημόνευση. Αυτό το πρόγραμμα σπουδών σχεδιάστηκε για να είναι ευέλικτο και διασκεδαστικό και μπορεί να ολοκληρωθεί ολόκληρο ή τμηματικά. Τα έργα ξεκινούν μικρά και γίνονται όλο και πιο περίπλοκα μέχρι το τέλος του κύκλου των 10 εβδομάδων.

Βρείτε τον Κώδικα Δεοντολογίας, τις Οδηγίες Συμβολής και τις Οδηγίες Μετάφρασης. Δεχόμαστε με χαρά τα εποικοδομητικά σας σχόλια!

Κάθε μάθημα περιλαμβάνει:

  • Προαιρετικό σκίτσο
  • Προαιρετικό συμπληρωματικό βίντεο
  • Ερωτηματολόγιο προθέρμανσης πριν το μάθημα
  • Γραπτό μάθημα
  • Για μαθήματα βασισμένα σε έργα, οδηγίες βήμα προς βήμα για την κατασκευή του έργου
  • Έλεγχοι γνώσεων
  • Μια πρόκληση
  • Συμπληρωματική ανάγνωση
  • Εργασία
  • Ερωτηματολόγιο μετά το μάθημα

Σημείωση για τα ερωτηματολόγια: Όλα τα ερωτηματολόγια βρίσκονται στον φάκελο Quiz-App, συνολικά 40 ερωτηματολόγια με τρεις ερωτήσεις το καθένα. Συνδέονται μέσα από τα μαθήματα, αλλά η εφαρμογή ερωτηματολογίων μπορεί να εκτελεστεί τοπικά ή να αναπτυχθεί στο Azure. Ακολουθήστε τις οδηγίες στον φάκελο quiz-app. Γίνονται σταδιακά τοπικοποιήσεις.

Μαθήματα

Σκίτσο από @sketchthedocs https://sketchthedocs.dev
Επιστήμη Δεδομένων για Αρχάριους: Χάρτης Πορείας - Σκίτσο από @nitya
Αριθμός Μαθήματος Θέμα Ομαδοποίηση Μαθήματος Στόχοι Μάθησης Συνδεδεμένο Μάθημα Συγγραφέας
01 Ορισμός της Επιστήμης Δεδομένων Εισαγωγή Μάθετε τις βασικές έννοιες της επιστήμης δεδομένων και πώς συνδέεται με την τεχνητή νοημοσύνη, τη μηχανική μάθηση και τα μεγάλα δεδομένα. μάθημα βίντεο Dmitry
02 Ηθική στην Επιστήμη Δεδομένων Εισαγωγή Έννοιες, Προκλήσεις & Πλαίσια Ηθικής Δεδομένων. μάθημα Nitya
03 Ορισμός των Δεδομένων Εισαγωγή Πώς ταξινομούνται τα δεδομένα και οι κοινές πηγές τους. μάθημα Jasmine
04 Εισαγωγή στη Στατιστική & Πιθανότητες Εισαγωγή Οι μαθηματικές τεχνικές της πιθανότητας και της στατιστικής για την κατανόηση των δεδομένων. μάθημα βίντεο Dmitry
05 Εργασία με Σχεσιακά Δεδομένα Εργασία με Δεδομένα Εισαγωγή στα σχεσιακά δεδομένα και τις βασικές αρχές εξερεύνησης και ανάλυσης σχεσιακών δεδομένων με τη Δομημένη Γλώσσα Ερωτημάτων, γνωστή και ως SQL (προφέρεται "see-quell"). μάθημα Christopher
06 Εργασία με Δεδομένα NoSQL Εργασία με Δεδομένα Εισαγωγή στα μη σχεσιακά δεδομένα, τους διάφορους τύπους τους και τις βασικές αρχές εξερεύνησης και ανάλυσης βάσεων δεδομένων εγγράφων. μάθημα Jasmine
07 Εργασία με Python Εργασία με Δεδομένα Βασικές αρχές χρήσης της Python για εξερεύνηση δεδομένων με βιβλιοθήκες όπως η Pandas. Συνιστάται θεμελιώδης κατανόηση του προγραμματισμού Python. μάθημα βίντεο Dmitry
08 Προετοιμασία Δεδομένων Εργασία με Δεδομένα Θέματα τεχνικών δεδομένων για καθαρισμό και μετασχηματισμό δεδομένων ώστε να αντιμετωπιστούν προκλήσεις όπως ελλιπή, ανακριβή ή ατελή δεδομένα. μάθημα Jasmine
09 Οπτικοποίηση Ποσοτήτων Οπτικοποίηση Δεδομένων Μάθετε πώς να χρησιμοποιείτε το Matplotlib για να οπτικοποιήσετε δεδομένα πουλιών 🦆 μάθημα Jen
10 Οπτικοποίηση Κατανομών Δεδομένων Οπτικοποίηση Δεδομένων Οπτικοποίηση παρατηρήσεων και τάσεων μέσα σε ένα διάστημα. μάθημα Jen
11 Οπτικοποίηση Αναλογιών Οπτικοποίηση Δεδομένων Οπτικοποίηση διακριτών και ομαδοποιημένων ποσοστών. μάθημα Jen
12 Οπτικοποίηση Σχέσεων Οπτικοποίηση Δεδομένων Οπτικοποίηση συνδέσεων και συσχετίσεων μεταξύ συνόλων δεδομένων και των μεταβλητών τους. μάθημα Jen
13 Σημαντικές Οπτικοποιήσεις Οπτικοποίηση Δεδομένων Τεχνικές και καθοδήγηση για να κάνετε τις οπτικοποιήσεις σας πολύτιμες για αποτελεσματική επίλυση προβλημάτων και εξαγωγή πληροφοριών. μάθημα Jen
14 Εισαγωγή στον κύκλο ζωής της Επιστήμης Δεδομένων Κύκλος Ζωής Εισαγωγή στον κύκλο ζωής της επιστήμης δεδομένων και το πρώτο βήμα της απόκτησης και εξαγωγής δεδομένων. μάθημα Jasmine
15 Ανάλυση Κύκλος Ζωής Αυτή η φάση του κύκλου ζωής της επιστήμης δεδομένων επικεντρώνεται στις τεχνικές ανάλυσης δεδομένων. μάθημα Jasmine
16 Επικοινωνία Κύκλος Ζωής Αυτή η φάση του κύκλου ζωής της επιστήμης δεδομένων επικεντρώνεται στην παρουσίαση των πληροφοριών από τα δεδομένα με τρόπο που να διευκολύνει τους υπεύθυνους λήψης αποφάσεων να κατανοήσουν. μάθημα Jalen
17 Επιστήμη Δεδομένων στο Cloud Δεδομένα στο Cloud Αυτή η σειρά μαθημάτων εισάγει την επιστήμη δεδομένων στο cloud και τα οφέλη της. μάθημα Tiffany και Maud
18 Επιστήμη Δεδομένων στο Cloud Δεδομένα στο Cloud Εκπαίδευση μοντέλων χρησιμοποιώντας εργαλεία Low Code. μάθημα Tiffany και Maud
19 Επιστήμη Δεδομένων στο Cloud Δεδομένα στο Cloud Ανάπτυξη μοντέλων με το Azure Machine Learning Studio. μάθημα Tiffany και Maud
20 Επιστήμη Δεδομένων στην Πράξη Στην Πράξη Έργα βασισμένα στην επιστήμη δεδομένων στον πραγματικό κόσμο. μάθημα Nitya

GitHub Codespaces

Ακολουθήστε αυτά τα βήματα για να ανοίξετε αυτό το δείγμα σε ένα Codespace:

  1. Κάντε κλικ στο αναπτυσσόμενο μενού Code και επιλέξτε την επιλογή Open with Codespaces.
  2. Επιλέξτε + New codespace στο κάτω μέρος του πλαισίου. Για περισσότερες πληροφορίες, δείτε την τεκμηρίωση του GitHub.

VSCode Remote - Containers

Ακολουθήστε αυτά τα βήματα για να ανοίξετε αυτό το αποθετήριο σε ένα container χρησιμοποιώντας τον τοπικό σας υπολογιστή και το VSCode με την επέκταση VS Code Remote - Containers:

  1. Εάν είναι η πρώτη φορά που χρησιμοποιείτε ένα container ανάπτυξης, βεβαιωθείτε ότι το σύστημά σας πληροί τις προϋποθέσεις (π.χ. έχετε εγκαταστήσει το Docker) στην τεκμηρίωση για την έναρξη.

Για να χρησιμοποιήσετε αυτό το αποθετήριο, μπορείτε είτε να το ανοίξετε σε έναν απομονωμένο όγκο Docker:

Σημείωση: Στο παρασκήνιο, αυτό θα χρησιμοποιήσει την εντολή Remote-Containers: Clone Repository in Container Volume... για να κλωνοποιήσει τον πηγαίο κώδικα σε έναν όγκο Docker αντί για το τοπικό σύστημα αρχείων. Οι Όγκοι είναι ο προτιμώμενος μηχανισμός για τη διατήρηση δεδομένων container.

Ή να ανοίξετε μια τοπικά κλωνοποιημένη ή ληφθείσα έκδοση του αποθετηρίου:

  • Κλωνοποιήστε αυτό το αποθετήριο στο τοπικό σας σύστημα αρχείων.
  • Πατήστε F1 και επιλέξτε την εντολή Remote-Containers: Open Folder in Container....
  • Επιλέξτε την κλωνοποιημένη έκδοση αυτού του φακέλου, περιμένετε να ξεκινήσει το container και δοκιμάστε πράγματα.

Πρόσβαση εκτός σύνδεσης

Μπορείτε να εκτελέσετε αυτήν την τεκμηρίωση εκτός σύνδεσης χρησιμοποιώντας το Docsify. Κλωνοποιήστε αυτό το αποθετήριο, εγκαταστήστε το Docsify στον τοπικό σας υπολογιστή, και στη συνέχεια στον ριζικό φάκελο αυτού του αποθετηρίου, πληκτρολογήστε docsify serve. Ο ιστότοπος θα εξυπηρετηθεί στην θύρα 3000 του localhost σας: localhost:3000.

Σημείωση, τα notebooks δεν θα αποδοθούν μέσω του Docsify, οπότε όταν χρειαστεί να εκτελέσετε ένα notebook, κάντε το ξεχωριστά στο VS Code εκτελώντας έναν πυρήνα Python.

Άλλα Προγράμματα Σπουδών

Η ομάδα μας παράγει άλλα προγράμματα σπουδών! Δείτε:


Αποποίηση ευθύνης:
Αυτό το έγγραφο έχει μεταφραστεί χρησιμοποιώντας την υπηρεσία αυτόματης μετάφρασης Co-op Translator. Παρόλο που καταβάλλουμε προσπάθειες για ακρίβεια, παρακαλούμε να έχετε υπόψη ότι οι αυτοματοποιημένες μεταφράσεις ενδέχεται να περιέχουν σφάλματα ή ανακρίβειες. Το πρωτότυπο έγγραφο στη μητρική του γλώσσα θα πρέπει να θεωρείται η αυθεντική πηγή. Για κρίσιμες πληροφορίες, συνιστάται επαγγελματική ανθρώπινη μετάφραση. Δεν φέρουμε ευθύνη για τυχόν παρεξηγήσεις ή εσφαλμένες ερμηνείες που προκύπτουν από τη χρήση αυτής της μετάφρασης.