Merge branch 'develop' of https://github.com/PaddlePaddle/PaddleSpeech into change_init

pull/1577/head
huangyuxin 3 years ago
commit e991d82ae7

@ -50,13 +50,13 @@ repos:
entry: bash .pre-commit-hooks/clang-format.hook -i
language: system
files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|cuh|proto)$
exclude: (?=speechx/speechx/kaldi).*(\.cpp|\.cc|\.h|\.py)$
exclude: (?=speechx/speechx/kaldi|speechx/patch).*(\.cpp|\.cc|\.h|\.py)$
- id: copyright_checker
name: copyright_checker
entry: python .pre-commit-hooks/copyright-check.hook
language: system
files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|proto|py)$
exclude: (?=third_party|pypinyin|speechx/speechx/kaldi).*(\.cpp|\.cc|\.h|\.py)$
exclude: (?=third_party|pypinyin|speechx/speechx/kaldi|speechx/patch).*(\.cpp|\.cc|\.h|\.py)$
- repo: https://github.com/asottile/reorder_python_imports
rev: v2.4.0
hooks:

@ -0,0 +1,171 @@
([简体中文](./README_cn.md)|English)
# Audio Searching
## Introduction
As the Internet continues to evolve, unstructured data such as emails, social media photos, live videos, and customer service voice calls have become increasingly common. If we want to process the data on a computer, we need to use embedding technology to transform the data into vector and store, index, and query it
However, when there is a large amount of data, such as hundreds of millions of audio tracks, it is more difficult to do a similarity search. The exhaustive method is feasible, but very time consuming. For this scenario, this demo will introduce how to build an audio similarity retrieval system using the open source vector database Milvus
Audio retrieval (speech, music, speaker, etc.) enables querying and finding similar sounds (or the same speaker) in a large amount of audio data. The audio similarity retrieval system can be used to identify similar sound effects, minimize intellectual property infringement, quickly retrieve the voice print library, and help enterprises control fraud and identity theft. Audio retrieval also plays an important role in the classification and statistical analysis of audio data
In this demo, you will learn how to build an audio retrieval system to retrieve similar sound snippets. The uploaded audio clips are converted into vector data using paddlespeech-based pre-training models (audio classification model, speaker recognition model, etc.) and stored in Milvus. Milvus automatically generates a unique ID for each vector, then stores the ID and the corresponding audio information (audio ID, audio speaker ID, etc.) in MySQL to complete the library construction. During retrieval, users upload test audio to obtain vector, and then conduct vector similarity search in Milvus. The retrieval result returned by Milvus is vector ID, and the corresponding audio information can be queried in MySQL by ID
![Workflow of an audio searching system](./img/audio_searching.png)
Notethis demo uses the [CN-Celeb](http://openslr.org/82/) dataset of at least 650,000 audio entries and 3000 speakers to build the audio vector library, which is then retrieved using a preset distance calculation. The dataset can also use other, Adjust as needed, e.g. Librispeech, VoxCeleb, UrbanSound, GloVe, MNIST, etc
## Usage
### 1. Prepare MySQL and Milvus services by docker-compose
The audio similarity search system requires Milvus, MySQL services. We can start these containers with one click through [docker-compose.yaml](./docker-compose.yaml), so please make sure you have [installed Docker Engine](https://docs.docker.com/engine/install/) and [Docker Compose](https://docs.docker.com/compose/install/) before running. then
```bash
docker-compose -f docker-compose.yaml up -d
```
Then you will see the that all containers are created:
```bash
Creating network "quick_deploy_app_net" with driver "bridge"
Creating milvus-minio ... done
Creating milvus-etcd ... done
Creating audio-mysql ... done
Creating milvus-standalone ... done
Creating audio-webclient ... done
```
And show all containers with `docker ps`, and you can use `docker logs audio-mysql` to get the logs of server container
```bash
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
b2bcf279e599 milvusdb/milvus:v2.0.1 "/tini -- milvus run…" 22 hours ago Up 22 hours 0.0.0.0:19530->19530/tcp milvus-standalone
d8ef4c84e25c mysql:5.7 "docker-entrypoint.s…" 22 hours ago Up 22 hours 0.0.0.0:3306->3306/tcp, 33060/tcp audio-mysql
8fb501edb4f3 quay.io/coreos/etcd:v3.5.0 "etcd -advertise-cli…" 22 hours ago Up 22 hours 2379-2380/tcp milvus-etcd
ffce340b3790 minio/minio:RELEASE.2020-12-03T00-03-10Z "/usr/bin/docker-ent…" 22 hours ago Up 22 hours (healthy) 9000/tcp milvus-minio
15c84a506754 iregistry.baidu-int.com/paddlespeech/audio-search-client:1.0 "/bin/bash -c '/usr/…" 22 hours ago Up 22 hours (healthy) 0.0.0.0:8068->80/tcp audio-webclient
```
### 2. Start API Server
Then to start the system server, and it provides HTTP backend services.
- Install the Python packages
```bash
pip install -r requirements.txt
```
- Set configuration
```bash
vim src/config.py
```
Modify the parameters according to your own environment. Here listing some parameters that need to be set, for more information please refer to [config.py](./src/config.py).
| **Parameter** | **Description** | **Default setting** |
| ---------------- | ----------------------------------------------------- | ------------------- |
| MILVUS_HOST | The IP address of Milvus, you can get it by ifconfig. If running everything on one machine, most likely 127.0.0.1 | 127.0.0.1 |
| MILVUS_PORT | Port of Milvus. | 19530 |
| VECTOR_DIMENSION | Dimension of the vectors. | 2048 |
| MYSQL_HOST | The IP address of Mysql. | 127.0.0.1 |
| MYSQL_PORT | Port of Milvus. | 3306 |
| DEFAULT_TABLE | The milvus and mysql default collection name. | audio_table |
- Run the code
Then start the server with Fastapi.
```bash
export PYTHONPATH=$PYTHONPATH:./src
python src/main.py
```
Then you will see the Application is started:
```bash
INFO: Started server process [3949]
2022-03-07 17:39:14,864 INFO server.py serve 75 Started server process [3949]
INFO: Waiting for application startup.
2022-03-07 17:39:14,865 INFO on.py startup 45 Waiting for application startup.
INFO: Application startup complete.
2022-03-07 17:39:14,866 INFO on.py startup 59 Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8002 (Press CTRL+C to quit)
2022-03-07 17:39:14,867 INFO server.py _log_started_message 206 Uvicorn running on http://0.0.0.0:8002 (Press CTRL+C to quit)
```
### 3. Usage
- Prepare data
```bash
wget -c https://www.openslr.org/resources/82/cn-celeb_v2.tar.gz && tar -xvf cn-celeb_v2.tar.gz
```
Note: If you want to build a quick demo, you can use ./src/test_main.py:download_audio_data function, it downloads 20 audio files , Subsequent results show this collection as an example
- scripts test (recommend!)
The internal process is downloading data, loading the Paddlespeech model, extracting embedding, storing library, retrieving and deleting library
```bash
python ./src/test_main.py
```
Output
```bash
Checkpoint path: %your model path%
Extracting feature from audio No. 1 , 20 audios in total
Extracting feature from audio No. 2 , 20 audios in total
...
2022-03-09 17:22:13,870 INFO main.py load_audios 85 Successfully loaded data, total count: 20
2022-03-09 17:22:13,898 INFO main.py count_audio 147 Successfully count the number of data!
2022-03-09 17:22:13,918 INFO main.py audio_path 57 Successfully load audio: ./example_audio/test.wav
...
2022-03-09 17:22:32,580 INFO main.py search_local_audio 131 search result http://testserver/data?audio_path=./example_audio/test.wav, distance 0.0
2022-03-09 17:22:32,580 INFO main.py search_local_audio 131 search result http://testserver/data?audio_path=./example_audio/knife_chopping.wav, distance 0.021805256605148315
2022-03-09 17:22:32,580 INFO main.py search_local_audio 131 search result http://testserver/data?audio_path=./example_audio/knife_cut_into_flesh.wav, distance 0.052762262523174286
...
2022-03-09 17:22:32,582 INFO main.py search_local_audio 135 Successfully searched similar audio!
2022-03-09 17:22:33,658 INFO main.py drop_tables 159 Successfully drop tables in Milvus and MySQL!
```
- GUI test (optional)
Navigate to 127.0.0.1:8068 in your browser to access the front-end interface
Note: If the browser and the service are not on the same machine, then the IP needs to be changed to the IP of the machine where the service is located, and the corresponding API_URL in docker-compose.yaml needs to be changed and the service can be restarted
- Insert data
Download the data and decompress it to a path named /home/speech/data. Then enter /home/speech/data in the address bar of the upload page to upload the data
![](./img/insert.png)
- Search for similar audio
Select the magnifying glass icon on the left side of the interface. Then, press the "Default Target Audio File" button and upload a .wav sound file you'd like to search. Results will be displayed
![](./img/search.png)
### 4.Result
machine configuration
- OS: CentOS release 7.6
- kernel4.17.11-1.el7.elrepo.x86_64
- CPUIntel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
- memory132G
dataset
- CN-Celeb, train size 650,000, test size 10,000, dimention 192, distance L2
recall and elapsed time statistics are shown in the following figure
![](./img/result.png)
The retrieval framework based on Milvus takes about 2.9 milliseconds to retrieve on the premise of 90% recall rate, and it takes about 500 milliseconds for feature extraction (testing audio takes about 5 seconds), that is, a single audio test takes about 503 milliseconds in total, which can meet most application scenarios
### 5.Pretrained Models
Here is a list of pretrained models released by PaddleSpeech :
| Model | Sample Rate
| :--- | :---:
| ecapa_tdnn | 16000
| panns_cnn6| 32000
| panns_cnn10| 32000
| panns_cnn14| 32000

@ -0,0 +1,172 @@
(简体中文|[English](./README.md))
# 音频相似性检索
## 介绍
随着互联网不断发展,电子邮件、社交媒体照片、直播视频、客服语音等非结构化数据已经变得越来越普遍。如果想要使用计算机来处理这些数据,需要使用 embedding 技术将这些数据转化为向量 vector然后进行存储、建索引、并查询
但是当数据量很大比如上亿条音频要做相似度搜索就比较困难了。穷举法固然可行但非常耗时。针对这种场景该demo 将介绍如何使用开源向量数据库 Milvus 搭建音频相似度检索系统
音频检索(如演讲、音乐、说话人等检索)实现了在海量音频数据中查询并找出相似声音(或相同说话人)片段。音频相似性检索系统可用于识别相似的音效、最大限度减少知识产权侵权等,还可以快速的检索声纹库、帮助企业控制欺诈和身份盗用等。在音频数据的分类和统计分析中,音频检索也发挥着重要作用
在本 demo 中,你将学会如何构建一个音频检索系统,用来检索相似的声音片段。使用基于 PaddleSpeech 预训练模型(音频分类模型,说话人识别模型等)将上传的音频片段转换为向量数据,并存储在 Milvus 中。Milvus 自动为每个向量生成唯一的 ID然后将 ID 和 相应的音频信息音频id音频的说话人id等等存储在 MySQL这样就完成建库的工作。用户在检索时上传测试音频得到向量然后在 Milvus 中进行向量相似度搜索Milvus 返回的检索结果为向量 ID通过 ID 在 MySQL 内部查询相应的音频信息即可
![音频检索流程图](./img/audio_searching.png)
注:该 demo 使用 [CN-Celeb](http://openslr.org/82/) 数据集,包括至少 650000 条音频3000 个说话人来建立音频向量库音频特征或音频说话人特征然后通过预设的距离计算方式进行音频或说话人检索这里面数据集也可以使用其他的根据需要调整如LibrispeechVoxCelebUrbanSoundGloVeMNIST等
## 使用方法
### 1. MySQL 和 Milvus 安装
音频相似度搜索系统需要用到 Milvus, MySQL 服务。 我们可以通过 [docker-compose.yaml](./docker-compose.yaml) 一键启动这些容器,所以请确保在运行之前已经安装了 [Docker Engine](https://docs.docker.com/engine/install/) 和 [Docker Compose](https://docs.docker.com/compose/install/)。 即
```bash
docker-compose -f docker-compose.yaml up -d
```
然后你会看到所有的容器都被创建:
```bash
Creating network "quick_deploy_app_net" with driver "bridge"
Creating milvus-minio ... done
Creating milvus-etcd ... done
Creating audio-mysql ... done
Creating milvus-standalone ... done
Creating audio-webclient ... done
```
可以采用'docker ps'来显示所有的容器,还可以使用'docker logs audio-mysql'来获取服务器容器的日志:
```bash
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
b2bcf279e599 milvusdb/milvus:v2.0.1 "/tini -- milvus run…" 22 hours ago Up 22 hours 0.0.0.0:19530->19530/tcp milvus-standalone
d8ef4c84e25c mysql:5.7 "docker-entrypoint.s…" 22 hours ago Up 22 hours 0.0.0.0:3306->3306/tcp, 33060/tcp audio-mysql
8fb501edb4f3 quay.io/coreos/etcd:v3.5.0 "etcd -advertise-cli…" 22 hours ago Up 22 hours 2379-2380/tcp milvus-etcd
ffce340b3790 minio/minio:RELEASE.2020-12-03T00-03-10Z "/usr/bin/docker-ent…" 22 hours ago Up 22 hours (healthy) 9000/tcp milvus-minio
15c84a506754 iregistry.baidu-int.com/paddlespeech/audio-search-client:1.0 "/bin/bash -c '/usr/…" 22 hours ago Up 22 hours (healthy) 0.0.0.0:8068->80/tcp audio-webclient
```
### 2. 配置并启动 API 服务
启动系统服务程序,它会提供基于 Http 后端服务
- 安装服务依赖的 python 基础包
```bash
pip install -r requirements.txt
```
- 修改配置
```bash
vim src/config.py
```
请根据实际环境进行修改。 这里列出了一些需要设置的参数,更多信息请参考 [config.py](./src/config.py)
| **Parameter** | **Description** | **Default setting** |
| ---------------- | ----------------------------------------------------- | ------------------- |
| MILVUS_HOST | The IP address of Milvus, you can get it by ifconfig. If running everything on one machine, most likely 127.0.0.1 | 127.0.0.1 |
| MILVUS_PORT | Port of Milvus. | 19530 |
| VECTOR_DIMENSION | Dimension of the vectors. | 2048 |
| MYSQL_HOST | The IP address of Mysql. | 127.0.0.1 |
| MYSQL_PORT | Port of Milvus. | 3306 |
| DEFAULT_TABLE | The milvus and mysql default collection name. | audio_table |
- 运行程序
启动用 Fastapi 构建的服务
```bash
export PYTHONPATH=$PYTHONPATH:./src
python src/main.py
```
然后你会看到应用程序启动:
```bash
INFO: Started server process [3949]
2022-03-07 17:39:14,864 INFO server.py serve 75 Started server process [3949]
INFO: Waiting for application startup.
2022-03-07 17:39:14,865 INFO on.py startup 45 Waiting for application startup.
INFO: Application startup complete.
2022-03-07 17:39:14,866 INFO on.py startup 59 Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8002 (Press CTRL+C to quit)
2022-03-07 17:39:14,867 INFO server.py _log_started_message 206 Uvicorn running on http://0.0.0.0:8002 (Press CTRL+C to quit)
```
### 3. 测试方法
- 准备数据
```bash
wget -c https://www.openslr.org/resources/82/cn-celeb_v2.tar.gz && tar -xvf cn-celeb_v2.tar.gz
```
注:如果希望快速搭建 demo可以采用 ./src/test_main.py:download_audio_data 内部的 20 条音频,另外后续结果展示以该集合为例
- 脚本测试(推荐)
```bash
python ./src/test_main.py
```
注:内部将依次下载数据,加载 paddlespeech 模型,提取 embedding存储建库检索删库
输出:
```bash
Checkpoint path: %your model path%
Extracting feature from audio No. 1 , 20 audios in total
Extracting feature from audio No. 2 , 20 audios in total
...
2022-03-09 17:22:13,870 INFO main.py load_audios 85 Successfully loaded data, total count: 20
2022-03-09 17:22:13,898 INFO main.py count_audio 147 Successfully count the number of data!
2022-03-09 17:22:13,918 INFO main.py audio_path 57 Successfully load audio: ./example_audio/test.wav
...
2022-03-09 17:22:32,580 INFO main.py search_local_audio 131 search result http://testserver/data?audio_path=./example_audio/test.wav, distance 0.0
2022-03-09 17:22:32,580 INFO main.py search_local_audio 131 search result http://testserver/data?audio_path=./example_audio/knife_chopping.wav, distance 0.021805256605148315
2022-03-09 17:22:32,580 INFO main.py search_local_audio 131 search result http://testserver/data?audio_path=./example_audio/knife_cut_into_flesh.wav, distance 0.052762262523174286
...
2022-03-09 17:22:32,582 INFO main.py search_local_audio 135 Successfully searched similar audio!
2022-03-09 17:22:33,658 INFO main.py drop_tables 159 Successfully drop tables in Milvus and MySQL!
```
- 前端测试(可选)
在浏览器中输入 127.0.0.1:8068 访问前端页面
注:如果浏览器和服务不在同一台机器上,那么 IP 需要修改成服务所在的机器 IP并且docker-compose.yaml 中相应的 API_URL 也要修改,并重新起服务即可
- 上传音频
下载数据并解压到一文件夹,假设为 /home/speech/data那么在上传页面地址栏输入 /home/speech/data 进行数据上传
![](./img/insert.png)
- 检索相似音频
选择左上角放大镜,点击 “Default Target Audio File” 按钮,上传测试音频,接着你将看到检索结果
![](./img/search.png)
### 4. 结果
机器配置:
- 操作系统: CentOS release 7.6
- 内核4.17.11-1.el7.elrepo.x86_64
- 处理器Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
- 内存132G
数据集:
- CN-Celeb, 训练集 65万, 测试集 1万向量维度 192距离计算方式 L2
召回和耗时统计如下图:
![](./img/result.png)
基于 milvus 的检索框架在召回率 90% 的前提下,检索耗时约 2.9 毫秒,加上特征提取(Embedding)耗时约 500毫秒(测试音频时长约 5秒),即单条音频测试总共耗时约 503 毫秒,可以满足大多数应用场景
### 5. 预训练模型
以下是 PaddleSpeech 提供的预训练模型列表:
| 模型 | 采样率
| :--- | :---:
| ecapa_tdnn| 16000
| panns_cnn6| 32000
| panns_cnn10| 32000
| panns_cnn14| 32000

@ -0,0 +1,88 @@
version: '3.5'
services:
etcd:
container_name: milvus-etcd
image: quay.io/coreos/etcd:v3.5.0
networks:
app_net:
environment:
- ETCD_AUTO_COMPACTION_MODE=revision
- ETCD_AUTO_COMPACTION_RETENTION=1000
- ETCD_QUOTA_BACKEND_BYTES=4294967296
volumes:
- ${DOCKER_VOLUME_DIRECTORY:-.}/volumes/etcd:/etcd
command: etcd -advertise-client-urls=http://127.0.0.1:2379 -listen-client-urls http://0.0.0.0:2379 --data-dir /etcd
minio:
container_name: milvus-minio
image: minio/minio:RELEASE.2020-12-03T00-03-10Z
networks:
app_net:
environment:
MINIO_ACCESS_KEY: minioadmin
MINIO_SECRET_KEY: minioadmin
volumes:
- ${DOCKER_VOLUME_DIRECTORY:-.}/volumes/minio:/minio_data
command: minio server /minio_data
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:9000/minio/health/live"]
interval: 30s
timeout: 20s
retries: 3
standalone:
container_name: milvus-standalone
image: milvusdb/milvus:v2.0.1
networks:
app_net:
ipv4_address: 172.16.23.10
command: ["milvus", "run", "standalone"]
environment:
ETCD_ENDPOINTS: etcd:2379
MINIO_ADDRESS: minio:9000
volumes:
- ${DOCKER_VOLUME_DIRECTORY:-.}/volumes/milvus:/var/lib/milvus
ports:
- "19530:19530"
depends_on:
- "etcd"
- "minio"
mysql:
container_name: audio-mysql
image: mysql:5.7
networks:
app_net:
ipv4_address: 172.16.23.11
environment:
- MYSQL_ROOT_PASSWORD=123456
volumes:
- ${DOCKER_VOLUME_DIRECTORY:-.}/volumes/mysql:/var/lib/mysql
ports:
- "3306:3306"
webclient:
container_name: audio-webclient
image: qingen1/paddlespeech-audio-search-client:2.3
networks:
app_net:
ipv4_address: 172.16.23.13
environment:
API_URL: 'http://127.0.0.1:8002'
ports:
- "8068:80"
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost/"]
interval: 30s
timeout: 20s
retries: 3
networks:
app_net:
driver: bridge
ipam:
driver: default
config:
- subnet: 172.16.23.0/24
gateway: 172.16.23.1

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 80 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 84 KiB

@ -0,0 +1,12 @@
soundfile==0.10.3.post1
librosa==0.8.0
numpy
pymysql
fastapi
uvicorn
diskcache==5.2.1
pymilvus==2.0.1
python-multipart
typing
starlette
pydantic

@ -0,0 +1,37 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
############### Milvus Configuration ###############
MILVUS_HOST = os.getenv("MILVUS_HOST", "127.0.0.1")
MILVUS_PORT = int(os.getenv("MILVUS_PORT", "19530"))
VECTOR_DIMENSION = int(os.getenv("VECTOR_DIMENSION", "2048"))
INDEX_FILE_SIZE = int(os.getenv("INDEX_FILE_SIZE", "1024"))
METRIC_TYPE = os.getenv("METRIC_TYPE", "L2")
DEFAULT_TABLE = os.getenv("DEFAULT_TABLE", "audio_table")
TOP_K = int(os.getenv("TOP_K", "10"))
############### MySQL Configuration ###############
MYSQL_HOST = os.getenv("MYSQL_HOST", "127.0.0.1")
MYSQL_PORT = int(os.getenv("MYSQL_PORT", "3306"))
MYSQL_USER = os.getenv("MYSQL_USER", "root")
MYSQL_PWD = os.getenv("MYSQL_PWD", "123456")
MYSQL_DB = os.getenv("MYSQL_DB", "mysql")
############### Data Path ###############
UPLOAD_PATH = os.getenv("UPLOAD_PATH", "tmp/audio-data")
############### Number of Log Files ###############
LOGS_NUM = int(os.getenv("logs_num", "0"))

@ -0,0 +1,39 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import librosa
import numpy as np
from logs import LOGGER
def get_audio_embedding(path):
"""
Use vpr_inference to generate embedding of audio
"""
try:
RESAMPLE_RATE = 16000
audio, _ = librosa.load(path, sr=RESAMPLE_RATE, mono=True)
# TODO add infer/python interface to get embedding, now fake it by rand
# vpr = ECAPATDNN(checkpoint_path=None, device='cuda')
# embedding = vpr.inference(audio)
np.random.seed(hash(os.path.basename(path)) % 1000000)
embedding = np.random.rand(1, 2048)
embedding = embedding / np.linalg.norm(embedding)
embedding = embedding.tolist()[0]
return embedding
except Exception as e:
LOGGER.error(f"Error with embedding:{e}")
return None

@ -0,0 +1,164 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import codecs
import datetime
import logging
import os
import re
import sys
from config import LOGS_NUM
class MultiprocessHandler(logging.FileHandler):
"""
A handler class which writes formatted logging records to disk files
"""
def __init__(self,
filename,
when='D',
backupCount=0,
encoding=None,
delay=False):
"""
Open the specified file and use it as the stream for logging
"""
self.prefix = filename
self.backupCount = backupCount
self.when = when.upper()
self.extMath = r"^\d{4}-\d{2}-\d{2}"
self.when_dict = {
'S': "%Y-%m-%d-%H-%M-%S",
'M': "%Y-%m-%d-%H-%M",
'H': "%Y-%m-%d-%H",
'D': "%Y-%m-%d"
}
self.suffix = self.when_dict.get(when)
if not self.suffix:
print('The specified date interval unit is invalid: ', self.when)
sys.exit(1)
self.filefmt = os.path.join('.', "logs",
f"{self.prefix}-{self.suffix}.log")
self.filePath = datetime.datetime.now().strftime(self.filefmt)
_dir = os.path.dirname(self.filefmt)
try:
if not os.path.exists(_dir):
os.makedirs(_dir)
except Exception as e:
print('Failed to create log file: ', e)
print("log_path" + self.filePath)
sys.exit(1)
logging.FileHandler.__init__(self, self.filePath, 'a+', encoding, delay)
def should_change_file_to_write(self):
"""
To write the file
"""
_filePath = datetime.datetime.now().strftime(self.filefmt)
if _filePath != self.filePath:
self.filePath = _filePath
return True
return False
def do_change_file(self):
"""
To change file states
"""
self.baseFilename = os.path.abspath(self.filePath)
if self.stream:
self.stream.close()
self.stream = None
if not self.delay:
self.stream = self._open()
if self.backupCount > 0:
for s in self.get_files_to_delete():
os.remove(s)
def get_files_to_delete(self):
"""
To delete backup files
"""
dir_name, _ = os.path.split(self.baseFilename)
file_names = os.listdir(dir_name)
result = []
prefix = self.prefix + '-'
for file_name in file_names:
if file_name[:len(prefix)] == prefix:
suffix = file_name[len(prefix):-4]
if re.compile(self.extMath).match(suffix):
result.append(os.path.join(dir_name, file_name))
result.sort()
if len(result) < self.backupCount:
result = []
else:
result = result[:len(result) - self.backupCount]
return result
def emit(self, record):
"""
Emit a record
"""
try:
if self.should_change_file_to_write():
self.do_change_file()
logging.FileHandler.emit(self, record)
except (KeyboardInterrupt, SystemExit):
raise
except:
self.handleError(record)
def write_log():
"""
Init a logger
"""
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
# formatter = '%(asctime)s %(levelname)s %(filename)s %(funcName)s %(module)s %(lineno)s %(message)s'
fmt = logging.Formatter(
'%(asctime)s %(levelname)s %(filename)s %(funcName)s %(lineno)s %(message)s'
)
stream_handler = logging.StreamHandler(sys.stdout)
stream_handler.setLevel(logging.INFO)
stream_handler.setFormatter(fmt)
log_name = "audio-searching"
file_handler = MultiprocessHandler(log_name, when='D', backupCount=LOGS_NUM)
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(fmt)
file_handler.do_change_file()
logger.addHandler(stream_handler)
logger.addHandler(file_handler)
return logger
LOGGER = write_log()
if __name__ == "__main__":
message = 'test writing logs'
LOGGER.info(message)
LOGGER.debug(message)
LOGGER.error(message)

@ -0,0 +1,168 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Optional
import uvicorn
from config import UPLOAD_PATH
from diskcache import Cache
from fastapi import FastAPI
from fastapi import File
from fastapi import UploadFile
from logs import LOGGER
from milvus_helpers import MilvusHelper
from mysql_helpers import MySQLHelper
from operations.count import do_count
from operations.drop import do_drop
from operations.load import do_load
from operations.search import do_search
from pydantic import BaseModel
from starlette.middleware.cors import CORSMiddleware
from starlette.requests import Request
from starlette.responses import FileResponse
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"])
MODEL = None
MILVUS_CLI = MilvusHelper()
MYSQL_CLI = MySQLHelper()
# Mkdir 'tmp/audio-data'
if not os.path.exists(UPLOAD_PATH):
os.makedirs(UPLOAD_PATH)
LOGGER.info(f"Mkdir the path: {UPLOAD_PATH}")
@app.get('/data')
def audio_path(audio_path):
# Get the audio file
try:
LOGGER.info(f"Successfully load audio: {audio_path}")
return FileResponse(audio_path)
except Exception as e:
LOGGER.error(f"upload audio error: {e}")
return {'status': False, 'msg': e}, 400
@app.get('/progress')
def get_progress():
# Get the progress of dealing with data
try:
cache = Cache('./tmp')
return f"current: {cache['current']}, total: {cache['total']}"
except Exception as e:
LOGGER.error(f"Upload data error: {e}")
return {'status': False, 'msg': e}, 400
class Item(BaseModel):
Table: Optional[str] = None
File: str
@app.post('/audio/load')
async def load_audios(item: Item):
# Insert all the audio files under the file path to Milvus/MySQL
try:
total_num = do_load(item.Table, item.File, MILVUS_CLI, MYSQL_CLI)
LOGGER.info(f"Successfully loaded data, total count: {total_num}")
return {'status': True, 'msg': "Successfully loaded data!"}
except Exception as e:
LOGGER.error(e)
return {'status': False, 'msg': e}, 400
@app.post('/audio/search')
async def search_audio(request: Request,
table_name: str=None,
audio: UploadFile=File(...)):
# Search the uploaded audio in Milvus/MySQL
try:
# Save the upload data to server.
content = await audio.read()
query_audio_path = os.path.join(UPLOAD_PATH, audio.filename)
with open(query_audio_path, "wb+") as f:
f.write(content)
host = request.headers['host']
_, paths, distances = do_search(host, table_name, query_audio_path,
MILVUS_CLI, MYSQL_CLI)
names = []
for path, score in zip(paths, distances):
names.append(os.path.basename(path))
LOGGER.info(f"search result {path}, score {score}")
res = dict(zip(paths, zip(names, distances)))
# Sort results by distance metric, closest distances first
res = sorted(res.items(), key=lambda item: item[1][1], reverse=True)
LOGGER.info("Successfully searched similar audio!")
return res
except Exception as e:
LOGGER.error(e)
return {'status': False, 'msg': e}, 400
@app.post('/audio/search/local')
async def search_local_audio(request: Request,
query_audio_path: str,
table_name: str=None):
# Search the uploaded audio in Milvus/MySQL
try:
host = request.headers['host']
_, paths, distances = do_search(host, table_name, query_audio_path,
MILVUS_CLI, MYSQL_CLI)
names = []
for path, score in zip(paths, distances):
names.append(os.path.basename(path))
LOGGER.info(f"search result {path}, score {score}")
res = dict(zip(paths, zip(names, distances)))
# Sort results by distance metric, closest distances first
res = sorted(res.items(), key=lambda item: item[1][1], reverse=True)
LOGGER.info("Successfully searched similar audio!")
return res
except Exception as e:
LOGGER.error(e)
return {'status': False, 'msg': e}, 400
@app.get('/audio/count')
async def count_audio(table_name: str=None):
# Returns the total number of vectors in the system
try:
num = do_count(table_name, MILVUS_CLI)
LOGGER.info("Successfully count the number of data!")
return num
except Exception as e:
LOGGER.error(e)
return {'status': False, 'msg': e}, 400
@app.post('/audio/drop')
async def drop_tables(table_name: str=None):
# Delete the collection of Milvus and MySQL
try:
status = do_drop(table_name, MILVUS_CLI, MYSQL_CLI)
LOGGER.info("Successfully drop tables in Milvus and MySQL!")
return status
except Exception as e:
LOGGER.error(e)
return {'status': False, 'msg': e}, 400
if __name__ == '__main__':
uvicorn.run(app=app, host='0.0.0.0', port=8002)

@ -0,0 +1,185 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from config import METRIC_TYPE
from config import MILVUS_HOST
from config import MILVUS_PORT
from config import VECTOR_DIMENSION
from logs import LOGGER
from pymilvus import Collection
from pymilvus import CollectionSchema
from pymilvus import connections
from pymilvus import DataType
from pymilvus import FieldSchema
from pymilvus import utility
class MilvusHelper:
"""
the basic operations of PyMilvus
# This example shows how to:
# 1. connect to Milvus server
# 2. create a collection
# 3. insert entities
# 4. create index
# 5. search
# 6. delete a collection
"""
def __init__(self):
try:
self.collection = None
connections.connect(host=MILVUS_HOST, port=MILVUS_PORT)
LOGGER.debug(
f"Successfully connect to Milvus with IP:{MILVUS_HOST} and PORT:{MILVUS_PORT}"
)
except Exception as e:
LOGGER.error(f"Failed to connect Milvus: {e}")
sys.exit(1)
def set_collection(self, collection_name):
try:
if self.has_collection(collection_name):
self.collection = Collection(name=collection_name)
else:
raise Exception(
f"There is no collection named:{collection_name}")
except Exception as e:
LOGGER.error(f"Failed to set collection in Milvus: {e}")
sys.exit(1)
def has_collection(self, collection_name):
# Return if Milvus has the collection
try:
return utility.has_collection(collection_name)
except Exception as e:
LOGGER.error(f"Failed to check state of collection in Milvus: {e}")
sys.exit(1)
def create_collection(self, collection_name):
# Create milvus collection if not exists
try:
if not self.has_collection(collection_name):
field1 = FieldSchema(
name="id",
dtype=DataType.INT64,
descrition="int64",
is_primary=True,
auto_id=True)
field2 = FieldSchema(
name="embedding",
dtype=DataType.FLOAT_VECTOR,
descrition="speaker embeddings",
dim=VECTOR_DIMENSION,
is_primary=False)
schema = CollectionSchema(
fields=[field1, field2], description="embeddings info")
self.collection = Collection(
name=collection_name, schema=schema)
LOGGER.debug(f"Create Milvus collection: {collection_name}")
else:
self.set_collection(collection_name)
return "OK"
except Exception as e:
LOGGER.error(f"Failed to create collection in Milvus: {e}")
sys.exit(1)
def insert(self, collection_name, vectors):
# Batch insert vectors to milvus collection
try:
self.create_collection(collection_name)
data = [vectors]
self.set_collection(collection_name)
mr = self.collection.insert(data)
ids = mr.primary_keys
self.collection.load()
LOGGER.debug(
f"Insert vectors to Milvus in collection: {collection_name} with {len(vectors)} rows"
)
return ids
except Exception as e:
LOGGER.error(f"Failed to insert data to Milvus: {e}")
sys.exit(1)
def create_index(self, collection_name):
# Create IVF_FLAT index on milvus collection
try:
self.set_collection(collection_name)
default_index = {
"index_type": "IVF_SQ8",
"metric_type": METRIC_TYPE,
"params": {
"nlist": 16384
}
}
status = self.collection.create_index(
field_name="embedding", index_params=default_index)
if not status.code:
LOGGER.debug(
f"Successfully create index in collection:{collection_name} with param:{default_index}"
)
return status
else:
raise Exception(status.message)
except Exception as e:
LOGGER.error(f"Failed to create index: {e}")
sys.exit(1)
def delete_collection(self, collection_name):
# Delete Milvus collection
try:
self.set_collection(collection_name)
self.collection.drop()
LOGGER.debug("Successfully drop collection!")
return "ok"
except Exception as e:
LOGGER.error(f"Failed to drop collection: {e}")
sys.exit(1)
def search_vectors(self, collection_name, vectors, top_k):
# Search vector in milvus collection
try:
self.set_collection(collection_name)
search_params = {
"metric_type": METRIC_TYPE,
"params": {
"nprobe": 16
}
}
res = self.collection.search(
vectors,
anns_field="embedding",
param=search_params,
limit=top_k)
LOGGER.debug(f"Successfully search in collection: {res}")
return res
except Exception as e:
LOGGER.error(f"Failed to search vectors in Milvus: {e}")
sys.exit(1)
def count(self, collection_name):
# Get the number of milvus collection
try:
self.set_collection(collection_name)
num = self.collection.num_entities
LOGGER.debug(
f"Successfully get the num:{num} of the collection:{collection_name}"
)
return num
except Exception as e:
LOGGER.error(f"Failed to count vectors in Milvus: {e}")
sys.exit(1)

@ -0,0 +1,133 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import pymysql
from config import MYSQL_DB
from config import MYSQL_HOST
from config import MYSQL_PORT
from config import MYSQL_PWD
from config import MYSQL_USER
from logs import LOGGER
class MySQLHelper():
"""
the basic operations of PyMySQL
# This example shows how to:
# 1. connect to MySQL server
# 2. create a table
# 3. insert data to table
# 4. search by milvus ids
# 5. delete table
"""
def __init__(self):
self.conn = pymysql.connect(
host=MYSQL_HOST,
user=MYSQL_USER,
port=MYSQL_PORT,
password=MYSQL_PWD,
database=MYSQL_DB,
local_infile=True)
self.cursor = self.conn.cursor()
def test_connection(self):
try:
self.conn.ping()
except Exception:
self.conn = pymysql.connect(
host=MYSQL_HOST,
user=MYSQL_USER,
port=MYSQL_PORT,
password=MYSQL_PWD,
database=MYSQL_DB,
local_infile=True)
self.cursor = self.conn.cursor()
def create_mysql_table(self, table_name):
# Create mysql table if not exists
self.test_connection()
sql = "create table if not exists " + table_name + "(milvus_id TEXT, audio_path TEXT);"
try:
self.cursor.execute(sql)
LOGGER.debug(f"MYSQL create table: {table_name} with sql: {sql}")
except Exception as e:
LOGGER.error(f"MYSQL ERROR: {e} with sql: {sql}")
sys.exit(1)
def load_data_to_mysql(self, table_name, data):
# Batch insert (Milvus_ids, img_path) to mysql
self.test_connection()
sql = "insert into " + table_name + " (milvus_id,audio_path) values (%s,%s);"
try:
self.cursor.executemany(sql, data)
self.conn.commit()
LOGGER.debug(
f"MYSQL loads data to table: {table_name} successfully")
except Exception as e:
LOGGER.error(f"MYSQL ERROR: {e} with sql: {sql}")
sys.exit(1)
def search_by_milvus_ids(self, ids, table_name):
# Get the img_path according to the milvus ids
self.test_connection()
str_ids = str(ids).replace('[', '').replace(']', '')
sql = "select audio_path from " + table_name + " where milvus_id in (" + str_ids + ") order by field (milvus_id," + str_ids + ");"
try:
self.cursor.execute(sql)
results = self.cursor.fetchall()
results = [res[0] for res in results]
LOGGER.debug("MYSQL search by milvus id.")
return results
except Exception as e:
LOGGER.error(f"MYSQL ERROR: {e} with sql: {sql}")
sys.exit(1)
def delete_table(self, table_name):
# Delete mysql table if exists
self.test_connection()
sql = "drop table if exists " + table_name + ";"
try:
self.cursor.execute(sql)
LOGGER.debug(f"MYSQL delete table:{table_name}")
except Exception as e:
LOGGER.error(f"MYSQL ERROR: {e} with sql: {sql}")
sys.exit(1)
def delete_all_data(self, table_name):
# Delete all the data in mysql table
self.test_connection()
sql = 'delete from ' + table_name + ';'
try:
self.cursor.execute(sql)
self.conn.commit()
LOGGER.debug(f"MYSQL delete all data in table:{table_name}")
except Exception as e:
LOGGER.error(f"MYSQL ERROR: {e} with sql: {sql}")
sys.exit(1)
def count_table(self, table_name):
# Get the number of mysql table
self.test_connection()
sql = "select count(milvus_id) from " + table_name + ";"
try:
self.cursor.execute(sql)
results = self.cursor.fetchall()
LOGGER.debug(f"MYSQL count table:{table_name}")
return results[0][0]
except Exception as e:
LOGGER.error(f"MYSQL ERROR: {e} with sql: {sql}")
sys.exit(1)

@ -0,0 +1,13 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

@ -0,0 +1,33 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from config import DEFAULT_TABLE
from logs import LOGGER
def do_count(table_name, milvus_cli):
"""
Returns the total number of vectors in the system
"""
if not table_name:
table_name = DEFAULT_TABLE
try:
if not milvus_cli.has_collection(table_name):
return None
num = milvus_cli.count(table_name)
return num
except Exception as e:
LOGGER.error(f"Error attempting to count table {e}")
sys.exit(1)

@ -0,0 +1,34 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from config import DEFAULT_TABLE
from logs import LOGGER
def do_drop(table_name, milvus_cli, mysql_cli):
"""
Delete the collection of Milvus and MySQL
"""
if not table_name:
table_name = DEFAULT_TABLE
try:
if not milvus_cli.has_collection(table_name):
return "Collection is not exist"
status = milvus_cli.delete_collection(table_name)
mysql_cli.delete_table(table_name)
return status
except Exception as e:
LOGGER.error(f"Error attempting to drop table: {e}")
sys.exit(1)

@ -0,0 +1,85 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
from config import DEFAULT_TABLE
from diskcache import Cache
from encode import get_audio_embedding
from logs import LOGGER
def get_audios(path):
"""
List all wav and aif files recursively under the path folder.
"""
supported_formats = [".wav", ".mp3", ".ogg", ".flac", ".m4a"]
return [
item
for sublist in [[os.path.join(dir, file) for file in files]
for dir, _, files in list(os.walk(path))]
for item in sublist if os.path.splitext(item)[1] in supported_formats
]
def extract_features(audio_dir):
"""
Get the vector of audio
"""
try:
cache = Cache('./tmp')
feats = []
names = []
audio_list = get_audios(audio_dir)
total = len(audio_list)
cache['total'] = total
for i, audio_path in enumerate(audio_list):
norm_feat = get_audio_embedding(audio_path)
if norm_feat is None:
continue
feats.append(norm_feat)
names.append(audio_path.encode())
cache['current'] = i + 1
print(
f"Extracting feature from audio No. {i + 1} , {total} audios in total"
)
return feats, names
except Exception as e:
LOGGER.error(f"Error with extracting feature from audio {e}")
sys.exit(1)
def format_data(ids, names):
"""
Combine the id of the vector and the name of the audio into a list
"""
data = []
for i in range(len(ids)):
value = (str(ids[i]), names[i])
data.append(value)
return data
def do_load(table_name, audio_dir, milvus_cli, mysql_cli):
"""
Import vectors to Milvus and data to Mysql respectively
"""
if not table_name:
table_name = DEFAULT_TABLE
vectors, names = extract_features(audio_dir)
ids = milvus_cli.insert(table_name, vectors)
milvus_cli.create_index(table_name)
mysql_cli.create_mysql_table(table_name)
mysql_cli.load_data_to_mysql(table_name, format_data(ids, names))
return len(ids)

@ -0,0 +1,41 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from config import DEFAULT_TABLE
from config import TOP_K
from encode import get_audio_embedding
from logs import LOGGER
def do_search(host, table_name, audio_path, milvus_cli, mysql_cli):
"""
Search the uploaded audio in Milvus/MySQL
"""
try:
if not table_name:
table_name = DEFAULT_TABLE
feat = get_audio_embedding(audio_path)
vectors = milvus_cli.search_vectors(table_name, [feat], TOP_K)
vids = [str(x.id) for x in vectors[0]]
paths = mysql_cli.search_by_milvus_ids(vids, table_name)
distances = [x.distance for x in vectors[0]]
for i in range(len(paths)):
tmp = "http://" + str(host) + "/data?audio_path=" + str(paths[i])
paths[i] = tmp
distances[i] = (1 - distances[i]) * 100
return vids, paths, distances
except Exception as e:
LOGGER.error(f"Error with search: {e}")
sys.exit(1)

@ -0,0 +1,95 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import zipfile
import gdown
from fastapi.testclient import TestClient
from main import app
client = TestClient(app)
def download_audio_data():
"""
download audio data
"""
url = 'https://drive.google.com/uc?id=1bKu21JWBfcZBuEuzFEvPoAX6PmRrgnUp'
gdown.download(url)
with zipfile.ZipFile('example_audio.zip', 'r') as zip_ref:
zip_ref.extractall('./example_audio')
def test_drop():
"""
Delete the collection of Milvus and MySQL
"""
response = client.post("/audio/drop")
assert response.status_code == 200
def test_load():
"""
Insert all the audio files under the file path to Milvus/MySQL
"""
response = client.post("/audio/load", json={"File": "./example_audio"})
assert response.status_code == 200
assert response.json() == {
'status': True,
'msg': "Successfully loaded data!"
}
def test_progress():
"""
Get the progress of dealing with data
"""
response = client.get("/progress")
assert response.status_code == 200
assert response.json() == "current: 20, total: 20"
def test_count():
"""
Returns the total number of vectors in the system
"""
response = client.get("audio/count")
assert response.status_code == 200
assert response.json() == 20
def test_search():
"""
Search the uploaded audio in Milvus/MySQL
"""
response = client.post(
"/audio/search/local?query_audio_path=.%2Fexample_audio%2Ftest.wav")
assert response.status_code == 200
assert len(response.json()) == 10
def test_data():
"""
Get the audio file
"""
response = client.get("/data?audio_path=.%2Fexample_audio%2Ftest.wav")
assert response.status_code == 200
if __name__ == "__main__":
download_audio_data()
test_load()
test_count()
test_search()
test_drop()

@ -35,3 +35,7 @@ We borrowed a lot of code from these repos to build `model` and `engine`, thanks
* [librosa](https://github.com/librosa/librosa/blob/main/LICENSE.md)
- ISC License
- Audio feature
* [ThreadPool](https://github.com/progschj/ThreadPool/blob/master/COPYING)
- zlib License
- ThreadPool

@ -49,11 +49,12 @@ Model Type | Dataset| Example Link | Pretrained Models| Static Models|Size (stat
WaveFlow| LJSpeech |[waveflow-ljspeech](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/ljspeech/voc0)|[waveflow_ljspeech_ckpt_0.3.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/waveflow/waveflow_ljspeech_ckpt_0.3.zip)|||
Parallel WaveGAN| CSMSC |[PWGAN-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc1)|[pwg_baker_ckpt_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_baker_ckpt_0.4.zip)|[pwg_baker_static_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_baker_static_0.4.zip)|5.1MB|
Parallel WaveGAN| LJSpeech |[PWGAN-ljspeech](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/ljspeech/voc1)|[pwg_ljspeech_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_ljspeech_ckpt_0.5.zip)|||
Parallel WaveGAN|AISHELL-3 |[PWGAN-aishell3](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/voc1)|[pwg_aishell3_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_aishell3_ckpt_0.5.zip)|||
Parallel WaveGAN| AISHELL-3 |[PWGAN-aishell3](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/voc1)|[pwg_aishell3_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_aishell3_ckpt_0.5.zip)|||
Parallel WaveGAN| VCTK |[PWGAN-vctk](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/vctk/voc1)|[pwg_vctk_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_vctk_ckpt_0.5.zip)|||
|Multi Band MelGAN | CSMSC |[MB MelGAN-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc3) | [mb_melgan_csmsc_ckpt_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/mb_melgan_csmsc_ckpt_0.1.1.zip) <br>[mb_melgan_baker_finetune_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/mb_melgan_baker_finetune_ckpt_0.5.zip)|[mb_melgan_csmsc_static_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/mb_melgan_csmsc_static_0.1.1.zip) |8.2MB|
Style MelGAN | CSMSC |[Style MelGAN-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc4)|[style_melgan_csmsc_ckpt_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/style_melgan/style_melgan_csmsc_ckpt_0.1.1.zip)| | |
HiFiGAN | CSMSC |[HiFiGAN-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc5)|[hifigan_csmsc_ckpt_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_csmsc_ckpt_0.1.1.zip)|[hifigan_csmsc_static_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_csmsc_static_0.1.1.zip)|50MB|
HiFiGAN | AISHELL-3 |[HiFiGAN-aishell3](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/voc5)|[hifigan_aishell3_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_aishell3_ckpt_0.2.0.zip)|||
WaveRNN | CSMSC |[WaveRNN-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc6)|[wavernn_csmsc_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/wavernn/wavernn_csmsc_ckpt_0.2.0.zip)|[wavernn_csmsc_static_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/wavernn/wavernn_csmsc_static_0.2.0.zip)|18MB|

@ -4,9 +4,14 @@ config_path=$1
train_output_path=$2
ckpt_name=$3
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize.py \
stage=0
stop_stage=0
# pwgan
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize.py \
--am=fastspeech2_aishell3 \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
@ -19,3 +24,24 @@ python3 ${BIN_DIR}/../synthesize.py \
--output_dir=${train_output_path}/test \
--phones_dict=dump/phone_id_map.txt \
--speaker_dict=dump/speaker_id_map.txt
fi
# hifigan
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize.py \
--am=fastspeech2_aishell3 \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
--voc=hifigan_aishell3 \
--voc_config=hifigan_aishell3_ckpt_0.2.0/default.yaml \
--voc_ckpt=hifigan_aishell3_ckpt_0.2.0/snapshot_iter_2500000.pd \
--voc_stat=hifigan_aishell3_ckpt_0.2.0/feats_stats.npy \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--phones_dict=dump/phone_id_map.txt \
--speaker_dict=dump/speaker_id_map.txt
fi

@ -4,9 +4,14 @@ config_path=$1
train_output_path=$2
ckpt_name=$3
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
stage=0
stop_stage=0
# pwgan
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=fastspeech2_aishell3 \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
@ -22,3 +27,27 @@ python3 ${BIN_DIR}/../synthesize_e2e.py \
--speaker_dict=dump/speaker_id_map.txt \
--spk_id=0 \
--inference_dir=${train_output_path}/inference
fi
# hifigan
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
echo "in hifigan syn_e2e"
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=fastspeech2_aishell3 \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=fastspeech2_nosil_aishell3_ckpt_0.4/speech_stats.npy \
--voc=hifigan_aishell3 \
--voc_config=hifigan_aishell3_ckpt_0.2.0/default.yaml \
--voc_ckpt=hifigan_aishell3_ckpt_0.2.0/snapshot_iter_2500000.pdz \
--voc_stat=hifigan_aishell3_ckpt_0.2.0/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=fastspeech2_nosil_aishell3_ckpt_0.4/phone_id_map.txt \
--speaker_dict=fastspeech2_nosil_aishell3_ckpt_0.4/speaker_id_map.txt \
--spk_id=0 \
--inference_dir=${train_output_path}/inference
fi

@ -1,6 +1,6 @@
#!/bin/bash
stage=3
stage=0
stop_stage=100
config_path=$1

@ -3,7 +3,7 @@
set -e
source path.sh
gpus=0
gpus=0,1
stage=0
stop_stage=100

@ -135,8 +135,22 @@ optional arguments:
3. `--test-metadata` is the metadata of the test dataset. Use the `metadata.jsonl` in the `dev/norm` subfolder from the processed directory.
4. `--output-dir` is the directory to save the synthesized audio files.
5. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu.
## Pretrained Models
The pretrained model can be downloaded here [hifigan_aishell3_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_aishell3_ckpt_0.2.0.zip).
Model | Step | eval/generator_loss | eval/mel_loss| eval/feature_matching_loss
:-------------:| :------------:| :-----: | :-----: | :--------:
default| 1(gpu) x 2500000|24.060|0.1068|7.499
HiFiGAN checkpoint contains files listed below.
```text
hifigan_aishell3_ckpt_0.2.0
├── default.yaml # default config used to train hifigan
├── feats_stats.npy # statistics used to normalize spectrogram when training hifigan
└── snapshot_iter_2500000.pdz # generator parameters of hifigan
```
## Acknowledgement
We adapted some code from https://github.com/kan-bayashi/ParallelWaveGAN.

@ -61,6 +61,7 @@ def remove_version_py(filename='paddleaudio/__init__.py'):
if "__version__" not in line:
f.write(line)
remove_version_py()
write_version_py()

@ -192,7 +192,7 @@ class ConfigCache:
try:
cfg = yaml.load(file, Loader=yaml.FullLoader)
self._data.update(cfg)
except:
except Exception as e:
self.flush()
@property

@ -156,6 +156,7 @@ def parse_args():
choices=[
'pwgan_csmsc', 'pwgan_ljspeech', 'pwgan_aishell3', 'pwgan_vctk',
'mb_melgan_csmsc', 'wavernn_csmsc', 'hifigan_csmsc',
'hifigan_ljspeech', 'hifigan_aishell3', 'hifigan_vctk',
'style_melgan_csmsc'
],
help='Choose vocoder type of tts task.')

@ -180,9 +180,17 @@ def parse_args():
type=str,
default='pwgan_csmsc',
choices=[
'pwgan_csmsc', 'pwgan_ljspeech', 'pwgan_aishell3', 'pwgan_vctk',
'mb_melgan_csmsc', 'style_melgan_csmsc', 'hifigan_csmsc',
'wavernn_csmsc'
'pwgan_csmsc',
'pwgan_ljspeech',
'pwgan_aishell3',
'pwgan_vctk',
'mb_melgan_csmsc',
'style_melgan_csmsc',
'hifigan_csmsc',
'hifigan_ljspeech',
'hifigan_aishell3',
'hifigan_vctk',
'wavernn_csmsc',
],
help='Choose vocoder type of tts task.')
parser.add_argument(

@ -0,0 +1 @@
tools/valgrind*

@ -2,18 +2,32 @@ cmake_minimum_required(VERSION 3.14 FATAL_ERROR)
project(paddlespeech VERSION 0.1)
set(CMAKE_PROJECT_INCLUDE_BEFORE "${CMAKE_CURRENT_SOURCE_DIR}/cmake/EnableCMP0048.cmake")
set(CMAKE_VERBOSE_MAKEFILE on)
# set std-14
set(CMAKE_CXX_STANDARD 14)
# include file
# cmake dir
set(speechx_cmake_dir ${PROJECT_SOURCE_DIR}/cmake)
# Modules
list(APPEND CMAKE_MODULE_PATH ${speechx_cmake_dir}/external)
list(APPEND CMAKE_MODULE_PATH ${speechx_cmake_dir})
include(FetchContent)
include(ExternalProject)
# fc_patch dir
set(FETCHCONTENT_QUIET off)
get_filename_component(fc_patch "fc_patch" REALPATH BASE_DIR "${CMAKE_SOURCE_DIR}")
set(FETCHCONTENT_BASE_DIR ${fc_patch})
# compiler option
# Keep the same with openfst, -fPIC or -fpic
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} --std=c++14 -pthread -fPIC -O0 -Wall -g")
SET(CMAKE_CXX_FLAGS_DEBUG "$ENV{CXXFLAGS} --std=c++14 -pthread -fPIC -O0 -Wall -g -ggdb")
SET(CMAKE_CXX_FLAGS_RELEASE "$ENV{CXXFLAGS} --std=c++14 -pthread -fPIC -O3 -Wall")
###############################################################################
# Option Configurations
@ -25,91 +39,92 @@ option(TEST_DEBUG "option for debug" OFF)
###############################################################################
# Include third party
###############################################################################
# #example for include third party
# FetchContent_Declare()
# # FetchContent_MakeAvailable was not added until CMake 3.14
# example for include third party
# FetchContent_MakeAvailable was not added until CMake 3.14
# FetchContent_MakeAvailable()
# include_directories()
# gflags
include(gflags)
# glog
include(glog)
# gtest
include(gtest)
# ABSEIL-CPP
include(FetchContent)
FetchContent_Declare(
absl
GIT_REPOSITORY "https://github.com/abseil/abseil-cpp.git"
GIT_TAG "20210324.1"
)
FetchContent_MakeAvailable(absl)
include(absl)
# libsndfile
include(FetchContent)
FetchContent_Declare(
libsndfile
GIT_REPOSITORY "https://github.com/libsndfile/libsndfile.git"
GIT_TAG "1.0.31"
)
FetchContent_MakeAvailable(libsndfile)
include(libsndfile)
# gflags
FetchContent_Declare(
gflags
URL https://github.com/gflags/gflags/archive/v2.2.1.zip
URL_HASH SHA256=4e44b69e709c826734dbbbd5208f61888a2faf63f239d73d8ba0011b2dccc97a
)
FetchContent_MakeAvailable(gflags)
include_directories(${gflags_BINARY_DIR}/include)
# boost
# include(boost) # not work
set(boost_SOURCE_DIR ${fc_patch}/boost-src)
set(BOOST_ROOT ${boost_SOURCE_DIR})
# #find_package(boost REQUIRED PATHS ${BOOST_ROOT})
# glog
FetchContent_Declare(
glog
URL https://github.com/google/glog/archive/v0.4.0.zip
URL_HASH SHA256=9e1b54eb2782f53cd8af107ecf08d2ab64b8d0dc2b7f5594472f3bd63ca85cdc
)
FetchContent_MakeAvailable(glog)
include_directories(${glog_BINARY_DIR})
# Eigen
include(eigen)
find_package(Eigen3 REQUIRED)
# gtest
FetchContent_Declare(googletest
URL https://github.com/google/googletest/archive/release-1.10.0.zip
URL_HASH SHA256=94c634d499558a76fa649edb13721dce6e98fb1e7018dfaeba3cd7a083945e91
)
FetchContent_MakeAvailable(googletest)
# Kenlm
include(kenlm)
add_dependencies(kenlm eigen boost)
#openblas
include(openblas)
# openfst
set(openfst_SOURCE_DIR ${fc_patch}/openfst-src)
set(openfst_BINARY_DIR ${fc_patch}/openfst-build)
set(openfst_PREFIX_DIR ${fc_patch}/openfst-subbuild/openfst-populate-prefix)
ExternalProject_Add(openfst
URL https://github.com/mjansche/openfst/archive/refs/tags/1.7.2.zip
URL_HASH SHA256=ffc56931025579a8af3515741c0f3b0fc3a854c023421472c07ca0c6389c75e6
SOURCE_DIR ${openfst_SOURCE_DIR}
BINARY_DIR ${openfst_BINARY_DIR}
CONFIGURE_COMMAND ${openfst_SOURCE_DIR}/configure --prefix=${openfst_PREFIX_DIR}
"CPPFLAGS=-I${gflags_BINARY_DIR}/include -I${glog_SOURCE_DIR}/src -I${glog_BINARY_DIR}"
"LDFLAGS=-L${gflags_BINARY_DIR} -L${glog_BINARY_DIR}"
"LIBS=-lgflags_nothreads -lglog -lpthread"
BUILD_COMMAND make -j 4
)
include(openfst)
add_dependencies(openfst gflags glog)
link_directories(${openfst_PREFIX_DIR}/lib)
include_directories(${openfst_PREFIX_DIR}/include)
add_subdirectory(speechx)
#openblas
#set(OpenBLAS_INSTALL_PREFIX ${fc_patch}/OpenBLAS)
#set(OpenBLAS_SOURCE_DIR ${fc_patch}/OpenBLAS-src)
#ExternalProject_Add(
# OpenBLAS
# GIT_REPOSITORY https://github.com/xianyi/OpenBLAS
# GIT_TAG v0.3.13
# GIT_SHALLOW TRUE
# GIT_PROGRESS TRUE
# CONFIGURE_COMMAND ""
# BUILD_IN_SOURCE TRUE
# BUILD_COMMAND make USE_LOCKING=1 USE_THREAD=0
# INSTALL_COMMAND make PREFIX=${OpenBLAS_INSTALL_PREFIX} install
# UPDATE_DISCONNECTED TRUE
#)
# paddle lib
set(paddle_SOURCE_DIR ${fc_patch}/paddle-lib)
set(paddle_PREFIX_DIR ${fc_patch}/paddle-lib-prefix)
ExternalProject_Add(paddle
URL https://paddle-inference-lib.bj.bcebos.com/2.2.2/cxx_c/Linux/CPU/gcc8.2_avx_mkl/paddle_inference.tgz
URL_HASH SHA256=7c6399e778c6554a929b5a39ba2175e702e115145e8fa690d2af974101d98873
PREFIX ${paddle_PREFIX_DIR}
SOURCE_DIR ${paddle_SOURCE_DIR}
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
INSTALL_COMMAND ""
)
set(PADDLE_LIB ${fc_patch}/paddle-lib)
include_directories("${PADDLE_LIB}/paddle/include")
set(PADDLE_LIB_THIRD_PARTY_PATH "${PADDLE_LIB}/third_party/install/")
include_directories("${PADDLE_LIB_THIRD_PARTY_PATH}protobuf/include")
include_directories("${PADDLE_LIB_THIRD_PARTY_PATH}xxhash/include")
include_directories("${PADDLE_LIB_THIRD_PARTY_PATH}cryptopp/include")
link_directories("${PADDLE_LIB_THIRD_PARTY_PATH}protobuf/lib")
link_directories("${PADDLE_LIB_THIRD_PARTY_PATH}xxhash/lib")
link_directories("${PADDLE_LIB_THIRD_PARTY_PATH}cryptopp/lib")
link_directories("${PADDLE_LIB}/paddle/lib")
link_directories("${PADDLE_LIB_THIRD_PARTY_PATH}mklml/lib")
##paddle with mkl
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fopenmp")
set(MATH_LIB_PATH "${PADDLE_LIB_THIRD_PARTY_PATH}mklml")
include_directories("${MATH_LIB_PATH}/include")
set(MATH_LIB ${MATH_LIB_PATH}/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX}
${MATH_LIB_PATH}/lib/libiomp5${CMAKE_SHARED_LIBRARY_SUFFIX})
set(MKLDNN_PATH "${PADDLE_LIB_THIRD_PARTY_PATH}mkldnn")
include_directories("${MKLDNN_PATH}/include")
set(MKLDNN_LIB ${MKLDNN_PATH}/lib/libmkldnn.so.0)
set(EXTERNAL_LIB "-lrt -ldl -lpthread")
set(DEPS ${PADDLE_LIB}/paddle/lib/libpaddle_inference${CMAKE_SHARED_LIBRARY_SUFFIX})
set(DEPS ${DEPS}
${MATH_LIB} ${MKLDNN_LIB}
glog gflags protobuf xxhash cryptopp
${EXTERNAL_LIB})
###############################################################################
# Add local library
@ -122,3 +137,8 @@ add_subdirectory(speechx)
#add_library(lib_name STATIC file.cc)
#target_link_libraries(lib_name item0 item1)
#add_dependencies(lib_name depend-target)
set(SPEECHX_ROOT ${CMAKE_CURRENT_SOURCE_DIR}/speechx)
add_subdirectory(speechx)
add_subdirectory(examples)

@ -0,0 +1,61 @@
# SpeechX -- All in One Speech Task Inference
## Environment
We develop under:
* docker - registry.baidubce.com/paddlepaddle/paddle:2.1.1-gpu-cuda10.2-cudnn7
* os - Ubuntu 16.04.7 LTS
* gcc/g++ - 8.2.0
* cmake - 3.16.0
> We make sure all things work fun under docker, and recommend using it to develop and deploy.
* [How to Install Docker](https://docs.docker.com/engine/install/)
* [A Docker Tutorial for Beginners](https://docker-curriculum.com/)
* [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/overview.html)
## Build
1. First to launch docker container.
```
nvidia-docker run --privileged --net=host --ipc=host -it --rm -v $PWD:/workspace --name=dev registry.baidubce.com/paddlepaddle/paddle:2.1.1-gpu-cuda10.2-cudnn7 /bin/bash
```
* More `Paddle` docker images you can see [here](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/docker/linux-docker.html).
* If you want only work under cpu, please download corresponded [image](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/docker/linux-docker.html), and using `docker` instead `nviida-docker`.
2. Build `speechx` and `examples`.
```
pushd /path/to/speechx
./build.sh
```
3. Go to `examples` to have a fun.
More details please see `README.md` under `examples`.
## Valgrind (Optional)
> If using docker please check `--privileged` is set when `docker run`.
* Fatal error at startup: `a function redirection which is mandatory for this platform-tool combination cannot be set up`
```
apt-get install libc6-dbg
```
* Install
```
pushd tools
./setup_valgrind.sh
popd
```
## TODO
* DecibelNormalizer: there is a little bit difference between offline and online db norm. The computation of online db norm read feature chunk by chunk, which causes the feature size is different with offline db norm. In normalizer.cc:73, the samples.size() is different, which causes the difference of result.

@ -0,0 +1,28 @@
#!/usr/bin/env bash
# the build script had verified in the paddlepaddle docker image.
# please follow the instruction below to install PaddlePaddle image.
# https://www.paddlepaddle.org.cn/documentation/docs/zh/install/docker/linux-docker.html
boost_SOURCE_DIR=$PWD/fc_patch/boost-src
if [ ! -d ${boost_SOURCE_DIR} ]; then wget -c https://boostorg.jfrog.io/artifactory/main/release/1.75.0/source/boost_1_75_0.tar.gz
tar xzfv boost_1_75_0.tar.gz
mkdir -p $PWD/fc_patch
mv boost_1_75_0 ${boost_SOURCE_DIR}
cd ${boost_SOURCE_DIR}
bash ./bootstrap.sh
./b2
cd -
echo -e "\n"
fi
#rm -rf build
mkdir -p build
cd build
cmake .. -DBOOST_ROOT:STRING=${boost_SOURCE_DIR}
#cmake ..
make -j1
cd -

@ -0,0 +1 @@
cmake_policy(SET CMP0048 NEW)

@ -0,0 +1,16 @@
include(FetchContent)
set(BUILD_SHARED_LIBS OFF) # up to you
set(BUILD_TESTING OFF) # to disable abseil test, or gtest will fail.
set(ABSL_ENABLE_INSTALL ON) # now you can enable install rules even in subproject...
FetchContent_Declare(
absl
GIT_REPOSITORY "https://github.com/abseil/abseil-cpp.git"
GIT_TAG "20210324.1"
)
FetchContent_MakeAvailable(absl)
set(EIGEN3_INCLUDE_DIR ${Eigen3_SOURCE_DIR})
include_directories(${absl_SOURCE_DIR})

@ -0,0 +1,27 @@
include(FetchContent)
set(Boost_DEBUG ON)
set(Boost_PREFIX_DIR ${fc_patch}/boost)
set(Boost_SOURCE_DIR ${fc_patch}/boost-src)
FetchContent_Declare(
Boost
URL https://boostorg.jfrog.io/artifactory/main/release/1.75.0/source/boost_1_75_0.tar.gz
URL_HASH SHA256=aeb26f80e80945e82ee93e5939baebdca47b9dee80a07d3144be1e1a6a66dd6a
PREFIX ${Boost_PREFIX_DIR}
SOURCE_DIR ${Boost_SOURCE_DIR}
)
execute_process(COMMAND bootstrap.sh WORKING_DIRECTORY ${Boost_SOURCE_DIR})
execute_process(COMMAND b2 WORKING_DIRECTORY ${Boost_SOURCE_DIR})
FetchContent_MakeAvailable(Boost)
message(STATUS "boost src dir: ${Boost_SOURCE_DIR}")
message(STATUS "boost inc dir: ${Boost_INCLUDE_DIR}")
message(STATUS "boost bin dir: ${Boost_BINARY_DIR}")
set(BOOST_ROOT ${Boost_SOURCE_DIR})
message(STATUS "boost root dir: ${BOOST_ROOT}")
include_directories(${Boost_SOURCE_DIR})

@ -0,0 +1,27 @@
include(FetchContent)
# update eigen to the commit id f612df27 on 03/16/2021
set(EIGEN_PREFIX_DIR ${fc_patch}/eigen3)
FetchContent_Declare(
Eigen3
GIT_REPOSITORY https://gitlab.com/libeigen/eigen.git
GIT_TAG master
PREFIX ${EIGEN_PREFIX_DIR}
GIT_SHALLOW TRUE
GIT_PROGRESS TRUE)
set(EIGEN_BUILD_DOC OFF)
# note: To disable eigen tests,
# you should put this code in a add_subdirectory to avoid to change
# BUILD_TESTING for your own project too since variables are directory
# scoped
set(BUILD_TESTING OFF)
set(EIGEN_BUILD_PKGCONFIG OFF)
set( OFF)
FetchContent_MakeAvailable(Eigen3)
message(STATUS "eigen src dir: ${Eigen3_SOURCE_DIR}")
message(STATUS "eigen bin dir: ${Eigen3_BINARY_DIR}")
#include_directories(${Eigen3_SOURCE_DIR})
#link_directories(${Eigen3_BINARY_DIR})

@ -0,0 +1,12 @@
include(FetchContent)
FetchContent_Declare(
gflags
URL https://github.com/gflags/gflags/archive/v2.2.1.zip
URL_HASH SHA256=4e44b69e709c826734dbbbd5208f61888a2faf63f239d73d8ba0011b2dccc97a
)
FetchContent_MakeAvailable(gflags)
# openfst need
include_directories(${gflags_BINARY_DIR}/include)

@ -0,0 +1,8 @@
include(FetchContent)
FetchContent_Declare(
glog
URL https://github.com/google/glog/archive/v0.4.0.zip
URL_HASH SHA256=9e1b54eb2782f53cd8af107ecf08d2ab64b8d0dc2b7f5594472f3bd63ca85cdc
)
FetchContent_MakeAvailable(glog)
include_directories(${glog_BINARY_DIR} ${glog_SOURCE_DIR}/src)

@ -0,0 +1,9 @@
include(FetchContent)
FetchContent_Declare(
gtest
URL https://github.com/google/googletest/archive/release-1.10.0.zip
URL_HASH SHA256=94c634d499558a76fa649edb13721dce6e98fb1e7018dfaeba3cd7a083945e91
)
FetchContent_MakeAvailable(gtest)
include_directories(${gtest_BINARY_DIR} ${gtest_SOURCE_DIR}/src)

@ -0,0 +1,10 @@
include(FetchContent)
FetchContent_Declare(
kenlm
GIT_REPOSITORY "https://github.com/kpu/kenlm.git"
GIT_TAG "df2d717e95183f79a90b2fa6e4307083a351ca6a"
)
# https://github.com/kpu/kenlm/blob/master/cmake/modules/FindEigen3.cmake
set(EIGEN3_INCLUDE_DIR ${Eigen3_SOURCE_DIR})
FetchContent_MakeAvailable(kenlm)
include_directories(${kenlm_SOURCE_DIR})

@ -0,0 +1,56 @@
include(FetchContent)
# https://github.com/pongasoft/vst-sam-spl-64/blob/master/libsndfile.cmake
# https://github.com/popojan/goban/blob/master/CMakeLists.txt#L38
# https://github.com/ddiakopoulos/libnyquist/blob/master/CMakeLists.txt
if(LIBSNDFILE_ROOT_DIR)
# instructs FetchContent to not download or update but use the location instead
set(FETCHCONTENT_SOURCE_DIR_LIBSNDFILE ${LIBSNDFILE_ROOT_DIR})
else()
set(FETCHCONTENT_SOURCE_DIR_LIBSNDFILE "")
endif()
set(LIBSNDFILE_GIT_REPO "https://github.com/libsndfile/libsndfile.git" CACHE STRING "libsndfile git repository url" FORCE)
set(LIBSNDFILE_GIT_TAG 1.0.31 CACHE STRING "libsndfile git tag" FORCE)
FetchContent_Declare(libsndfile
GIT_REPOSITORY ${LIBSNDFILE_GIT_REPO}
GIT_TAG ${LIBSNDFILE_GIT_TAG}
GIT_CONFIG advice.detachedHead=false
# GIT_SHALLOW true
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
INSTALL_COMMAND ""
TEST_COMMAND ""
)
FetchContent_GetProperties(libsndfile)
if(NOT libsndfile_POPULATED)
if(FETCHCONTENT_SOURCE_DIR_LIBSNDFILE)
message(STATUS "Using libsndfile from local ${FETCHCONTENT_SOURCE_DIR_LIBSNDFILE}")
else()
message(STATUS "Fetching libsndfile ${LIBSNDFILE_GIT_REPO}/tree/${LIBSNDFILE_GIT_TAG}")
endif()
FetchContent_Populate(libsndfile)
endif()
set(LIBSNDFILE_ROOT_DIR ${libsndfile_SOURCE_DIR})
set(LIBSNDFILE_INCLUDE_DIR "${libsndfile_BINARY_DIR}/src")
function(libsndfile_build)
option(BUILD_PROGRAMS "Build programs" OFF)
option(BUILD_EXAMPLES "Build examples" OFF)
option(BUILD_TESTING "Build examples" OFF)
option(ENABLE_CPACK "Enable CPack support" OFF)
option(ENABLE_PACKAGE_CONFIG "Generate and install package config file" OFF)
option(BUILD_REGTEST "Build regtest" OFF)
# finally we include libsndfile itself
add_subdirectory(${libsndfile_SOURCE_DIR} ${libsndfile_BINARY_DIR} EXCLUDE_FROM_ALL)
# copying .hh for c++ support
#file(COPY "${libsndfile_SOURCE_DIR}/src/sndfile.hh" DESTINATION ${LIBSNDFILE_INCLUDE_DIR})
endfunction()
libsndfile_build()
include_directories(${LIBSNDFILE_INCLUDE_DIR})

@ -0,0 +1,37 @@
include(FetchContent)
set(OpenBLAS_SOURCE_DIR ${fc_patch}/OpenBLAS-src)
set(OpenBLAS_PREFIX ${fc_patch}/OpenBLAS-prefix)
# ######################################################################################################################
# OPENBLAS https://github.com/lattice/quda/blob/develop/CMakeLists.txt#L575
# ######################################################################################################################
enable_language(Fortran)
#TODO: switch to CPM
include(GNUInstallDirs)
ExternalProject_Add(
OPENBLAS
GIT_REPOSITORY https://github.com/xianyi/OpenBLAS.git
GIT_TAG v0.3.10
GIT_SHALLOW YES
PREFIX ${OpenBLAS_PREFIX}
SOURCE_DIR ${OpenBLAS_SOURCE_DIR}
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=<INSTALL_DIR>
CMAKE_GENERATOR "Unix Makefiles")
# https://cmake.org/cmake/help/latest/module/ExternalProject.html?highlight=externalproject_get_property#external-project-definition
ExternalProject_Get_Property(OPENBLAS INSTALL_DIR)
set(OpenBLAS_INSTALL_PREFIX ${INSTALL_DIR})
add_library(openblas STATIC IMPORTED)
add_dependencies(openblas OPENBLAS)
set_target_properties(openblas PROPERTIES IMPORTED_LINK_INTERFACE_LANGUAGES Fortran)
# ${CMAKE_INSTALL_LIBDIR} lib
set_target_properties(openblas PROPERTIES IMPORTED_LOCATION ${OpenBLAS_INSTALL_PREFIX}/${CMAKE_INSTALL_LIBDIR}/libopenblas.a)
# https://cmake.org/cmake/help/latest/command/install.html?highlight=cmake_install_libdir#installing-targets
# ${CMAKE_INSTALL_LIBDIR} lib
# ${CMAKE_INSTALL_INCLUDEDIR} include
link_directories(${OpenBLAS_INSTALL_PREFIX}/${CMAKE_INSTALL_LIBDIR})
include_directories(${OpenBLAS_INSTALL_PREFIX}/${CMAKE_INSTALL_INCLUDEDIR})

@ -0,0 +1,19 @@
include(FetchContent)
set(openfst_SOURCE_DIR ${fc_patch}/openfst-src)
set(openfst_BINARY_DIR ${fc_patch}/openfst-build)
ExternalProject_Add(openfst
URL https://github.com/mjansche/openfst/archive/refs/tags/1.7.2.zip
URL_HASH SHA256=ffc56931025579a8af3515741c0f3b0fc3a854c023421472c07ca0c6389c75e6
# #PREFIX ${openfst_PREFIX_DIR}
# SOURCE_DIR ${openfst_SOURCE_DIR}
# BINARY_DIR ${openfst_BINARY_DIR}
CONFIGURE_COMMAND ${openfst_SOURCE_DIR}/configure --prefix=${openfst_PREFIX_DIR}
"CPPFLAGS=-I${gflags_BINARY_DIR}/include -I${glog_SOURCE_DIR}/src -I${glog_BINARY_DIR}"
"LDFLAGS=-L${gflags_BINARY_DIR} -L${glog_BINARY_DIR}"
"LIBS=-lgflags_nothreads -lglog -lpthread"
COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR}/patch/openfst ${openfst_SOURCE_DIR}
BUILD_COMMAND make -j 4
)
link_directories(${openfst_PREFIX_DIR}/lib)
include_directories(${openfst_PREFIX_DIR}/include)

@ -0,0 +1,2 @@
*.ark
paddle_asr_model/

@ -0,0 +1,5 @@
cmake_minimum_required(VERSION 3.14 FATAL_ERROR)
add_subdirectory(feat)
add_subdirectory(nnet)
add_subdirectory(decoder)

@ -0,0 +1,16 @@
# Examples
* decoder - online decoder to work as offline
* feat - mfcc, linear
* nnet - ds2 nn
## How to run
`run.sh` is the entry point.
Example to play `decoder`:
```
pushd decoder
bash run.sh
```

@ -0,0 +1,5 @@
cmake_minimum_required(VERSION 3.14 FATAL_ERROR)
add_executable(offline_decoder_main ${CMAKE_CURRENT_SOURCE_DIR}/offline_decoder_main.cc)
target_include_directories(offline_decoder_main PRIVATE ${SPEECHX_ROOT} ${SPEECHX_ROOT}/kaldi)
target_link_libraries(offline_decoder_main PUBLIC nnet decoder fst utils gflags glog kaldi-base kaldi-matrix kaldi-util ${DEPS})

@ -0,0 +1,101 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// todo refactor, repalce with gtest
#include "base/flags.h"
#include "base/log.h"
#include "decoder/ctc_beam_search_decoder.h"
#include "frontend/raw_audio.h"
#include "kaldi/util/table-types.h"
#include "nnet/decodable.h"
#include "nnet/paddle_nnet.h"
DEFINE_string(feature_respecifier, "", "test feature rspecifier");
DEFINE_string(model_path, "avg_1.jit.pdmodel", "paddle nnet model");
DEFINE_string(param_path, "avg_1.jit.pdiparams", "paddle nnet model param");
DEFINE_string(dict_file, "vocab.txt", "vocabulary of lm");
DEFINE_string(lm_path, "lm.klm", "language model");
using kaldi::BaseFloat;
using kaldi::Matrix;
using std::vector;
int main(int argc, char* argv[]) {
gflags::ParseCommandLineFlags(&argc, &argv, false);
google::InitGoogleLogging(argv[0]);
kaldi::SequentialBaseFloatMatrixReader feature_reader(
FLAGS_feature_respecifier);
std::string model_graph = FLAGS_model_path;
std::string model_params = FLAGS_param_path;
std::string dict_file = FLAGS_dict_file;
std::string lm_path = FLAGS_lm_path;
int32 num_done = 0, num_err = 0;
ppspeech::CTCBeamSearchOptions opts;
opts.dict_file = dict_file;
opts.lm_path = lm_path;
ppspeech::CTCBeamSearch decoder(opts);
ppspeech::ModelOptions model_opts;
model_opts.model_path = model_graph;
model_opts.params_path = model_params;
std::shared_ptr<ppspeech::PaddleNnet> nnet(
new ppspeech::PaddleNnet(model_opts));
std::shared_ptr<ppspeech::RawDataCache> raw_data(
new ppspeech::RawDataCache());
std::shared_ptr<ppspeech::Decodable> decodable(
new ppspeech::Decodable(nnet, raw_data));
int32 chunk_size = 35;
decoder.InitDecoder();
for (; !feature_reader.Done(); feature_reader.Next()) {
string utt = feature_reader.Key();
const kaldi::Matrix<BaseFloat> feature = feature_reader.Value();
raw_data->SetDim(feature.NumCols());
int32 row_idx = 0;
int32 num_chunks = feature.NumRows() / chunk_size;
for (int chunk_idx = 0; chunk_idx < num_chunks; ++chunk_idx) {
kaldi::Vector<kaldi::BaseFloat> feature_chunk(chunk_size *
feature.NumCols());
for (int row_id = 0; row_id < chunk_size; ++row_id) {
kaldi::SubVector<kaldi::BaseFloat> tmp(feature, row_idx);
kaldi::SubVector<kaldi::BaseFloat> f_chunk_tmp(
feature_chunk.Data() + row_id * feature.NumCols(),
feature.NumCols());
f_chunk_tmp.CopyFromVec(tmp);
row_idx++;
}
raw_data->Accept(feature_chunk);
if (chunk_idx == num_chunks - 1) {
raw_data->SetFinished();
}
decoder.AdvanceDecode(decodable);
}
std::string result;
result = decoder.GetFinalBestPath();
KALDI_LOG << " the result of " << utt << " is " << result;
decodable->Reset();
decoder.Reset();
++num_done;
}
KALDI_LOG << "Done " << num_done << " utterances, " << num_err
<< " with errors.";
return (num_done != 0 ? 0 : 1);
}

@ -0,0 +1,14 @@
# This contains the locations of binarys build required for running the examples.
SPEECHX_ROOT=$PWD/../..
SPEECHX_EXAMPLES=$SPEECHX_ROOT/build/examples
SPEECHX_TOOLS=$SPEECHX_ROOT/tools
TOOLS_BIN=$SPEECHX_TOOLS/valgrind/install/bin
[ -d $SPEECHX_EXAMPLES ] || { echo "Error: 'build/examples' directory not found. please ensure that the project build successfully"; }
export LC_AL=C
SPEECHX_BIN=$SPEECHX_EXAMPLES/decoder
export PATH=$PATH:$SPEECHX_BIN:$TOOLS_BIN

@ -0,0 +1,40 @@
#!/bin/bash
set +x
set -e
. path.sh
# 1. compile
if [ ! -d ${SPEECHX_EXAMPLES} ]; then
pushd ${SPEECHX_ROOT}
bash build.sh
popd
fi
# 2. download model
if [ ! -d ../paddle_asr_model ]; then
wget -c https://paddlespeech.bj.bcebos.com/s2t/paddle_asr_online/paddle_asr_model.tar.gz
tar xzfv paddle_asr_model.tar.gz
mv ./paddle_asr_model ../
# produce wav scp
echo "utt1 " $PWD/../paddle_asr_model/BAC009S0764W0290.wav > ../paddle_asr_model/wav.scp
fi
model_dir=../paddle_asr_model
feat_wspecifier=./feats.ark
cmvn=./cmvn.ark
# 3. run feat
linear_spectrogram_main \
--wav_rspecifier=scp:$model_dir/wav.scp \
--feature_wspecifier=ark,t:$feat_wspecifier \
--cmvn_write_path=$cmvn
# 4. run decoder
offline_decoder_main \
--feature_respecifier=ark:$feat_wspecifier \
--model_path=$model_dir/avg_1.jit.pdmodel \
--param_path=$model_dir/avg_1.jit.pdparams \
--dict_file=$model_dir/vocab.txt \
--lm_path=$model_dir/avg_1.jit.klm

@ -0,0 +1,26 @@
#!/bin/bash
# this script is for memory check, so please run ./run.sh first.
set +x
set -e
. ./path.sh
if [ ! -d ${SPEECHX_TOOLS}/valgrind/install ]; then
echo "please install valgrind in the speechx tools dir.\n"
exit 1
fi
model_dir=../paddle_asr_model
feat_wspecifier=./feats.ark
cmvn=./cmvn.ark
valgrind --tool=memcheck --track-origins=yes --leak-check=full --show-leak-kinds=all \
offline_decoder_main \
--feature_respecifier=ark:$feat_wspecifier \
--model_path=$model_dir/avg_1.jit.pdmodel \
--param_path=$model_dir/avg_1.jit.pdparams \
--dict_file=$model_dir/vocab.txt \
--lm_path=$model_dir/avg_1.jit.klm

@ -0,0 +1,10 @@
cmake_minimum_required(VERSION 3.14 FATAL_ERROR)
add_executable(mfcc-test ${CMAKE_CURRENT_SOURCE_DIR}/feature-mfcc-test.cc)
target_include_directories(mfcc-test PRIVATE ${SPEECHX_ROOT} ${SPEECHX_ROOT}/kaldi)
target_link_libraries(mfcc-test kaldi-mfcc)
add_executable(linear_spectrogram_main ${CMAKE_CURRENT_SOURCE_DIR}/linear_spectrogram_main.cc)
target_include_directories(linear_spectrogram_main PRIVATE ${SPEECHX_ROOT} ${SPEECHX_ROOT}/kaldi)
target_link_libraries(linear_spectrogram_main frontend kaldi-util kaldi-feat-common gflags glog)

@ -0,0 +1,720 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// feat/feature-mfcc-test.cc
// Copyright 2009-2011 Karel Vesely; Petr Motlicek
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include "base/kaldi-math.h"
#include "feat/feature-mfcc.h"
#include "feat/wave-reader.h"
#include "matrix/kaldi-matrix-inl.h"
using namespace kaldi;
static void UnitTestReadWave() {
std::cout << "=== UnitTestReadWave() ===\n";
Vector<BaseFloat> v, v2;
std::cout << "<<<=== Reading waveform\n";
{
std::ifstream is("test_data/test.wav", std::ios_base::binary);
WaveData wave;
wave.Read(is);
const Matrix<BaseFloat> data(wave.Data());
KALDI_ASSERT(data.NumRows() == 1);
v.Resize(data.NumCols());
v.CopyFromVec(data.Row(0));
}
std::cout
<< "<<<=== Reading Vector<BaseFloat> waveform, prepared by matlab\n";
std::ifstream input("test_data/test_matlab.ascii");
KALDI_ASSERT(input.good());
v2.Read(input, false);
input.close();
std::cout
<< "<<<=== Comparing freshly read waveform to 'libsndfile' waveform\n";
KALDI_ASSERT(v.Dim() == v2.Dim());
for (int32 i = 0; i < v.Dim(); i++) {
KALDI_ASSERT(v(i) == v2(i));
}
std::cout << "<<<=== Comparing done\n";
// std::cout << "== The Waveform Samples == \n";
// std::cout << v;
std::cout << "Test passed :)\n\n";
}
/**
*/
static void UnitTestSimple() {
std::cout << "=== UnitTestSimple() ===\n";
Vector<BaseFloat> v(100000);
Matrix<BaseFloat> m;
// init with noise
for (int32 i = 0; i < v.Dim(); i++) {
v(i) = (abs(i * 433024253) % 65535) - (65535 / 2);
}
std::cout << "<<<=== Just make sure it runs... Nothing is compared\n";
// the parametrization object
MfccOptions op;
// trying to have same opts as baseline.
op.frame_opts.dither = 0.0;
op.frame_opts.preemph_coeff = 0.0;
op.frame_opts.window_type = "rectangular";
op.frame_opts.remove_dc_offset = false;
op.frame_opts.round_to_power_of_two = true;
op.mel_opts.low_freq = 0.0;
op.mel_opts.htk_mode = true;
op.htk_compat = true;
Mfcc mfcc(op);
// use default parameters
// compute mfccs.
mfcc.Compute(v, 1.0, &m);
// possibly dump
// std::cout << "== Output features == \n" << m;
std::cout << "Test passed :)\n\n";
}
static void UnitTestHTKCompare1() {
std::cout << "=== UnitTestHTKCompare1() ===\n";
std::ifstream is("test_data/test.wav", std::ios_base::binary);
WaveData wave;
wave.Read(is);
KALDI_ASSERT(wave.Data().NumRows() == 1);
SubVector<BaseFloat> waveform(wave.Data(), 0);
// read the HTK features
Matrix<BaseFloat> htk_features;
{
std::ifstream is("test_data/test.wav.fea_htk.1",
std::ios::in | std::ios_base::binary);
bool ans = ReadHtk(is, &htk_features, 0);
KALDI_ASSERT(ans);
}
// use mfcc with default configuration...
MfccOptions op;
op.frame_opts.dither = 0.0;
op.frame_opts.preemph_coeff = 0.0;
op.frame_opts.window_type = "hamming";
op.frame_opts.remove_dc_offset = false;
op.frame_opts.round_to_power_of_two = true;
op.mel_opts.low_freq = 0.0;
op.mel_opts.htk_mode = true;
op.htk_compat = true;
op.use_energy = false; // C0 not energy.
Mfcc mfcc(op);
// calculate kaldi features
Matrix<BaseFloat> kaldi_raw_features;
mfcc.Compute(waveform, 1.0, &kaldi_raw_features);
DeltaFeaturesOptions delta_opts;
Matrix<BaseFloat> kaldi_features;
ComputeDeltas(delta_opts, kaldi_raw_features, &kaldi_features);
// compare the results
bool passed = true;
int32 i_old = -1;
KALDI_ASSERT(kaldi_features.NumRows() == htk_features.NumRows());
KALDI_ASSERT(kaldi_features.NumCols() == htk_features.NumCols());
// Ignore ends-- we make slightly different choices than
// HTK about how to treat the deltas at the ends.
for (int32 i = 10; i + 10 < kaldi_features.NumRows(); i++) {
for (int32 j = 0; j < kaldi_features.NumCols(); j++) {
BaseFloat a = kaldi_features(i, j), b = htk_features(i, j);
if ((std::abs(b - a)) > 1.0) { //<< TOLERANCE TO DIFFERENCES!!!!!
// print the non-matching data only once per-line
if (i_old != i) {
std::cout << "\n\n\n[HTK-row: " << i << "] "
<< htk_features.Row(i) << "\n";
std::cout << "[Kaldi-row: " << i << "] "
<< kaldi_features.Row(i) << "\n\n\n";
i_old = i;
}
// print indices of non-matching cells
std::cout << "[" << i << ", " << j << "]";
passed = false;
}
}
}
if (!passed) KALDI_ERR << "Test failed";
// write the htk features for later inspection
HtkHeader header = {
kaldi_features.NumRows(),
100000, // 10ms
static_cast<int16>(sizeof(float) * kaldi_features.NumCols()),
021406 // MFCC_D_A_0
};
{
std::ofstream os("tmp.test.wav.fea_kaldi.1",
std::ios::out | std::ios::binary);
WriteHtk(os, kaldi_features, header);
}
std::cout << "Test passed :)\n\n";
unlink("tmp.test.wav.fea_kaldi.1");
}
static void UnitTestHTKCompare2() {
std::cout << "=== UnitTestHTKCompare2() ===\n";
std::ifstream is("test_data/test.wav", std::ios_base::binary);
WaveData wave;
wave.Read(is);
KALDI_ASSERT(wave.Data().NumRows() == 1);
SubVector<BaseFloat> waveform(wave.Data(), 0);
// read the HTK features
Matrix<BaseFloat> htk_features;
{
std::ifstream is("test_data/test.wav.fea_htk.2",
std::ios::in | std::ios_base::binary);
bool ans = ReadHtk(is, &htk_features, 0);
KALDI_ASSERT(ans);
}
// use mfcc with default configuration...
MfccOptions op;
op.frame_opts.dither = 0.0;
op.frame_opts.preemph_coeff = 0.0;
op.frame_opts.window_type = "hamming";
op.frame_opts.remove_dc_offset = false;
op.frame_opts.round_to_power_of_two = true;
op.mel_opts.low_freq = 0.0;
op.mel_opts.htk_mode = true;
op.htk_compat = true;
op.use_energy = true; // Use energy.
Mfcc mfcc(op);
// calculate kaldi features
Matrix<BaseFloat> kaldi_raw_features;
mfcc.Compute(waveform, 1.0, &kaldi_raw_features);
DeltaFeaturesOptions delta_opts;
Matrix<BaseFloat> kaldi_features;
ComputeDeltas(delta_opts, kaldi_raw_features, &kaldi_features);
// compare the results
bool passed = true;
int32 i_old = -1;
KALDI_ASSERT(kaldi_features.NumRows() == htk_features.NumRows());
KALDI_ASSERT(kaldi_features.NumCols() == htk_features.NumCols());
// Ignore ends-- we make slightly different choices than
// HTK about how to treat the deltas at the ends.
for (int32 i = 10; i + 10 < kaldi_features.NumRows(); i++) {
for (int32 j = 0; j < kaldi_features.NumCols(); j++) {
BaseFloat a = kaldi_features(i, j), b = htk_features(i, j);
if ((std::abs(b - a)) > 1.0) { //<< TOLERANCE TO DIFFERENCES!!!!!
// print the non-matching data only once per-line
if (i_old != i) {
std::cout << "\n\n\n[HTK-row: " << i << "] "
<< htk_features.Row(i) << "\n";
std::cout << "[Kaldi-row: " << i << "] "
<< kaldi_features.Row(i) << "\n\n\n";
i_old = i;
}
// print indices of non-matching cells
std::cout << "[" << i << ", " << j << "]";
passed = false;
}
}
}
if (!passed) KALDI_ERR << "Test failed";
// write the htk features for later inspection
HtkHeader header = {
kaldi_features.NumRows(),
100000, // 10ms
static_cast<int16>(sizeof(float) * kaldi_features.NumCols()),
021406 // MFCC_D_A_0
};
{
std::ofstream os("tmp.test.wav.fea_kaldi.2",
std::ios::out | std::ios::binary);
WriteHtk(os, kaldi_features, header);
}
std::cout << "Test passed :)\n\n";
unlink("tmp.test.wav.fea_kaldi.2");
}
static void UnitTestHTKCompare3() {
std::cout << "=== UnitTestHTKCompare3() ===\n";
std::ifstream is("test_data/test.wav", std::ios_base::binary);
WaveData wave;
wave.Read(is);
KALDI_ASSERT(wave.Data().NumRows() == 1);
SubVector<BaseFloat> waveform(wave.Data(), 0);
// read the HTK features
Matrix<BaseFloat> htk_features;
{
std::ifstream is("test_data/test.wav.fea_htk.3",
std::ios::in | std::ios_base::binary);
bool ans = ReadHtk(is, &htk_features, 0);
KALDI_ASSERT(ans);
}
// use mfcc with default configuration...
MfccOptions op;
op.frame_opts.dither = 0.0;
op.frame_opts.preemph_coeff = 0.0;
op.frame_opts.window_type = "hamming";
op.frame_opts.remove_dc_offset = false;
op.frame_opts.round_to_power_of_two = true;
op.htk_compat = true;
op.use_energy = true; // Use energy.
op.mel_opts.low_freq = 20.0;
// op.mel_opts.debug_mel = true;
op.mel_opts.htk_mode = true;
Mfcc mfcc(op);
// calculate kaldi features
Matrix<BaseFloat> kaldi_raw_features;
mfcc.Compute(waveform, 1.0, &kaldi_raw_features);
DeltaFeaturesOptions delta_opts;
Matrix<BaseFloat> kaldi_features;
ComputeDeltas(delta_opts, kaldi_raw_features, &kaldi_features);
// compare the results
bool passed = true;
int32 i_old = -1;
KALDI_ASSERT(kaldi_features.NumRows() == htk_features.NumRows());
KALDI_ASSERT(kaldi_features.NumCols() == htk_features.NumCols());
// Ignore ends-- we make slightly different choices than
// HTK about how to treat the deltas at the ends.
for (int32 i = 10; i + 10 < kaldi_features.NumRows(); i++) {
for (int32 j = 0; j < kaldi_features.NumCols(); j++) {
BaseFloat a = kaldi_features(i, j), b = htk_features(i, j);
if ((std::abs(b - a)) > 1.0) { //<< TOLERANCE TO DIFFERENCES!!!!!
// print the non-matching data only once per-line
if (static_cast<int32>(i_old) != i) {
std::cout << "\n\n\n[HTK-row: " << i << "] "
<< htk_features.Row(i) << "\n";
std::cout << "[Kaldi-row: " << i << "] "
<< kaldi_features.Row(i) << "\n\n\n";
i_old = i;
}
// print indices of non-matching cells
std::cout << "[" << i << ", " << j << "]";
passed = false;
}
}
}
if (!passed) KALDI_ERR << "Test failed";
// write the htk features for later inspection
HtkHeader header = {
kaldi_features.NumRows(),
100000, // 10ms
static_cast<int16>(sizeof(float) * kaldi_features.NumCols()),
021406 // MFCC_D_A_0
};
{
std::ofstream os("tmp.test.wav.fea_kaldi.3",
std::ios::out | std::ios::binary);
WriteHtk(os, kaldi_features, header);
}
std::cout << "Test passed :)\n\n";
unlink("tmp.test.wav.fea_kaldi.3");
}
static void UnitTestHTKCompare4() {
std::cout << "=== UnitTestHTKCompare4() ===\n";
std::ifstream is("test_data/test.wav", std::ios_base::binary);
WaveData wave;
wave.Read(is);
KALDI_ASSERT(wave.Data().NumRows() == 1);
SubVector<BaseFloat> waveform(wave.Data(), 0);
// read the HTK features
Matrix<BaseFloat> htk_features;
{
std::ifstream is("test_data/test.wav.fea_htk.4",
std::ios::in | std::ios_base::binary);
bool ans = ReadHtk(is, &htk_features, 0);
KALDI_ASSERT(ans);
}
// use mfcc with default configuration...
MfccOptions op;
op.frame_opts.dither = 0.0;
op.frame_opts.window_type = "hamming";
op.frame_opts.remove_dc_offset = false;
op.frame_opts.round_to_power_of_two = true;
op.mel_opts.low_freq = 0.0;
op.htk_compat = true;
op.use_energy = true; // Use energy.
op.mel_opts.htk_mode = true;
Mfcc mfcc(op);
// calculate kaldi features
Matrix<BaseFloat> kaldi_raw_features;
mfcc.Compute(waveform, 1.0, &kaldi_raw_features);
DeltaFeaturesOptions delta_opts;
Matrix<BaseFloat> kaldi_features;
ComputeDeltas(delta_opts, kaldi_raw_features, &kaldi_features);
// compare the results
bool passed = true;
int32 i_old = -1;
KALDI_ASSERT(kaldi_features.NumRows() == htk_features.NumRows());
KALDI_ASSERT(kaldi_features.NumCols() == htk_features.NumCols());
// Ignore ends-- we make slightly different choices than
// HTK about how to treat the deltas at the ends.
for (int32 i = 10; i + 10 < kaldi_features.NumRows(); i++) {
for (int32 j = 0; j < kaldi_features.NumCols(); j++) {
BaseFloat a = kaldi_features(i, j), b = htk_features(i, j);
if ((std::abs(b - a)) > 1.0) { //<< TOLERANCE TO DIFFERENCES!!!!!
// print the non-matching data only once per-line
if (static_cast<int32>(i_old) != i) {
std::cout << "\n\n\n[HTK-row: " << i << "] "
<< htk_features.Row(i) << "\n";
std::cout << "[Kaldi-row: " << i << "] "
<< kaldi_features.Row(i) << "\n\n\n";
i_old = i;
}
// print indices of non-matching cells
std::cout << "[" << i << ", " << j << "]";
passed = false;
}
}
}
if (!passed) KALDI_ERR << "Test failed";
// write the htk features for later inspection
HtkHeader header = {
kaldi_features.NumRows(),
100000, // 10ms
static_cast<int16>(sizeof(float) * kaldi_features.NumCols()),
021406 // MFCC_D_A_0
};
{
std::ofstream os("tmp.test.wav.fea_kaldi.4",
std::ios::out | std::ios::binary);
WriteHtk(os, kaldi_features, header);
}
std::cout << "Test passed :)\n\n";
unlink("tmp.test.wav.fea_kaldi.4");
}
static void UnitTestHTKCompare5() {
std::cout << "=== UnitTestHTKCompare5() ===\n";
std::ifstream is("test_data/test.wav", std::ios_base::binary);
WaveData wave;
wave.Read(is);
KALDI_ASSERT(wave.Data().NumRows() == 1);
SubVector<BaseFloat> waveform(wave.Data(), 0);
// read the HTK features
Matrix<BaseFloat> htk_features;
{
std::ifstream is("test_data/test.wav.fea_htk.5",
std::ios::in | std::ios_base::binary);
bool ans = ReadHtk(is, &htk_features, 0);
KALDI_ASSERT(ans);
}
// use mfcc with default configuration...
MfccOptions op;
op.frame_opts.dither = 0.0;
op.frame_opts.window_type = "hamming";
op.frame_opts.remove_dc_offset = false;
op.frame_opts.round_to_power_of_two = true;
op.htk_compat = true;
op.use_energy = true; // Use energy.
op.mel_opts.low_freq = 0.0;
op.mel_opts.vtln_low = 100.0;
op.mel_opts.vtln_high = 7500.0;
op.mel_opts.htk_mode = true;
BaseFloat vtln_warp =
1.1; // our approach identical to htk for warp factor >1,
// differs slightly for higher mel bins if warp_factor <0.9
Mfcc mfcc(op);
// calculate kaldi features
Matrix<BaseFloat> kaldi_raw_features;
mfcc.Compute(waveform, vtln_warp, &kaldi_raw_features);
DeltaFeaturesOptions delta_opts;
Matrix<BaseFloat> kaldi_features;
ComputeDeltas(delta_opts, kaldi_raw_features, &kaldi_features);
// compare the results
bool passed = true;
int32 i_old = -1;
KALDI_ASSERT(kaldi_features.NumRows() == htk_features.NumRows());
KALDI_ASSERT(kaldi_features.NumCols() == htk_features.NumCols());
// Ignore ends-- we make slightly different choices than
// HTK about how to treat the deltas at the ends.
for (int32 i = 10; i + 10 < kaldi_features.NumRows(); i++) {
for (int32 j = 0; j < kaldi_features.NumCols(); j++) {
BaseFloat a = kaldi_features(i, j), b = htk_features(i, j);
if ((std::abs(b - a)) > 1.0) { //<< TOLERANCE TO DIFFERENCES!!!!!
// print the non-matching data only once per-line
if (static_cast<int32>(i_old) != i) {
std::cout << "\n\n\n[HTK-row: " << i << "] "
<< htk_features.Row(i) << "\n";
std::cout << "[Kaldi-row: " << i << "] "
<< kaldi_features.Row(i) << "\n\n\n";
i_old = i;
}
// print indices of non-matching cells
std::cout << "[" << i << ", " << j << "]";
passed = false;
}
}
}
if (!passed) KALDI_ERR << "Test failed";
// write the htk features for later inspection
HtkHeader header = {
kaldi_features.NumRows(),
100000, // 10ms
static_cast<int16>(sizeof(float) * kaldi_features.NumCols()),
021406 // MFCC_D_A_0
};
{
std::ofstream os("tmp.test.wav.fea_kaldi.5",
std::ios::out | std::ios::binary);
WriteHtk(os, kaldi_features, header);
}
std::cout << "Test passed :)\n\n";
unlink("tmp.test.wav.fea_kaldi.5");
}
static void UnitTestHTKCompare6() {
std::cout << "=== UnitTestHTKCompare6() ===\n";
std::ifstream is("test_data/test.wav", std::ios_base::binary);
WaveData wave;
wave.Read(is);
KALDI_ASSERT(wave.Data().NumRows() == 1);
SubVector<BaseFloat> waveform(wave.Data(), 0);
// read the HTK features
Matrix<BaseFloat> htk_features;
{
std::ifstream is("test_data/test.wav.fea_htk.6",
std::ios::in | std::ios_base::binary);
bool ans = ReadHtk(is, &htk_features, 0);
KALDI_ASSERT(ans);
}
// use mfcc with default configuration...
MfccOptions op;
op.frame_opts.dither = 0.0;
op.frame_opts.preemph_coeff = 0.97;
op.frame_opts.window_type = "hamming";
op.frame_opts.remove_dc_offset = false;
op.frame_opts.round_to_power_of_two = true;
op.mel_opts.num_bins = 24;
op.mel_opts.low_freq = 125.0;
op.mel_opts.high_freq = 7800.0;
op.htk_compat = true;
op.use_energy = false; // C0 not energy.
Mfcc mfcc(op);
// calculate kaldi features
Matrix<BaseFloat> kaldi_raw_features;
mfcc.Compute(waveform, 1.0, &kaldi_raw_features);
DeltaFeaturesOptions delta_opts;
Matrix<BaseFloat> kaldi_features;
ComputeDeltas(delta_opts, kaldi_raw_features, &kaldi_features);
// compare the results
bool passed = true;
int32 i_old = -1;
KALDI_ASSERT(kaldi_features.NumRows() == htk_features.NumRows());
KALDI_ASSERT(kaldi_features.NumCols() == htk_features.NumCols());
// Ignore ends-- we make slightly different choices than
// HTK about how to treat the deltas at the ends.
for (int32 i = 10; i + 10 < kaldi_features.NumRows(); i++) {
for (int32 j = 0; j < kaldi_features.NumCols(); j++) {
BaseFloat a = kaldi_features(i, j), b = htk_features(i, j);
if ((std::abs(b - a)) > 1.0) { //<< TOLERANCE TO DIFFERENCES!!!!!
// print the non-matching data only once per-line
if (static_cast<int32>(i_old) != i) {
std::cout << "\n\n\n[HTK-row: " << i << "] "
<< htk_features.Row(i) << "\n";
std::cout << "[Kaldi-row: " << i << "] "
<< kaldi_features.Row(i) << "\n\n\n";
i_old = i;
}
// print indices of non-matching cells
std::cout << "[" << i << ", " << j << "]";
passed = false;
}
}
}
if (!passed) KALDI_ERR << "Test failed";
// write the htk features for later inspection
HtkHeader header = {
kaldi_features.NumRows(),
100000, // 10ms
static_cast<int16>(sizeof(float) * kaldi_features.NumCols()),
021406 // MFCC_D_A_0
};
{
std::ofstream os("tmp.test.wav.fea_kaldi.6",
std::ios::out | std::ios::binary);
WriteHtk(os, kaldi_features, header);
}
std::cout << "Test passed :)\n\n";
unlink("tmp.test.wav.fea_kaldi.6");
}
void UnitTestVtln() {
// Test the function VtlnWarpFreq.
BaseFloat low_freq = 10, high_freq = 7800, vtln_low_cutoff = 20,
vtln_high_cutoff = 7400;
for (size_t i = 0; i < 100; i++) {
BaseFloat freq = 5000, warp_factor = 0.9 + RandUniform() * 0.2;
AssertEqual(MelBanks::VtlnWarpFreq(vtln_low_cutoff,
vtln_high_cutoff,
low_freq,
high_freq,
warp_factor,
freq),
freq / warp_factor);
AssertEqual(MelBanks::VtlnWarpFreq(vtln_low_cutoff,
vtln_high_cutoff,
low_freq,
high_freq,
warp_factor,
low_freq),
low_freq);
AssertEqual(MelBanks::VtlnWarpFreq(vtln_low_cutoff,
vtln_high_cutoff,
low_freq,
high_freq,
warp_factor,
high_freq),
high_freq);
BaseFloat freq2 = low_freq + (high_freq - low_freq) * RandUniform(),
freq3 = freq2 +
(high_freq - freq2) * RandUniform(); // freq3>=freq2
BaseFloat w2 = MelBanks::VtlnWarpFreq(vtln_low_cutoff,
vtln_high_cutoff,
low_freq,
high_freq,
warp_factor,
freq2);
BaseFloat w3 = MelBanks::VtlnWarpFreq(vtln_low_cutoff,
vtln_high_cutoff,
low_freq,
high_freq,
warp_factor,
freq3);
KALDI_ASSERT(w3 >= w2); // increasing function.
BaseFloat w3dash = MelBanks::VtlnWarpFreq(
vtln_low_cutoff, vtln_high_cutoff, low_freq, high_freq, 1.0, freq3);
AssertEqual(w3dash, freq3);
}
}
static void UnitTestFeat() {
UnitTestVtln();
UnitTestReadWave();
UnitTestSimple();
UnitTestHTKCompare1();
UnitTestHTKCompare2();
// commenting out this one as it doesn't compare right now I normalized
// the way the FFT bins are treated (removed offset of 0.5)... this seems
// to relate to the way frequency zero behaves.
UnitTestHTKCompare3();
UnitTestHTKCompare4();
UnitTestHTKCompare5();
UnitTestHTKCompare6();
std::cout << "Tests succeeded.\n";
}
int main() {
try {
for (int i = 0; i < 5; i++) UnitTestFeat();
std::cout << "Tests succeeded.\n";
return 0;
} catch (const std::exception &e) {
std::cerr << e.what();
return 1;
}
}

@ -0,0 +1,248 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// todo refactor, repalce with gtest
#include "frontend/linear_spectrogram.h"
#include "base/flags.h"
#include "base/log.h"
#include "frontend/feature_cache.h"
#include "frontend/feature_extractor_interface.h"
#include "frontend/normalizer.h"
#include "frontend/raw_audio.h"
#include "kaldi/feat/wave-reader.h"
#include "kaldi/util/kaldi-io.h"
#include "kaldi/util/table-types.h"
DEFINE_string(wav_rspecifier, "", "test wav scp path");
DEFINE_string(feature_wspecifier, "", "output feats wspecifier");
DEFINE_string(cmvn_write_path, "./cmvn.ark", "write cmvn");
std::vector<float> mean_{
-13730251.531853663, -12982852.199316509, -13673844.299583456,
-13089406.559646806, -12673095.524938712, -12823859.223276224,
-13590267.158903603, -14257618.467152044, -14374605.116185192,
-14490009.21822485, -14849827.158924166, -15354435.470563512,
-15834149.206532761, -16172971.985514281, -16348740.496746974,
-16423536.699409386, -16556246.263649225, -16744088.772748645,
-16916184.08510357, -17054034.840031497, -17165612.509455364,
-17255955.470915023, -17322572.527648456, -17408943.862033736,
-17521554.799865916, -17620623.254924215, -17699792.395918526,
-17723364.411134344, -17741483.4433254, -17747426.888704527,
-17733315.928209435, -17748780.160905756, -17808336.883775543,
-17895918.671983004, -18009812.59173023, -18098188.66548325,
-18195798.958462656, -18293617.62980999, -18397432.92077201,
-18505834.787318766, -18585451.8100908, -18652438.235649142,
-18700960.306275308, -18734944.58792185, -18737426.313365128,
-18735347.165987637, -18738813.444170244, -18737086.848890636,
-18731576.2474336, -18717405.44095871, -18703089.25545657,
-18691014.546456724, -18692460.568905357, -18702119.628629155,
-18727710.621126678, -18761582.72034647, -18806745.835547544,
-18850674.8692112, -18884431.510951452, -18919999.992506847,
-18939303.799078144, -18952946.273760635, -18980289.22996379,
-19011610.17803294, -19040948.61805145, -19061021.429847397,
-19112055.53768819, -19149667.414264943, -19201127.05091321,
-19270250.82564605, -19334606.883057203, -19390513.336589377,
-19444176.259208687, -19502755.000038862, -19544333.014549147,
-19612668.183176614, -19681902.19006569, -19771969.951249883,
-19873329.723376893, -19996752.59235844, -20110031.131400537,
-20231658.612529557, -20319378.894054495, -20378534.45718066,
-20413332.089584175, -20438147.844177883, -20443710.248040095,
-20465457.02238927, -20488610.969337028, -20516295.16424432,
-20541423.795738827, -20553192.874953747, -20573605.50701977,
-20577871.61936797, -20571807.008916274, -20556242.38912231,
-20542199.30819195, -20521239.063551214, -20519150.80004532,
-20527204.80248933, -20536933.769257784, -20543470.522332076,
-20549700.089992985, -20551525.24958494, -20554873.406493705,
-20564277.65794227, -20572211.740052115, -20574305.69550465,
-20575494.450104576, -20567092.577932164, -20549302.929608088,
-20545445.11878376, -20546625.326603737, -20549190.03499401,
-20554824.947828256, -20568341.378989458, -20577582.331383612,
-20577980.519402675, -20566603.03458152, -20560131.592262644,
-20552166.469060015, -20549063.06763577, -20544490.562339947,
-20539817.82346569, -20528747.715731595, -20518026.24576161,
-20510977.844974525, -20506874.36087992, -20506731.11977665,
-20510482.133420516, -20507760.92101862, -20494644.834457114,
-20480107.89304893, -20461312.091867123, -20442941.75080173,
-20426123.02834838, -20424607.675283, -20426810.369107097,
-20434024.50097819, -20437404.75544205, -20447688.63916367,
-20460893.335563846, -20482922.735127095, -20503610.119434915,
-20527062.76448319, -20557830.035128627, -20593274.72068722,
-20632528.452965066, -20673637.471334763, -20733106.97143075,
-20842921.0447562, -21054357.83621519, -21416569.534189366,
-21978460.272811692, -22753170.052172784, -23671344.10563395,
-24613499.293358143, -25406477.12230188, -25884377.82156489,
-26049040.62791664, -26996879.104431007};
std::vector<float> variance_{
213747175.10846674, 188395815.34302503, 212706429.10966414,
199109025.81461075, 189235901.23864496, 194901336.53253657,
217481594.29306737, 238689869.12327808, 243977501.24115244,
248479623.6431067, 259766741.47116545, 275516766.7790273,
291271202.3691234, 302693239.8220509, 308627358.3997694,
311143911.38788426, 315446105.07731867, 321705430.9341829,
327458907.4659941, 332245072.43223983, 336251717.5935284,
339694069.7639722, 342188204.4322228, 345587110.31313115,
349903086.2875232, 353660214.20643026, 356700344.5270885,
357665362.3529641, 358493352.05658793, 358857951.620328,
358375239.52774596, 358899733.6342954, 361051818.3511561,
364361716.05025816, 368750322.3771452, 372047800.6462831,
375655861.1349018, 379358519.1980013, 383327605.3935181,
387458599.282341, 390434692.3406868, 392994486.35057056,
394874418.04603153, 396230525.79763395, 396365592.0414835,
396334819.8242737, 396488353.19250053, 396438877.00744957,
396197980.4459586, 395590921.6672991, 395001107.62072515,
394528291.7318225, 394593110.424006, 395018405.59353715,
396110577.5415993, 397506704.0371068, 399400197.4657644,
401243568.2468382, 402687134.7805103, 404136047.2872507,
404883170.001883, 405522253.219517, 406660365.3626476,
407919346.0991902, 409045348.5384909, 409759588.7889818,
411974821.8564483, 413489718.78201455, 415535392.56684107,
418466481.97674364, 421104678.35678065, 423405392.5200779,
425550570.40798235, 427929423.9579701, 429585274.253478,
432368493.55181056, 435193587.13513297, 438886855.20476013,
443058876.8633751, 448181232.5093362, 452883835.6332396,
458056721.77926534, 461816531.22735566, 464363620.1970998,
465886343.5057493, 466928872.0651, 467180536.42647296,
468111848.70714295, 469138695.3071312, 470378429.6930793,
471517958.7132626, 472109050.4262365, 473087417.0177867,
473381322.04648733, 473220195.85483915, 472666071.8998819,
472124669.87879956, 471298571.411737, 471251033.2902761,
471672676.43128747, 472177147.2193172, 472572361.7711908,
472968783.7751127, 473156295.4164052, 473398034.82676554,
473897703.5203811, 474328271.33112127, 474452670.98002136,
474549003.99284613, 474252887.13567275, 473557462.909069,
473483385.85193115, 473609738.04855174, 473746944.82085115,
474016729.91696435, 474617321.94138587, 475045097.237122,
475125402.586558, 474664112.9824912, 474426247.5800283,
474104075.42796475, 473978219.7273978, 473773171.7798875,
473578534.69508696, 473102924.16904145, 472651240.5232615,
472374383.1810912, 472209479.6956096, 472202298.8921673,
472370090.76781124, 472220933.99374026, 471625467.37106377,
470994646.51883453, 470182428.9637543, 469348211.5939578,
468570387.4467277, 468540442.7225135, 468672018.90414184,
468994346.9533251, 469138757.58201426, 469553915.95710236,
470134523.38582784, 471082421.62055486, 471962316.51804745,
472939745.1708408, 474250621.5944825, 475773933.43199486,
477465399.71087736, 479218782.61382693, 481752299.7930922,
486608947.8984568, 496119403.2067917, 512730085.5704984,
539048915.2641417, 576285298.3548826, 621610270.2240586,
669308196.4436442, 710656993.5957186, 736344437.3725077,
745481288.0241544, 801121432.9925804};
int count_ = 912592;
void WriteMatrix() {
kaldi::Matrix<double> cmvn_stats(2, mean_.size() + 1);
for (size_t idx = 0; idx < mean_.size(); ++idx) {
cmvn_stats(0, idx) = mean_[idx];
cmvn_stats(1, idx) = variance_[idx];
}
cmvn_stats(0, mean_.size()) = count_;
kaldi::WriteKaldiObject(cmvn_stats, FLAGS_cmvn_write_path, true);
}
int main(int argc, char* argv[]) {
gflags::ParseCommandLineFlags(&argc, &argv, false);
google::InitGoogleLogging(argv[0]);
kaldi::SequentialTableReader<kaldi::WaveHolder> wav_reader(
FLAGS_wav_rspecifier);
kaldi::BaseFloatMatrixWriter feat_writer(FLAGS_feature_wspecifier);
WriteMatrix();
// test feature linear_spectorgram: wave --> decibel_normalizer --> hanning
// window -->linear_spectrogram --> cmvn
int32 num_done = 0, num_err = 0;
// std::unique_ptr<ppspeech::FeatureExtractorInterface> data_source(new
// ppspeech::RawDataCache());
std::unique_ptr<ppspeech::FeatureExtractorInterface> data_source(
new ppspeech::RawAudioCache());
ppspeech::LinearSpectrogramOptions opt;
opt.frame_opts.frame_length_ms = 20;
opt.frame_opts.frame_shift_ms = 10;
ppspeech::DecibelNormalizerOptions db_norm_opt;
std::unique_ptr<ppspeech::FeatureExtractorInterface> base_feature_extractor(
new ppspeech::DecibelNormalizer(db_norm_opt, std::move(data_source)));
std::unique_ptr<ppspeech::FeatureExtractorInterface> linear_spectrogram(
new ppspeech::LinearSpectrogram(opt,
std::move(base_feature_extractor)));
std::unique_ptr<ppspeech::FeatureExtractorInterface> cmvn(
new ppspeech::CMVN(FLAGS_cmvn_write_path,
std::move(linear_spectrogram)));
ppspeech::FeatureCache feature_cache(kint16max, std::move(cmvn));
float streaming_chunk = 0.36;
int sample_rate = 16000;
int chunk_sample_size = streaming_chunk * sample_rate;
for (; !wav_reader.Done(); wav_reader.Next()) {
std::string utt = wav_reader.Key();
const kaldi::WaveData& wave_data = wav_reader.Value();
int32 this_channel = 0;
kaldi::SubVector<kaldi::BaseFloat> waveform(wave_data.Data(),
this_channel);
int tot_samples = waveform.Dim();
int sample_offset = 0;
std::vector<kaldi::Vector<BaseFloat>> feats;
int feature_rows = 0;
while (sample_offset < tot_samples) {
int cur_chunk_size =
std::min(chunk_sample_size, tot_samples - sample_offset);
kaldi::Vector<kaldi::BaseFloat> wav_chunk(cur_chunk_size);
for (int i = 0; i < cur_chunk_size; ++i) {
wav_chunk(i) = waveform(sample_offset + i);
}
kaldi::Vector<BaseFloat> features;
feature_cache.Accept(wav_chunk);
if (cur_chunk_size < chunk_sample_size) {
feature_cache.SetFinished();
}
feature_cache.Read(&features);
if (features.Dim() == 0) break;
feats.push_back(features);
sample_offset += cur_chunk_size;
feature_rows += features.Dim() / feature_cache.Dim();
}
int cur_idx = 0;
kaldi::Matrix<kaldi::BaseFloat> features(feature_rows,
feature_cache.Dim());
for (auto feat : feats) {
int num_rows = feat.Dim() / feature_cache.Dim();
for (int row_idx = 0; row_idx < num_rows; ++row_idx) {
for (size_t col_idx = 0; col_idx < feature_cache.Dim();
++col_idx) {
features(cur_idx, col_idx) =
feat(row_idx * feature_cache.Dim() + col_idx);
}
++cur_idx;
}
}
feat_writer.Write(utt, features);
if (num_done % 50 == 0 && num_done != 0)
KALDI_VLOG(2) << "Processed " << num_done << " utterances";
num_done++;
}
KALDI_LOG << "Done " << num_done << " utterances, " << num_err
<< " with errors.";
return (num_done != 0 ? 0 : 1);
}

@ -0,0 +1,14 @@
# This contains the locations of binarys build required for running the examples.
SPEECHX_ROOT=$PWD/../..
SPEECHX_EXAMPLES=$SPEECHX_ROOT/build/examples
SPEECHX_TOOLS=$SPEECHX_ROOT/tools
TOOLS_BIN=$SPEECHX_TOOLS/valgrind/install/bin
[ -d $SPEECHX_EXAMPLES ] || { echo "Error: 'build/examples' directory not found. please ensure that the project build successfully"; }
export LC_AL=C
SPEECHX_BIN=$SPEECHX_EXAMPLES/feat
export PATH=$PATH:$SPEECHX_BIN:$TOOLS_BIN

@ -0,0 +1,31 @@
#!/bin/bash
set +x
set -e
. ./path.sh
# 1. compile
if [ ! -d ${SPEECHX_EXAMPLES} ]; then
pushd ${SPEECHX_ROOT}
bash build.sh
popd
fi
# 2. download model
if [ ! -d ../paddle_asr_model ]; then
wget https://paddlespeech.bj.bcebos.com/s2t/paddle_asr_online/paddle_asr_model.tar.gz
tar xzfv paddle_asr_model.tar.gz
mv ./paddle_asr_model ../
# produce wav scp
echo "utt1 " $PWD/../paddle_asr_model/BAC009S0764W0290.wav > ../paddle_asr_model/wav.scp
fi
model_dir=../paddle_asr_model
feat_wspecifier=./feats.ark
cmvn=./cmvn.ark
# 3. run feat
linear_spectrogram_main \
--wav_rspecifier=scp:$model_dir/wav.scp \
--feature_wspecifier=ark,t:$feat_wspecifier \
--cmvn_write_path=$cmvn

@ -0,0 +1,24 @@
#!/bin/bash
# this script is for memory check, so please run ./run.sh first.
set +x
set -e
. ./path.sh
if [ ! -d ${SPEECHX_TOOLS}/valgrind/install ]; then
echo "please install valgrind in the speechx tools dir.\n"
exit 1
fi
model_dir=../paddle_asr_model
feat_wspecifier=./feats.ark
cmvn=./cmvn.ark
valgrind --tool=memcheck --track-origins=yes --leak-check=full --show-leak-kinds=all \
linear_spectrogram_main \
--wav_rspecifier=scp:$model_dir/wav.scp \
--feature_wspecifier=ark,t:$feat_wspecifier \
--cmvn_write_path=$cmvn

@ -0,0 +1,5 @@
cmake_minimum_required(VERSION 3.14 FATAL_ERROR)
add_executable(pp-model-test ${CMAKE_CURRENT_SOURCE_DIR}/pp-model-test.cc)
target_include_directories(pp-model-test PRIVATE ${SPEECHX_ROOT} ${SPEECHX_ROOT}/kaldi)
target_link_libraries(pp-model-test PUBLIC nnet gflags ${DEPS})

@ -0,0 +1,14 @@
# This contains the locations of binarys build required for running the examples.
SPEECHX_ROOT=$PWD/../..
SPEECHX_EXAMPLES=$SPEECHX_ROOT/build/examples
SPEECHX_TOOLS=$SPEECHX_ROOT/tools
TOOLS_BIN=$SPEECHX_TOOLS/valgrind/install/bin
[ -d $SPEECHX_EXAMPLES ] || { echo "Error: 'build/examples' directory not found. please ensure that the project build successfully"; }
export LC_AL=C
SPEECHX_BIN=$SPEECHX_EXAMPLES/nnet
export PATH=$PATH:$SPEECHX_BIN:$TOOLS_BIN

@ -0,0 +1,193 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <algorithm>
#include <fstream>
#include <functional>
#include <iostream>
#include <iterator>
#include <numeric>
#include <thread>
#include "paddle_inference_api.h"
using std::cout;
using std::endl;
DEFINE_string(model_path, "avg_1.jit.pdmodel", "xxx.pdmodel");
DEFINE_string(param_path, "avg_1.jit.pdiparams", "xxx.pdiparams");
void produce_data(std::vector<std::vector<float>>* data);
void model_forward_test();
void produce_data(std::vector<std::vector<float>>* data) {
int chunk_size = 35; // chunk_size in frame
int col_size = 161; // feat dim
cout << "chunk size: " << chunk_size << endl;
cout << "feat dim: " << col_size << endl;
data->reserve(chunk_size);
data->back().reserve(col_size);
for (int row = 0; row < chunk_size; ++row) {
data->push_back(std::vector<float>());
for (int col_idx = 0; col_idx < col_size; ++col_idx) {
data->back().push_back(0.201);
}
}
}
void model_forward_test() {
std::cout << "1. read the data" << std::endl;
std::vector<std::vector<float>> feats;
produce_data(&feats);
std::cout << "2. load the model" << std::endl;
;
std::string model_graph = FLAGS_model_path;
std::string model_params = FLAGS_param_path;
cout << "model path: " << model_graph << endl;
cout << "model param path : " << model_params << endl;
paddle_infer::Config config;
config.SetModel(model_graph, model_params);
config.SwitchIrOptim(false);
cout << "SwitchIrOptim: " << false << endl;
config.DisableFCPadding();
cout << "DisableFCPadding: " << endl;
auto predictor = paddle_infer::CreatePredictor(config);
std::cout << "3. feat shape, row=" << feats.size()
<< ",col=" << feats[0].size() << std::endl;
std::vector<float> pp_input_mat;
for (const auto& item : feats) {
pp_input_mat.insert(pp_input_mat.end(), item.begin(), item.end());
}
std::cout << "4. fead the data to model" << std::endl;
int row = feats.size();
int col = feats[0].size();
std::vector<std::string> input_names = predictor->GetInputNames();
std::vector<std::string> output_names = predictor->GetOutputNames();
for (auto name : input_names) {
cout << "model input names: " << name << endl;
}
for (auto name : output_names) {
cout << "model output names: " << name << endl;
}
// input
std::unique_ptr<paddle_infer::Tensor> input_tensor =
predictor->GetInputHandle(input_names[0]);
std::vector<int> INPUT_SHAPE = {1, row, col};
input_tensor->Reshape(INPUT_SHAPE);
input_tensor->CopyFromCpu(pp_input_mat.data());
// input length
std::unique_ptr<paddle_infer::Tensor> input_len =
predictor->GetInputHandle(input_names[1]);
std::vector<int> input_len_size = {1};
input_len->Reshape(input_len_size);
std::vector<int64_t> audio_len;
audio_len.push_back(row);
input_len->CopyFromCpu(audio_len.data());
// state_h
std::unique_ptr<paddle_infer::Tensor> chunk_state_h_box =
predictor->GetInputHandle(input_names[2]);
std::vector<int> chunk_state_h_box_shape = {3, 1, 1024};
chunk_state_h_box->Reshape(chunk_state_h_box_shape);
int chunk_state_h_box_size =
std::accumulate(chunk_state_h_box_shape.begin(),
chunk_state_h_box_shape.end(),
1,
std::multiplies<int>());
std::vector<float> chunk_state_h_box_data(chunk_state_h_box_size, 0.0f);
chunk_state_h_box->CopyFromCpu(chunk_state_h_box_data.data());
// state_c
std::unique_ptr<paddle_infer::Tensor> chunk_state_c_box =
predictor->GetInputHandle(input_names[3]);
std::vector<int> chunk_state_c_box_shape = {3, 1, 1024};
chunk_state_c_box->Reshape(chunk_state_c_box_shape);
int chunk_state_c_box_size =
std::accumulate(chunk_state_c_box_shape.begin(),
chunk_state_c_box_shape.end(),
1,
std::multiplies<int>());
std::vector<float> chunk_state_c_box_data(chunk_state_c_box_size, 0.0f);
chunk_state_c_box->CopyFromCpu(chunk_state_c_box_data.data());
// run
bool success = predictor->Run();
// state_h out
std::unique_ptr<paddle_infer::Tensor> h_out =
predictor->GetOutputHandle(output_names[2]);
std::vector<int> h_out_shape = h_out->shape();
int h_out_size = std::accumulate(
h_out_shape.begin(), h_out_shape.end(), 1, std::multiplies<int>());
std::vector<float> h_out_data(h_out_size);
h_out->CopyToCpu(h_out_data.data());
// stage_c out
std::unique_ptr<paddle_infer::Tensor> c_out =
predictor->GetOutputHandle(output_names[3]);
std::vector<int> c_out_shape = c_out->shape();
int c_out_size = std::accumulate(
c_out_shape.begin(), c_out_shape.end(), 1, std::multiplies<int>());
std::vector<float> c_out_data(c_out_size);
c_out->CopyToCpu(c_out_data.data());
// output tensor
std::unique_ptr<paddle_infer::Tensor> output_tensor =
predictor->GetOutputHandle(output_names[0]);
std::vector<int> output_shape = output_tensor->shape();
std::vector<float> output_probs;
int output_size = std::accumulate(
output_shape.begin(), output_shape.end(), 1, std::multiplies<int>());
output_probs.resize(output_size);
output_tensor->CopyToCpu(output_probs.data());
row = output_shape[1];
col = output_shape[2];
// probs
std::vector<std::vector<float>> probs;
probs.reserve(row);
for (int i = 0; i < row; i++) {
probs.push_back(std::vector<float>());
probs.back().reserve(col);
for (int j = 0; j < col; j++) {
probs.back().push_back(output_probs[i * col + j]);
}
}
std::vector<std::vector<float>> log_feat = probs;
std::cout << "probs, row: " << log_feat.size()
<< " col: " << log_feat[0].size() << std::endl;
for (size_t row_idx = 0; row_idx < log_feat.size(); ++row_idx) {
for (size_t col_idx = 0; col_idx < log_feat[row_idx].size();
++col_idx) {
std::cout << log_feat[row_idx][col_idx] << " ";
}
std::cout << std::endl;
}
}
int main(int argc, char* argv[]) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
model_forward_test();
return 0;
}

@ -0,0 +1,29 @@
#!/bin/bash
set +x
set -e
. path.sh
# 1. compile
if [ ! -d ${SPEECHX_EXAMPLES} ]; then
pushd ${SPEECHX_ROOT}
bash build.sh
popd
fi
# 2. download model
if [ ! -d ../paddle_asr_model ]; then
wget https://paddlespeech.bj.bcebos.com/s2t/paddle_asr_online/paddle_asr_model.tar.gz
tar xzfv paddle_asr_model.tar.gz
mv ./paddle_asr_model ../
# produce wav scp
echo "utt1 " $PWD/../paddle_asr_model/BAC009S0764W0290.wav > ../paddle_asr_model/wav.scp
fi
model_dir=../paddle_asr_model
# 4. run decoder
pp-model-test \
--model_path=$model_dir/avg_1.jit.pdmodel \
--param_path=$model_dir/avg_1.jit.pdparams

@ -0,0 +1,20 @@
#!/bin/bash
# this script is for memory check, so please run ./run.sh first.
set +x
set -e
. ./path.sh
if [ ! -d ${SPEECHX_TOOLS}/valgrind/install ]; then
echo "please install valgrind in the speechx tools dir.\n"
exit 1
fi
model_dir=../paddle_asr_model
valgrind --tool=memcheck --track-origins=yes --leak-check=full --show-leak-kinds=all \
pp-model-test \
--model_path=$model_dir/avg_1.jit.pdmodel \
--param_path=$model_dir/avg_1.jit.pdparams

@ -0,0 +1 @@
exclude_files=.*

@ -0,0 +1,228 @@
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Google-style flag handling declarations and inline definitions.
#ifndef FST_LIB_FLAGS_H_
#define FST_LIB_FLAGS_H_
#include <cstdlib>
#include <iostream>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <fst/types.h>
#include <fst/lock.h>
#include "gflags/gflags.h"
#include "glog/logging.h"
using std::string;
// FLAGS USAGE:
//
// Definition example:
//
// DEFINE_int32(length, 0, "length");
//
// This defines variable FLAGS_length, initialized to 0.
//
// Declaration example:
//
// DECLARE_int32(length);
//
// SET_FLAGS() can be used to set flags from the command line
// using, for example, '--length=2'.
//
// ShowUsage() can be used to print out command and flag usage.
// #define DECLARE_bool(name) extern bool FLAGS_ ## name
// #define DECLARE_string(name) extern string FLAGS_ ## name
// #define DECLARE_int32(name) extern int32 FLAGS_ ## name
// #define DECLARE_int64(name) extern int64 FLAGS_ ## name
// #define DECLARE_double(name) extern double FLAGS_ ## name
template <typename T>
struct FlagDescription {
FlagDescription(T *addr, const char *doc, const char *type,
const char *file, const T val)
: address(addr),
doc_string(doc),
type_name(type),
file_name(file),
default_value(val) {}
T *address;
const char *doc_string;
const char *type_name;
const char *file_name;
const T default_value;
};
template <typename T>
class FlagRegister {
public:
static FlagRegister<T> *GetRegister() {
static auto reg = new FlagRegister<T>;
return reg;
}
const FlagDescription<T> &GetFlagDescription(const string &name) const {
fst::MutexLock l(&flag_lock_);
auto it = flag_table_.find(name);
return it != flag_table_.end() ? it->second : 0;
}
void SetDescription(const string &name,
const FlagDescription<T> &desc) {
fst::MutexLock l(&flag_lock_);
flag_table_.insert(make_pair(name, desc));
}
bool SetFlag(const string &val, bool *address) const {
if (val == "true" || val == "1" || val.empty()) {
*address = true;
return true;
} else if (val == "false" || val == "0") {
*address = false;
return true;
}
else {
return false;
}
}
bool SetFlag(const string &val, string *address) const {
*address = val;
return true;
}
bool SetFlag(const string &val, int32 *address) const {
char *p = 0;
*address = strtol(val.c_str(), &p, 0);
return !val.empty() && *p == '\0';
}
bool SetFlag(const string &val, int64 *address) const {
char *p = 0;
*address = strtoll(val.c_str(), &p, 0);
return !val.empty() && *p == '\0';
}
bool SetFlag(const string &val, double *address) const {
char *p = 0;
*address = strtod(val.c_str(), &p);
return !val.empty() && *p == '\0';
}
bool SetFlag(const string &arg, const string &val) const {
for (typename std::map< string, FlagDescription<T> >::const_iterator it =
flag_table_.begin();
it != flag_table_.end();
++it) {
const string &name = it->first;
const FlagDescription<T> &desc = it->second;
if (arg == name)
return SetFlag(val, desc.address);
}
return false;
}
void GetUsage(std::set<std::pair<string, string>> *usage_set) const {
for (auto it = flag_table_.begin(); it != flag_table_.end(); ++it) {
const string &name = it->first;
const FlagDescription<T> &desc = it->second;
string usage = " --" + name;
usage += ": type = ";
usage += desc.type_name;
usage += ", default = ";
usage += GetDefault(desc.default_value) + "\n ";
usage += desc.doc_string;
usage_set->insert(make_pair(desc.file_name, usage));
}
}
private:
string GetDefault(bool default_value) const {
return default_value ? "true" : "false";
}
string GetDefault(const string &default_value) const {
return "\"" + default_value + "\"";
}
template <class V>
string GetDefault(const V &default_value) const {
std::ostringstream strm;
strm << default_value;
return strm.str();
}
mutable fst::Mutex flag_lock_; // Multithreading lock.
std::map<string, FlagDescription<T>> flag_table_;
};
template <typename T>
class FlagRegisterer {
public:
FlagRegisterer(const string &name, const FlagDescription<T> &desc) {
auto registr = FlagRegister<T>::GetRegister();
registr->SetDescription(name, desc);
}
private:
FlagRegisterer(const FlagRegisterer &) = delete;
FlagRegisterer &operator=(const FlagRegisterer &) = delete;
};
#define DEFINE_VAR(type, name, value, doc) \
type FLAGS_ ## name = value; \
static FlagRegisterer<type> \
name ## _flags_registerer(#name, FlagDescription<type>(&FLAGS_ ## name, \
doc, \
#type, \
__FILE__, \
value))
// #define DEFINE_bool(name, value, doc) DEFINE_VAR(bool, name, value, doc)
// #define DEFINE_string(name, value, doc) \
// DEFINE_VAR(string, name, value, doc)
// #define DEFINE_int32(name, value, doc) DEFINE_VAR(int32, name, value, doc)
// #define DEFINE_int64(name, value, doc) DEFINE_VAR(int64, name, value, doc)
// #define DEFINE_double(name, value, doc) DEFINE_VAR(double, name, value, doc)
// Temporary directory.
DECLARE_string(tmpdir);
void SetFlags(const char *usage, int *argc, char ***argv, bool remove_flags,
const char *src = "");
#define SET_FLAGS(usage, argc, argv, rmflags) \
gflags::ParseCommandLineFlags(argc, argv, true)
// SetFlags(usage, argc, argv, rmflags, __FILE__)
// Deprecated; for backward compatibility.
inline void InitFst(const char *usage, int *argc, char ***argv, bool rmflags) {
return SetFlags(usage, argc, argv, rmflags);
}
void ShowUsage(bool long_usage = true);
#endif // FST_LIB_FLAGS_H_

@ -0,0 +1,82 @@
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Google-style logging declarations and inline definitions.
#ifndef FST_LIB_LOG_H_
#define FST_LIB_LOG_H_
#include <cassert>
#include <iostream>
#include <string>
#include <fst/types.h>
#include <fst/flags.h>
using std::string;
DECLARE_int32(v);
class LogMessage {
public:
LogMessage(const string &type) : fatal_(type == "FATAL") {
std::cerr << type << ": ";
}
~LogMessage() {
std::cerr << std::endl;
if(fatal_)
exit(1);
}
std::ostream &stream() { return std::cerr; }
private:
bool fatal_;
};
// #define LOG(type) LogMessage(#type).stream()
// #define VLOG(level) if ((level) <= FLAGS_v) LOG(INFO)
// Checks
inline void FstCheck(bool x, const char* expr,
const char *file, int line) {
if (!x) {
LOG(FATAL) << "Check failed: \"" << expr
<< "\" file: " << file
<< " line: " << line;
}
}
// #define CHECK(x) FstCheck(static_cast<bool>(x), #x, __FILE__, __LINE__)
// #define CHECK_EQ(x, y) CHECK((x) == (y))
// #define CHECK_LT(x, y) CHECK((x) < (y))
// #define CHECK_GT(x, y) CHECK((x) > (y))
// #define CHECK_LE(x, y) CHECK((x) <= (y))
// #define CHECK_GE(x, y) CHECK((x) >= (y))
// #define CHECK_NE(x, y) CHECK((x) != (y))
// Debug checks
// #define DCHECK(x) assert(x)
// #define DCHECK_EQ(x, y) DCHECK((x) == (y))
// #define DCHECK_LT(x, y) DCHECK((x) < (y))
// #define DCHECK_GT(x, y) DCHECK((x) > (y))
// #define DCHECK_LE(x, y) DCHECK((x) <= (y))
// #define DCHECK_GE(x, y) DCHECK((x) >= (y))
// #define DCHECK_NE(x, y) DCHECK((x) != (y))
// Ports
#define ATTRIBUTE_DEPRECATED __attribute__((deprecated))
#endif // FST_LIB_LOG_H_

@ -0,0 +1,166 @@
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Google-style flag handling definitions.
#include <cstring>
#if _MSC_VER
#include <io.h>
#include <fcntl.h>
#endif
#include <fst/compat.h>
#include <fst/flags.h>
static const char *private_tmpdir = getenv("TMPDIR");
// DEFINE_int32(v, 0, "verbosity level");
// DEFINE_bool(help, false, "show usage information");
// DEFINE_bool(helpshort, false, "show brief usage information");
#ifndef _MSC_VER
DEFINE_string(tmpdir, private_tmpdir ? private_tmpdir : "/tmp",
"temporary directory");
#else
DEFINE_string(tmpdir, private_tmpdir ? private_tmpdir : getenv("TEMP"),
"temporary directory");
#endif // !_MSC_VER
using namespace std;
static string flag_usage;
static string prog_src;
// Sets prog_src to src.
static void SetProgSrc(const char *src) {
prog_src = src;
#if _MSC_VER
// This common code is invoked by all FST binaries, and only by them. Switch
// stdin and stdout into "binary" mode, so that 0x0A won't be translated into
// a 0x0D 0x0A byte pair in a pipe or a shell redirect. Other streams are
// already using ios::binary where binary files are read or written.
// Kudos to @daanzu for the suggested fix.
// https://github.com/kkm000/openfst/issues/20
// https://github.com/kkm000/openfst/pull/23
// https://github.com/kkm000/openfst/pull/32
_setmode(_fileno(stdin), O_BINARY);
_setmode(_fileno(stdout), O_BINARY);
#endif
// Remove "-main" in src filename. Flags are defined in fstx.cc but SetFlags()
// is called in fstx-main.cc, which results in a filename mismatch in
// ShowUsageRestrict() below.
static constexpr char kMainSuffix[] = "-main.cc";
const int prefix_length = prog_src.size() - strlen(kMainSuffix);
if (prefix_length > 0 && prog_src.substr(prefix_length) == kMainSuffix) {
prog_src.erase(prefix_length, strlen("-main"));
}
}
void SetFlags(const char *usage, int *argc, char ***argv,
bool remove_flags, const char *src) {
flag_usage = usage;
SetProgSrc(src);
int index = 1;
for (; index < *argc; ++index) {
string argval = (*argv)[index];
if (argval[0] != '-' || argval == "-") break;
while (argval[0] == '-') argval = argval.substr(1); // Removes initial '-'.
string arg = argval;
string val = "";
// Splits argval (arg=val) into arg and val.
auto pos = argval.find("=");
if (pos != string::npos) {
arg = argval.substr(0, pos);
val = argval.substr(pos + 1);
}
auto bool_register = FlagRegister<bool>::GetRegister();
if (bool_register->SetFlag(arg, val))
continue;
auto string_register = FlagRegister<string>::GetRegister();
if (string_register->SetFlag(arg, val))
continue;
auto int32_register = FlagRegister<int32>::GetRegister();
if (int32_register->SetFlag(arg, val))
continue;
auto int64_register = FlagRegister<int64>::GetRegister();
if (int64_register->SetFlag(arg, val))
continue;
auto double_register = FlagRegister<double>::GetRegister();
if (double_register->SetFlag(arg, val))
continue;
LOG(FATAL) << "SetFlags: Bad option: " << (*argv)[index];
}
if (remove_flags) {
for (auto i = 0; i < *argc - index; ++i) {
(*argv)[i + 1] = (*argv)[i + index];
}
*argc -= index - 1;
}
// if (FLAGS_help) {
// ShowUsage(true);
// exit(1);
// }
// if (FLAGS_helpshort) {
// ShowUsage(false);
// exit(1);
// }
}
// If flag is defined in file 'src' and 'in_src' true or is not
// defined in file 'src' and 'in_src' is false, then print usage.
static void
ShowUsageRestrict(const std::set<pair<string, string>> &usage_set,
const string &src, bool in_src, bool show_file) {
string old_file;
bool file_out = false;
bool usage_out = false;
for (const auto &pair : usage_set) {
const auto &file = pair.first;
const auto &usage = pair.second;
bool match = file == src;
if ((match && !in_src) || (!match && in_src)) continue;
if (file != old_file) {
if (show_file) {
if (file_out) cout << "\n";
cout << "Flags from: " << file << "\n";
file_out = true;
}
old_file = file;
}
cout << usage << "\n";
usage_out = true;
}
if (usage_out) cout << "\n";
}
void ShowUsage(bool long_usage) {
std::set<pair<string, string>> usage_set;
cout << flag_usage << "\n";
auto bool_register = FlagRegister<bool>::GetRegister();
bool_register->GetUsage(&usage_set);
auto string_register = FlagRegister<string>::GetRegister();
string_register->GetUsage(&usage_set);
auto int32_register = FlagRegister<int32>::GetRegister();
int32_register->GetUsage(&usage_set);
auto int64_register = FlagRegister<int64>::GetRegister();
int64_register->GetUsage(&usage_set);
auto double_register = FlagRegister<double>::GetRegister();
double_register->GetUsage(&usage_set);
if (!prog_src.empty()) {
cout << "PROGRAM FLAGS:\n\n";
ShowUsageRestrict(usage_set, prog_src, true, false);
}
if (!long_usage) return;
if (!prog_src.empty()) cout << "LIBRARY FLAGS:\n\n";
ShowUsageRestrict(usage_set, prog_src, false, true);
}

@ -2,13 +2,32 @@ cmake_minimum_required(VERSION 3.14 FATAL_ERROR)
project(speechx LANGUAGES CXX)
link_directories(${CMAKE_CURRENT_SOURCE_DIR}/third_party/openblas)
include_directories(
${CMAKE_CURRENT_SOURCE_DIR}
${CMAKE_CURRENT_SOURCE_DIR}/kaldi
)
add_subdirectory(kaldi)
add_executable(mfcc-test codelab/feat_test/feature-mfcc-test.cc)
target_link_libraries(mfcc-test kaldi-mfcc)
include_directories(
${CMAKE_CURRENT_SOURCE_DIR}
${CMAKE_CURRENT_SOURCE_DIR}/utils
)
add_subdirectory(utils)
include_directories(
${CMAKE_CURRENT_SOURCE_DIR}
${CMAKE_CURRENT_SOURCE_DIR}/frontend
)
add_subdirectory(frontend)
include_directories(
${CMAKE_CURRENT_SOURCE_DIR}
${CMAKE_CURRENT_SOURCE_DIR}/nnet
)
add_subdirectory(nnet)
include_directories(
${CMAKE_CURRENT_SOURCE_DIR}
${CMAKE_CURRENT_SOURCE_DIR}/decoder
)
add_subdirectory(decoder)

@ -16,7 +16,7 @@
#include "kaldi/base/kaldi-types.h"
#include <limits.h>
#include <limits>
typedef float BaseFloat;
typedef double double64;
@ -35,7 +35,7 @@ typedef unsigned char uint8;
typedef unsigned short uint16;
typedef unsigned int uint32;
if defined(__LP64__) && !defined(OS_MACOSX) && !defined(OS_OPENBSD)
#if defined(__LP64__) && !defined(OS_MACOSX) && !defined(OS_OPENBSD)
typedef unsigned long uint64;
#else
typedef unsigned long long uint64;
@ -43,18 +43,18 @@ typedef unsigned long long uint64;
typedef signed int char32;
const uint8 kuint8max = (( uint8) 0xFF);
const uint16 kuint16max = ((uint16) 0xFFFF);
const uint32 kuint32max = ((uint32) 0xFFFFFFFF);
const uint64 kuint64max = ((uint64) (0xFFFFFFFFFFFFFFFFLL));
const int8 kint8min = (( int8) 0x80);
const int8 kint8max = (( int8) 0x7F);
const int16 kint16min = (( int16) 0x8000);
const int16 kint16max = (( int16) 0x7FFF);
const int32 kint32min = (( int32) 0x80000000);
const int32 kint32max = (( int32) 0x7FFFFFFF);
const int64 kint64min = (( int64) (0x8000000000000000LL));
const int64 kint64max = (( int64) (0x7FFFFFFFFFFFFFFFLL));
const uint8 kuint8max = ((uint8)0xFF);
const uint16 kuint16max = ((uint16)0xFFFF);
const uint32 kuint32max = ((uint32)0xFFFFFFFF);
const uint64 kuint64max = ((uint64)(0xFFFFFFFFFFFFFFFFLL));
const int8 kint8min = ((int8)0x80);
const int8 kint8max = ((int8)0x7F);
const int16 kint16min = ((int16)0x8000);
const int16 kint16max = ((int16)0x7FFF);
const int32 kint32min = ((int32)0x80000000);
const int32 kint32max = ((int32)0x7FFFFFFF);
const int64 kint64min = ((int64)(0x8000000000000000LL));
const int64 kint64max = ((int64)(0x7FFFFFFFFFFFFFFFLL));
const BaseFloat kBaseFloatMax = std::numeric_limits<BaseFloat>::max();
const BaseFloat kBaseFloatMin = std::numeric_limits<BaseFloat>::min();

@ -0,0 +1,38 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <condition_variable>
#include <deque>
#include <fstream>
#include <iostream>
#include <istream>
#include <map>
#include <memory>
#include <mutex>
#include <ostream>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "base/basic_types.h"
#include "base/flags.h"
#include "base/log.h"
#include "base/macros.h"

@ -0,0 +1,17 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fst/flags.h"

@ -0,0 +1,17 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fst/log.h"

@ -16,8 +16,10 @@
namespace ppspeech {
#ifndef DISALLOW_COPY_AND_ASSIGN
#define DISALLOW_COPY_AND_ASSIGN(TypeName) \
TypeName(const TypeName&) = delete; \
void operator=(const TypeName&) = delete
#endif
} // namespace pp_speech

@ -0,0 +1,110 @@
// Copyright (c) 2012 Jakob Progsch, Václav Zeman
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source
// distribution.
// this code is from https://github.com/progschj/ThreadPool
#ifndef BASE_THREAD_POOL_H
#define BASE_THREAD_POOL_H
#include <condition_variable>
#include <functional>
#include <future>
#include <memory>
#include <mutex>
#include <queue>
#include <stdexcept>
#include <thread>
#include <vector>
class ThreadPool {
public:
ThreadPool(size_t);
template <class F, class... Args>
auto enqueue(F&& f, Args&&... args)
-> std::future<typename std::result_of<F(Args...)>::type>;
~ThreadPool();
private:
// need to keep track of threads so we can join them
std::vector<std::thread> workers;
// the task queue
std::queue<std::function<void()>> tasks;
// synchronization
std::mutex queue_mutex;
std::condition_variable condition;
bool stop;
};
// the constructor just launches some amount of workers
inline ThreadPool::ThreadPool(size_t threads) : stop(false) {
for (size_t i = 0; i < threads; ++i)
workers.emplace_back([this] {
for (;;) {
std::function<void()> task;
{
std::unique_lock<std::mutex> lock(this->queue_mutex);
this->condition.wait(lock, [this] {
return this->stop || !this->tasks.empty();
});
if (this->stop && this->tasks.empty()) return;
task = std::move(this->tasks.front());
this->tasks.pop();
}
task();
}
});
}
// add new work item to the pool
template <class F, class... Args>
auto ThreadPool::enqueue(F&& f, Args&&... args)
-> std::future<typename std::result_of<F(Args...)>::type> {
using return_type = typename std::result_of<F(Args...)>::type;
auto task = std::make_shared<std::packaged_task<return_type()>>(
std::bind(std::forward<F>(f), std::forward<Args>(args)...));
std::future<return_type> res = task->get_future();
{
std::unique_lock<std::mutex> lock(queue_mutex);
// don't allow enqueueing after stopping the pool
if (stop) throw std::runtime_error("enqueue on stopped ThreadPool");
tasks.emplace([task]() { (*task)(); });
}
condition.notify_one();
return res;
}
// the destructor joins all threads
inline ThreadPool::~ThreadPool() {
{
std::unique_lock<std::mutex> lock(queue_mutex);
stop = true;
}
condition.notify_all();
for (std::thread& worker : workers) worker.join();
}
#endif

@ -1,4 +0,0 @@
# codelab
This directory is here for testing some funcitons temporaril.

@ -1,686 +0,0 @@
// feat/feature-mfcc-test.cc
// Copyright 2009-2011 Karel Vesely; Petr Motlicek
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include "feat/feature-mfcc.h"
#include "base/kaldi-math.h"
#include "matrix/kaldi-matrix-inl.h"
#include "feat/wave-reader.h"
using namespace kaldi;
static void UnitTestReadWave() {
std::cout << "=== UnitTestReadWave() ===\n";
Vector<BaseFloat> v, v2;
std::cout << "<<<=== Reading waveform\n";
{
std::ifstream is("test_data/test.wav", std::ios_base::binary);
WaveData wave;
wave.Read(is);
const Matrix<BaseFloat> data(wave.Data());
KALDI_ASSERT(data.NumRows() == 1);
v.Resize(data.NumCols());
v.CopyFromVec(data.Row(0));
}
std::cout << "<<<=== Reading Vector<BaseFloat> waveform, prepared by matlab\n";
std::ifstream input(
"test_data/test_matlab.ascii"
);
KALDI_ASSERT(input.good());
v2.Read(input, false);
input.close();
std::cout << "<<<=== Comparing freshly read waveform to 'libsndfile' waveform\n";
KALDI_ASSERT(v.Dim() == v2.Dim());
for (int32 i = 0; i < v.Dim(); i++) {
KALDI_ASSERT(v(i) == v2(i));
}
std::cout << "<<<=== Comparing done\n";
// std::cout << "== The Waveform Samples == \n";
// std::cout << v;
std::cout << "Test passed :)\n\n";
}
/**
*/
static void UnitTestSimple() {
std::cout << "=== UnitTestSimple() ===\n";
Vector<BaseFloat> v(100000);
Matrix<BaseFloat> m;
// init with noise
for (int32 i = 0; i < v.Dim(); i++) {
v(i) = (abs( i * 433024253 ) % 65535) - (65535 / 2);
}
std::cout << "<<<=== Just make sure it runs... Nothing is compared\n";
// the parametrization object
MfccOptions op;
// trying to have same opts as baseline.
op.frame_opts.dither = 0.0;
op.frame_opts.preemph_coeff = 0.0;
op.frame_opts.window_type = "rectangular";
op.frame_opts.remove_dc_offset = false;
op.frame_opts.round_to_power_of_two = true;
op.mel_opts.low_freq = 0.0;
op.mel_opts.htk_mode = true;
op.htk_compat = true;
Mfcc mfcc(op);
// use default parameters
// compute mfccs.
mfcc.Compute(v, 1.0, &m);
// possibly dump
// std::cout << "== Output features == \n" << m;
std::cout << "Test passed :)\n\n";
}
static void UnitTestHTKCompare1() {
std::cout << "=== UnitTestHTKCompare1() ===\n";
std::ifstream is("test_data/test.wav", std::ios_base::binary);
WaveData wave;
wave.Read(is);
KALDI_ASSERT(wave.Data().NumRows() == 1);
SubVector<BaseFloat> waveform(wave.Data(), 0);
// read the HTK features
Matrix<BaseFloat> htk_features;
{
std::ifstream is("test_data/test.wav.fea_htk.1",
std::ios::in | std::ios_base::binary);
bool ans = ReadHtk(is, &htk_features, 0);
KALDI_ASSERT(ans);
}
// use mfcc with default configuration...
MfccOptions op;
op.frame_opts.dither = 0.0;
op.frame_opts.preemph_coeff = 0.0;
op.frame_opts.window_type = "hamming";
op.frame_opts.remove_dc_offset = false;
op.frame_opts.round_to_power_of_two = true;
op.mel_opts.low_freq = 0.0;
op.mel_opts.htk_mode = true;
op.htk_compat = true;
op.use_energy = false; // C0 not energy.
Mfcc mfcc(op);
// calculate kaldi features
Matrix<BaseFloat> kaldi_raw_features;
mfcc.Compute(waveform, 1.0, &kaldi_raw_features);
DeltaFeaturesOptions delta_opts;
Matrix<BaseFloat> kaldi_features;
ComputeDeltas(delta_opts,
kaldi_raw_features,
&kaldi_features);
// compare the results
bool passed = true;
int32 i_old = -1;
KALDI_ASSERT(kaldi_features.NumRows() == htk_features.NumRows());
KALDI_ASSERT(kaldi_features.NumCols() == htk_features.NumCols());
// Ignore ends-- we make slightly different choices than
// HTK about how to treat the deltas at the ends.
for (int32 i = 10; i+10 < kaldi_features.NumRows(); i++) {
for (int32 j = 0; j < kaldi_features.NumCols(); j++) {
BaseFloat a = kaldi_features(i, j), b = htk_features(i, j);
if ((std::abs(b - a)) > 1.0) { //<< TOLERANCE TO DIFFERENCES!!!!!
// print the non-matching data only once per-line
if (i_old != i) {
std::cout << "\n\n\n[HTK-row: " << i << "] " << htk_features.Row(i) << "\n";
std::cout << "[Kaldi-row: " << i << "] " << kaldi_features.Row(i) << "\n\n\n";
i_old = i;
}
// print indices of non-matching cells
std::cout << "[" << i << ", " << j << "]";
passed = false;
}}}
if (!passed) KALDI_ERR << "Test failed";
// write the htk features for later inspection
HtkHeader header = {
kaldi_features.NumRows(),
100000, // 10ms
static_cast<int16>(sizeof(float)*kaldi_features.NumCols()),
021406 // MFCC_D_A_0
};
{
std::ofstream os("tmp.test.wav.fea_kaldi.1",
std::ios::out|std::ios::binary);
WriteHtk(os, kaldi_features, header);
}
std::cout << "Test passed :)\n\n";
unlink("tmp.test.wav.fea_kaldi.1");
}
static void UnitTestHTKCompare2() {
std::cout << "=== UnitTestHTKCompare2() ===\n";
std::ifstream is("test_data/test.wav", std::ios_base::binary);
WaveData wave;
wave.Read(is);
KALDI_ASSERT(wave.Data().NumRows() == 1);
SubVector<BaseFloat> waveform(wave.Data(), 0);
// read the HTK features
Matrix<BaseFloat> htk_features;
{
std::ifstream is("test_data/test.wav.fea_htk.2",
std::ios::in | std::ios_base::binary);
bool ans = ReadHtk(is, &htk_features, 0);
KALDI_ASSERT(ans);
}
// use mfcc with default configuration...
MfccOptions op;
op.frame_opts.dither = 0.0;
op.frame_opts.preemph_coeff = 0.0;
op.frame_opts.window_type = "hamming";
op.frame_opts.remove_dc_offset = false;
op.frame_opts.round_to_power_of_two = true;
op.mel_opts.low_freq = 0.0;
op.mel_opts.htk_mode = true;
op.htk_compat = true;
op.use_energy = true; // Use energy.
Mfcc mfcc(op);
// calculate kaldi features
Matrix<BaseFloat> kaldi_raw_features;
mfcc.Compute(waveform, 1.0, &kaldi_raw_features);
DeltaFeaturesOptions delta_opts;
Matrix<BaseFloat> kaldi_features;
ComputeDeltas(delta_opts,
kaldi_raw_features,
&kaldi_features);
// compare the results
bool passed = true;
int32 i_old = -1;
KALDI_ASSERT(kaldi_features.NumRows() == htk_features.NumRows());
KALDI_ASSERT(kaldi_features.NumCols() == htk_features.NumCols());
// Ignore ends-- we make slightly different choices than
// HTK about how to treat the deltas at the ends.
for (int32 i = 10; i+10 < kaldi_features.NumRows(); i++) {
for (int32 j = 0; j < kaldi_features.NumCols(); j++) {
BaseFloat a = kaldi_features(i, j), b = htk_features(i, j);
if ((std::abs(b - a)) > 1.0) { //<< TOLERANCE TO DIFFERENCES!!!!!
// print the non-matching data only once per-line
if (i_old != i) {
std::cout << "\n\n\n[HTK-row: " << i << "] " << htk_features.Row(i) << "\n";
std::cout << "[Kaldi-row: " << i << "] " << kaldi_features.Row(i) << "\n\n\n";
i_old = i;
}
// print indices of non-matching cells
std::cout << "[" << i << ", " << j << "]";
passed = false;
}}}
if (!passed) KALDI_ERR << "Test failed";
// write the htk features for later inspection
HtkHeader header = {
kaldi_features.NumRows(),
100000, // 10ms
static_cast<int16>(sizeof(float)*kaldi_features.NumCols()),
021406 // MFCC_D_A_0
};
{
std::ofstream os("tmp.test.wav.fea_kaldi.2",
std::ios::out|std::ios::binary);
WriteHtk(os, kaldi_features, header);
}
std::cout << "Test passed :)\n\n";
unlink("tmp.test.wav.fea_kaldi.2");
}
static void UnitTestHTKCompare3() {
std::cout << "=== UnitTestHTKCompare3() ===\n";
std::ifstream is("test_data/test.wav", std::ios_base::binary);
WaveData wave;
wave.Read(is);
KALDI_ASSERT(wave.Data().NumRows() == 1);
SubVector<BaseFloat> waveform(wave.Data(), 0);
// read the HTK features
Matrix<BaseFloat> htk_features;
{
std::ifstream is("test_data/test.wav.fea_htk.3",
std::ios::in | std::ios_base::binary);
bool ans = ReadHtk(is, &htk_features, 0);
KALDI_ASSERT(ans);
}
// use mfcc with default configuration...
MfccOptions op;
op.frame_opts.dither = 0.0;
op.frame_opts.preemph_coeff = 0.0;
op.frame_opts.window_type = "hamming";
op.frame_opts.remove_dc_offset = false;
op.frame_opts.round_to_power_of_two = true;
op.htk_compat = true;
op.use_energy = true; // Use energy.
op.mel_opts.low_freq = 20.0;
//op.mel_opts.debug_mel = true;
op.mel_opts.htk_mode = true;
Mfcc mfcc(op);
// calculate kaldi features
Matrix<BaseFloat> kaldi_raw_features;
mfcc.Compute(waveform, 1.0, &kaldi_raw_features);
DeltaFeaturesOptions delta_opts;
Matrix<BaseFloat> kaldi_features;
ComputeDeltas(delta_opts,
kaldi_raw_features,
&kaldi_features);
// compare the results
bool passed = true;
int32 i_old = -1;
KALDI_ASSERT(kaldi_features.NumRows() == htk_features.NumRows());
KALDI_ASSERT(kaldi_features.NumCols() == htk_features.NumCols());
// Ignore ends-- we make slightly different choices than
// HTK about how to treat the deltas at the ends.
for (int32 i = 10; i+10 < kaldi_features.NumRows(); i++) {
for (int32 j = 0; j < kaldi_features.NumCols(); j++) {
BaseFloat a = kaldi_features(i, j), b = htk_features(i, j);
if ((std::abs(b - a)) > 1.0) { //<< TOLERANCE TO DIFFERENCES!!!!!
// print the non-matching data only once per-line
if (static_cast<int32>(i_old) != i) {
std::cout << "\n\n\n[HTK-row: " << i << "] " << htk_features.Row(i) << "\n";
std::cout << "[Kaldi-row: " << i << "] " << kaldi_features.Row(i) << "\n\n\n";
i_old = i;
}
// print indices of non-matching cells
std::cout << "[" << i << ", " << j << "]";
passed = false;
}}}
if (!passed) KALDI_ERR << "Test failed";
// write the htk features for later inspection
HtkHeader header = {
kaldi_features.NumRows(),
100000, // 10ms
static_cast<int16>(sizeof(float)*kaldi_features.NumCols()),
021406 // MFCC_D_A_0
};
{
std::ofstream os("tmp.test.wav.fea_kaldi.3",
std::ios::out|std::ios::binary);
WriteHtk(os, kaldi_features, header);
}
std::cout << "Test passed :)\n\n";
unlink("tmp.test.wav.fea_kaldi.3");
}
static void UnitTestHTKCompare4() {
std::cout << "=== UnitTestHTKCompare4() ===\n";
std::ifstream is("test_data/test.wav", std::ios_base::binary);
WaveData wave;
wave.Read(is);
KALDI_ASSERT(wave.Data().NumRows() == 1);
SubVector<BaseFloat> waveform(wave.Data(), 0);
// read the HTK features
Matrix<BaseFloat> htk_features;
{
std::ifstream is("test_data/test.wav.fea_htk.4",
std::ios::in | std::ios_base::binary);
bool ans = ReadHtk(is, &htk_features, 0);
KALDI_ASSERT(ans);
}
// use mfcc with default configuration...
MfccOptions op;
op.frame_opts.dither = 0.0;
op.frame_opts.window_type = "hamming";
op.frame_opts.remove_dc_offset = false;
op.frame_opts.round_to_power_of_two = true;
op.mel_opts.low_freq = 0.0;
op.htk_compat = true;
op.use_energy = true; // Use energy.
op.mel_opts.htk_mode = true;
Mfcc mfcc(op);
// calculate kaldi features
Matrix<BaseFloat> kaldi_raw_features;
mfcc.Compute(waveform, 1.0, &kaldi_raw_features);
DeltaFeaturesOptions delta_opts;
Matrix<BaseFloat> kaldi_features;
ComputeDeltas(delta_opts,
kaldi_raw_features,
&kaldi_features);
// compare the results
bool passed = true;
int32 i_old = -1;
KALDI_ASSERT(kaldi_features.NumRows() == htk_features.NumRows());
KALDI_ASSERT(kaldi_features.NumCols() == htk_features.NumCols());
// Ignore ends-- we make slightly different choices than
// HTK about how to treat the deltas at the ends.
for (int32 i = 10; i+10 < kaldi_features.NumRows(); i++) {
for (int32 j = 0; j < kaldi_features.NumCols(); j++) {
BaseFloat a = kaldi_features(i, j), b = htk_features(i, j);
if ((std::abs(b - a)) > 1.0) { //<< TOLERANCE TO DIFFERENCES!!!!!
// print the non-matching data only once per-line
if (static_cast<int32>(i_old) != i) {
std::cout << "\n\n\n[HTK-row: " << i << "] " << htk_features.Row(i) << "\n";
std::cout << "[Kaldi-row: " << i << "] " << kaldi_features.Row(i) << "\n\n\n";
i_old = i;
}
// print indices of non-matching cells
std::cout << "[" << i << ", " << j << "]";
passed = false;
}}}
if (!passed) KALDI_ERR << "Test failed";
// write the htk features for later inspection
HtkHeader header = {
kaldi_features.NumRows(),
100000, // 10ms
static_cast<int16>(sizeof(float)*kaldi_features.NumCols()),
021406 // MFCC_D_A_0
};
{
std::ofstream os("tmp.test.wav.fea_kaldi.4",
std::ios::out|std::ios::binary);
WriteHtk(os, kaldi_features, header);
}
std::cout << "Test passed :)\n\n";
unlink("tmp.test.wav.fea_kaldi.4");
}
static void UnitTestHTKCompare5() {
std::cout << "=== UnitTestHTKCompare5() ===\n";
std::ifstream is("test_data/test.wav", std::ios_base::binary);
WaveData wave;
wave.Read(is);
KALDI_ASSERT(wave.Data().NumRows() == 1);
SubVector<BaseFloat> waveform(wave.Data(), 0);
// read the HTK features
Matrix<BaseFloat> htk_features;
{
std::ifstream is("test_data/test.wav.fea_htk.5",
std::ios::in | std::ios_base::binary);
bool ans = ReadHtk(is, &htk_features, 0);
KALDI_ASSERT(ans);
}
// use mfcc with default configuration...
MfccOptions op;
op.frame_opts.dither = 0.0;
op.frame_opts.window_type = "hamming";
op.frame_opts.remove_dc_offset = false;
op.frame_opts.round_to_power_of_two = true;
op.htk_compat = true;
op.use_energy = true; // Use energy.
op.mel_opts.low_freq = 0.0;
op.mel_opts.vtln_low = 100.0;
op.mel_opts.vtln_high = 7500.0;
op.mel_opts.htk_mode = true;
BaseFloat vtln_warp = 1.1; // our approach identical to htk for warp factor >1,
// differs slightly for higher mel bins if warp_factor <0.9
Mfcc mfcc(op);
// calculate kaldi features
Matrix<BaseFloat> kaldi_raw_features;
mfcc.Compute(waveform, vtln_warp, &kaldi_raw_features);
DeltaFeaturesOptions delta_opts;
Matrix<BaseFloat> kaldi_features;
ComputeDeltas(delta_opts,
kaldi_raw_features,
&kaldi_features);
// compare the results
bool passed = true;
int32 i_old = -1;
KALDI_ASSERT(kaldi_features.NumRows() == htk_features.NumRows());
KALDI_ASSERT(kaldi_features.NumCols() == htk_features.NumCols());
// Ignore ends-- we make slightly different choices than
// HTK about how to treat the deltas at the ends.
for (int32 i = 10; i+10 < kaldi_features.NumRows(); i++) {
for (int32 j = 0; j < kaldi_features.NumCols(); j++) {
BaseFloat a = kaldi_features(i, j), b = htk_features(i, j);
if ((std::abs(b - a)) > 1.0) { //<< TOLERANCE TO DIFFERENCES!!!!!
// print the non-matching data only once per-line
if (static_cast<int32>(i_old) != i) {
std::cout << "\n\n\n[HTK-row: " << i << "] " << htk_features.Row(i) << "\n";
std::cout << "[Kaldi-row: " << i << "] " << kaldi_features.Row(i) << "\n\n\n";
i_old = i;
}
// print indices of non-matching cells
std::cout << "[" << i << ", " << j << "]";
passed = false;
}}}
if (!passed) KALDI_ERR << "Test failed";
// write the htk features for later inspection
HtkHeader header = {
kaldi_features.NumRows(),
100000, // 10ms
static_cast<int16>(sizeof(float)*kaldi_features.NumCols()),
021406 // MFCC_D_A_0
};
{
std::ofstream os("tmp.test.wav.fea_kaldi.5",
std::ios::out|std::ios::binary);
WriteHtk(os, kaldi_features, header);
}
std::cout << "Test passed :)\n\n";
unlink("tmp.test.wav.fea_kaldi.5");
}
static void UnitTestHTKCompare6() {
std::cout << "=== UnitTestHTKCompare6() ===\n";
std::ifstream is("test_data/test.wav", std::ios_base::binary);
WaveData wave;
wave.Read(is);
KALDI_ASSERT(wave.Data().NumRows() == 1);
SubVector<BaseFloat> waveform(wave.Data(), 0);
// read the HTK features
Matrix<BaseFloat> htk_features;
{
std::ifstream is("test_data/test.wav.fea_htk.6",
std::ios::in | std::ios_base::binary);
bool ans = ReadHtk(is, &htk_features, 0);
KALDI_ASSERT(ans);
}
// use mfcc with default configuration...
MfccOptions op;
op.frame_opts.dither = 0.0;
op.frame_opts.preemph_coeff = 0.97;
op.frame_opts.window_type = "hamming";
op.frame_opts.remove_dc_offset = false;
op.frame_opts.round_to_power_of_two = true;
op.mel_opts.num_bins = 24;
op.mel_opts.low_freq = 125.0;
op.mel_opts.high_freq = 7800.0;
op.htk_compat = true;
op.use_energy = false; // C0 not energy.
Mfcc mfcc(op);
// calculate kaldi features
Matrix<BaseFloat> kaldi_raw_features;
mfcc.Compute(waveform, 1.0, &kaldi_raw_features);
DeltaFeaturesOptions delta_opts;
Matrix<BaseFloat> kaldi_features;
ComputeDeltas(delta_opts,
kaldi_raw_features,
&kaldi_features);
// compare the results
bool passed = true;
int32 i_old = -1;
KALDI_ASSERT(kaldi_features.NumRows() == htk_features.NumRows());
KALDI_ASSERT(kaldi_features.NumCols() == htk_features.NumCols());
// Ignore ends-- we make slightly different choices than
// HTK about how to treat the deltas at the ends.
for (int32 i = 10; i+10 < kaldi_features.NumRows(); i++) {
for (int32 j = 0; j < kaldi_features.NumCols(); j++) {
BaseFloat a = kaldi_features(i, j), b = htk_features(i, j);
if ((std::abs(b - a)) > 1.0) { //<< TOLERANCE TO DIFFERENCES!!!!!
// print the non-matching data only once per-line
if (static_cast<int32>(i_old) != i) {
std::cout << "\n\n\n[HTK-row: " << i << "] " << htk_features.Row(i) << "\n";
std::cout << "[Kaldi-row: " << i << "] " << kaldi_features.Row(i) << "\n\n\n";
i_old = i;
}
// print indices of non-matching cells
std::cout << "[" << i << ", " << j << "]";
passed = false;
}}}
if (!passed) KALDI_ERR << "Test failed";
// write the htk features for later inspection
HtkHeader header = {
kaldi_features.NumRows(),
100000, // 10ms
static_cast<int16>(sizeof(float)*kaldi_features.NumCols()),
021406 // MFCC_D_A_0
};
{
std::ofstream os("tmp.test.wav.fea_kaldi.6",
std::ios::out|std::ios::binary);
WriteHtk(os, kaldi_features, header);
}
std::cout << "Test passed :)\n\n";
unlink("tmp.test.wav.fea_kaldi.6");
}
void UnitTestVtln() {
// Test the function VtlnWarpFreq.
BaseFloat low_freq = 10, high_freq = 7800,
vtln_low_cutoff = 20, vtln_high_cutoff = 7400;
for (size_t i = 0; i < 100; i++) {
BaseFloat freq = 5000, warp_factor = 0.9 + RandUniform() * 0.2;
AssertEqual(MelBanks::VtlnWarpFreq(vtln_low_cutoff, vtln_high_cutoff,
low_freq, high_freq, warp_factor,
freq),
freq / warp_factor);
AssertEqual(MelBanks::VtlnWarpFreq(vtln_low_cutoff, vtln_high_cutoff,
low_freq, high_freq, warp_factor,
low_freq),
low_freq);
AssertEqual(MelBanks::VtlnWarpFreq(vtln_low_cutoff, vtln_high_cutoff,
low_freq, high_freq, warp_factor,
high_freq),
high_freq);
BaseFloat freq2 = low_freq + (high_freq-low_freq) * RandUniform(),
freq3 = freq2 + (high_freq-freq2) * RandUniform(); // freq3>=freq2
BaseFloat w2 = MelBanks::VtlnWarpFreq(vtln_low_cutoff, vtln_high_cutoff,
low_freq, high_freq, warp_factor,
freq2);
BaseFloat w3 = MelBanks::VtlnWarpFreq(vtln_low_cutoff, vtln_high_cutoff,
low_freq, high_freq, warp_factor,
freq3);
KALDI_ASSERT(w3 >= w2); // increasing function.
BaseFloat w3dash = MelBanks::VtlnWarpFreq(vtln_low_cutoff, vtln_high_cutoff,
low_freq, high_freq, 1.0,
freq3);
AssertEqual(w3dash, freq3);
}
}
static void UnitTestFeat() {
UnitTestVtln();
UnitTestReadWave();
UnitTestSimple();
UnitTestHTKCompare1();
UnitTestHTKCompare2();
// commenting out this one as it doesn't compare right now I normalized
// the way the FFT bins are treated (removed offset of 0.5)... this seems
// to relate to the way frequency zero behaves.
UnitTestHTKCompare3();
UnitTestHTKCompare4();
UnitTestHTKCompare5();
UnitTestHTKCompare6();
std::cout << "Tests succeeded.\n";
}
int main() {
try {
for (int i = 0; i < 5; i++)
UnitTestFeat();
std::cout << "Tests succeeded.\n";
return 0;
} catch (const std::exception &e) {
std::cerr << e.what();
return 1;
}
}

@ -1,2 +1,10 @@
aux_source_directory(. DIR_LIB_SRCS)
add_library(decoder STATIC ${DIR_LIB_SRCS})
project(decoder)
include_directories(${CMAKE_CURRENT_SOURCE_DIR/ctc_decoders})
add_library(decoder STATIC
ctc_beam_search_decoder.cc
ctc_decoders/decoder_utils.cpp
ctc_decoders/path_trie.cpp
ctc_decoders/scorer.cpp
)
target_link_libraries(decoder PUBLIC kenlm utils fst)

@ -0,0 +1,21 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "base/basic_types.h"
struct DecoderResult {
BaseFloat acoustic_score;
std::vector<int32> words_idx;
std::vector<pair<int32, int32>> time_stamp;
};

@ -0,0 +1,314 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "decoder/ctc_beam_search_decoder.h"
#include "base/basic_types.h"
#include "decoder/ctc_decoders/decoder_utils.h"
#include "utils/file_utils.h"
namespace ppspeech {
using std::vector;
using FSTMATCH = fst::SortedMatcher<fst::StdVectorFst>;
CTCBeamSearch::CTCBeamSearch(const CTCBeamSearchOptions& opts)
: opts_(opts),
init_ext_scorer_(nullptr),
blank_id_(-1),
space_id_(-1),
num_frame_decoded_(0),
root_(nullptr) {
LOG(INFO) << "dict path: " << opts_.dict_file;
if (!ReadFileToVector(opts_.dict_file, &vocabulary_)) {
LOG(INFO) << "load the dict failed";
}
LOG(INFO) << "read the vocabulary success, dict size: "
<< vocabulary_.size();
LOG(INFO) << "language model path: " << opts_.lm_path;
init_ext_scorer_ = std::make_shared<Scorer>(
opts_.alpha, opts_.beta, opts_.lm_path, vocabulary_);
blank_id_ = 0;
auto it = std::find(vocabulary_.begin(), vocabulary_.end(), " ");
space_id_ = it - vocabulary_.begin();
// if no space in vocabulary
if ((size_t)space_id_ >= vocabulary_.size()) {
space_id_ = -2;
}
}
void CTCBeamSearch::Reset() {
// num_frame_decoded_ = 0;
// ResetPrefixes();
InitDecoder();
}
void CTCBeamSearch::InitDecoder() {
num_frame_decoded_ = 0;
// ResetPrefixes();
prefixes_.clear();
root_ = std::make_shared<PathTrie>();
root_->score = root_->log_prob_b_prev = 0.0;
prefixes_.push_back(root_.get());
if (init_ext_scorer_ != nullptr &&
!init_ext_scorer_->is_character_based()) {
auto fst_dict =
static_cast<fst::StdVectorFst*>(init_ext_scorer_->dictionary);
fst::StdVectorFst* dict_ptr = fst_dict->Copy(true);
root_->set_dictionary(dict_ptr);
auto matcher = std::make_shared<FSTMATCH>(*dict_ptr, fst::MATCH_INPUT);
root_->set_matcher(matcher);
}
}
void CTCBeamSearch::Decode(
std::shared_ptr<kaldi::DecodableInterface> decodable) {
return;
}
int32 CTCBeamSearch::NumFrameDecoded() { return num_frame_decoded_ + 1; }
// todo rename, refactor
void CTCBeamSearch::AdvanceDecode(
const std::shared_ptr<kaldi::DecodableInterface>& decodable) {
while (1) {
vector<vector<BaseFloat>> likelihood;
vector<BaseFloat> frame_prob;
bool flag =
decodable->FrameLogLikelihood(num_frame_decoded_, &frame_prob);
if (flag == false) break;
likelihood.push_back(frame_prob);
AdvanceDecoding(likelihood);
}
}
void CTCBeamSearch::ResetPrefixes() {
for (size_t i = 0; i < prefixes_.size(); i++) {
if (prefixes_[i] != nullptr) {
delete prefixes_[i];
prefixes_[i] = nullptr;
}
}
prefixes_.clear();
}
int CTCBeamSearch::DecodeLikelihoods(const vector<vector<float>>& probs,
vector<string>& nbest_words) {
kaldi::Timer timer;
timer.Reset();
AdvanceDecoding(probs);
LOG(INFO) << "ctc decoding elapsed time(s) "
<< static_cast<float>(timer.Elapsed()) / 1000.0f;
return 0;
}
vector<std::pair<double, string>> CTCBeamSearch::GetNBestPath() {
return get_beam_search_result(prefixes_, vocabulary_, opts_.beam_size);
}
string CTCBeamSearch::GetBestPath() {
std::vector<std::pair<double, std::string>> result;
result = get_beam_search_result(prefixes_, vocabulary_, opts_.beam_size);
return result[0].second;
}
string CTCBeamSearch::GetFinalBestPath() {
CalculateApproxScore();
LMRescore();
return GetBestPath();
}
void CTCBeamSearch::AdvanceDecoding(const vector<vector<BaseFloat>>& probs) {
size_t num_time_steps = probs.size();
size_t beam_size = opts_.beam_size;
double cutoff_prob = opts_.cutoff_prob;
size_t cutoff_top_n = opts_.cutoff_top_n;
vector<vector<double>> probs_seq(probs.size(),
vector<double>(probs[0].size(), 0));
int row = probs.size();
int col = probs[0].size();
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
probs_seq[i][j] = static_cast<double>(probs[i][j]);
}
}
for (size_t time_step = 0; time_step < num_time_steps; time_step++) {
const auto& prob = probs_seq[time_step];
float min_cutoff = -NUM_FLT_INF;
bool full_beam = false;
if (init_ext_scorer_ != nullptr) {
size_t num_prefixes_ = std::min(prefixes_.size(), beam_size);
std::sort(prefixes_.begin(),
prefixes_.begin() + num_prefixes_,
prefix_compare);
if (num_prefixes_ == 0) {
continue;
}
min_cutoff = prefixes_[num_prefixes_ - 1]->score +
std::log(prob[blank_id_]) -
std::max(0.0, init_ext_scorer_->beta);
full_beam = (num_prefixes_ == beam_size);
}
vector<std::pair<size_t, float>> log_prob_idx =
get_pruned_log_probs(prob, cutoff_prob, cutoff_top_n);
// loop over chars
size_t log_prob_idx_len = log_prob_idx.size();
for (size_t index = 0; index < log_prob_idx_len; index++) {
SearchOneChar(full_beam, log_prob_idx[index], min_cutoff);
}
prefixes_.clear();
// update log probs
root_->iterate_to_vec(prefixes_);
// only preserve top beam_size prefixes_
if (prefixes_.size() >= beam_size) {
std::nth_element(prefixes_.begin(),
prefixes_.begin() + beam_size,
prefixes_.end(),
prefix_compare);
for (size_t i = beam_size; i < prefixes_.size(); ++i) {
prefixes_[i]->remove();
}
} // if
num_frame_decoded_++;
} // for probs_seq
}
int32 CTCBeamSearch::SearchOneChar(
const bool& full_beam,
const std::pair<size_t, BaseFloat>& log_prob_idx,
const BaseFloat& min_cutoff) {
size_t beam_size = opts_.beam_size;
const auto& c = log_prob_idx.first;
const auto& log_prob_c = log_prob_idx.second;
size_t prefixes_len = std::min(prefixes_.size(), beam_size);
for (size_t i = 0; i < prefixes_len; ++i) {
auto prefix = prefixes_[i];
if (full_beam && log_prob_c + prefix->score < min_cutoff) {
break;
}
if (c == blank_id_) {
prefix->log_prob_b_cur =
log_sum_exp(prefix->log_prob_b_cur, log_prob_c + prefix->score);
continue;
}
// repeated character
if (c == prefix->character) {
// p_{nb}(l;x_{1:t}) = p(c;x_{t})p(l;x_{1:t-1})
prefix->log_prob_nb_cur = log_sum_exp(
prefix->log_prob_nb_cur, log_prob_c + prefix->log_prob_nb_prev);
}
// get new prefix
auto prefix_new = prefix->get_path_trie(c);
if (prefix_new != nullptr) {
float log_p = -NUM_FLT_INF;
if (c == prefix->character &&
prefix->log_prob_b_prev > -NUM_FLT_INF) {
// p_{nb}(l^{+};x_{1:t}) = p(c;x_{t})p_{b}(l;x_{1:t-1})
log_p = log_prob_c + prefix->log_prob_b_prev;
} else if (c != prefix->character) {
// p_{nb}(l^{+};x_{1:t}) = p(c;x_{t}) p(l;x_{1:t-1})
log_p = log_prob_c + prefix->score;
}
// language model scoring
if (init_ext_scorer_ != nullptr &&
(c == space_id_ || init_ext_scorer_->is_character_based())) {
PathTrie* prefix_to_score = nullptr;
// skip scoring the space
if (init_ext_scorer_->is_character_based()) {
prefix_to_score = prefix_new;
} else {
prefix_to_score = prefix;
}
float score = 0.0;
vector<string> ngram;
ngram = init_ext_scorer_->make_ngram(prefix_to_score);
// lm score: p_{lm}(W)^{\alpha} + \beta
score = init_ext_scorer_->get_log_cond_prob(ngram) *
init_ext_scorer_->alpha;
log_p += score;
log_p += init_ext_scorer_->beta;
}
// p_{nb}(l;x_{1:t})
prefix_new->log_prob_nb_cur =
log_sum_exp(prefix_new->log_prob_nb_cur, log_p);
}
} // end of loop over prefix
return 0;
}
void CTCBeamSearch::CalculateApproxScore() {
size_t beam_size = opts_.beam_size;
size_t num_prefixes_ = std::min(prefixes_.size(), beam_size);
std::sort(
prefixes_.begin(), prefixes_.begin() + num_prefixes_, prefix_compare);
// compute aproximate ctc score as the return score, without affecting the
// return order of decoding result. To delete when decoder gets stable.
for (size_t i = 0; i < beam_size && i < prefixes_.size(); ++i) {
double approx_ctc = prefixes_[i]->score;
if (init_ext_scorer_ != nullptr) {
vector<int> output;
prefixes_[i]->get_path_vec(output);
auto prefix_length = output.size();
auto words = init_ext_scorer_->split_labels(output);
// remove word insert
approx_ctc = approx_ctc - prefix_length * init_ext_scorer_->beta;
// remove language model weight:
approx_ctc -= (init_ext_scorer_->get_sent_log_prob(words)) *
init_ext_scorer_->alpha;
}
prefixes_[i]->approx_ctc = approx_ctc;
}
}
void CTCBeamSearch::LMRescore() {
size_t beam_size = opts_.beam_size;
if (init_ext_scorer_ != nullptr &&
!init_ext_scorer_->is_character_based()) {
for (size_t i = 0; i < beam_size && i < prefixes_.size(); ++i) {
auto prefix = prefixes_[i];
if (!prefix->is_empty() && prefix->character != space_id_) {
float score = 0.0;
vector<string> ngram = init_ext_scorer_->make_ngram(prefix);
score = init_ext_scorer_->get_log_cond_prob(ngram) *
init_ext_scorer_->alpha;
score += init_ext_scorer_->beta;
prefix->score += score;
}
}
}
}
} // namespace ppspeech

@ -0,0 +1,94 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "base/common.h"
#include "decoder/ctc_decoders/path_trie.h"
#include "decoder/ctc_decoders/scorer.h"
#include "nnet/decodable-itf.h"
#include "util/parse-options.h"
#pragma once
namespace ppspeech {
struct CTCBeamSearchOptions {
std::string dict_file;
std::string lm_path;
BaseFloat alpha;
BaseFloat beta;
BaseFloat cutoff_prob;
int beam_size;
int cutoff_top_n;
int num_proc_bsearch;
CTCBeamSearchOptions()
: dict_file("vocab.txt"),
lm_path("lm.klm"),
alpha(1.9f),
beta(5.0),
beam_size(300),
cutoff_prob(0.99f),
cutoff_top_n(40),
num_proc_bsearch(0) {}
void Register(kaldi::OptionsItf* opts) {
opts->Register("dict", &dict_file, "dict file ");
opts->Register("lm-path", &lm_path, "language model file");
opts->Register("alpha", &alpha, "alpha");
opts->Register("beta", &beta, "beta");
opts->Register(
"beam-size", &beam_size, "beam size for beam search method");
opts->Register("cutoff-prob", &cutoff_prob, "cutoff probs");
opts->Register("cutoff-top-n", &cutoff_top_n, "cutoff top n");
opts->Register(
"num-proc-bsearch", &num_proc_bsearch, "num proc bsearch");
}
};
class CTCBeamSearch {
public:
explicit CTCBeamSearch(const CTCBeamSearchOptions& opts);
~CTCBeamSearch() {}
void InitDecoder();
void Decode(std::shared_ptr<kaldi::DecodableInterface> decodable);
std::string GetBestPath();
std::vector<std::pair<double, std::string>> GetNBestPath();
std::string GetFinalBestPath();
int NumFrameDecoded();
int DecodeLikelihoods(const std::vector<std::vector<BaseFloat>>& probs,
std::vector<std::string>& nbest_words);
void AdvanceDecode(
const std::shared_ptr<kaldi::DecodableInterface>& decodable);
void Reset();
private:
void ResetPrefixes();
int32 SearchOneChar(const bool& full_beam,
const std::pair<size_t, BaseFloat>& log_prob_idx,
const BaseFloat& min_cutoff);
void CalculateApproxScore();
void LMRescore();
void AdvanceDecoding(const std::vector<std::vector<BaseFloat>>& probs);
CTCBeamSearchOptions opts_;
std::shared_ptr<Scorer> init_ext_scorer_; // todo separate later
std::vector<std::string> vocabulary_; // todo remove later
size_t blank_id_;
int space_id_;
std::shared_ptr<PathTrie> root_;
std::vector<PathTrie*> prefixes_;
int num_frame_decoded_;
DISALLOW_COPY_AND_ASSIGN(CTCBeamSearch);
};
} // namespace basr

@ -0,0 +1 @@
../../../third_party/ctc_decoders

@ -0,0 +1,10 @@
project(frontend)
add_library(frontend STATIC
normalizer.cc
linear_spectrogram.cc
raw_audio.cc
feature_cache.cc
)
target_link_libraries(frontend PUBLIC kaldi-matrix)

@ -0,0 +1,37 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// wrap the fbank feat of kaldi, todo (SmileGoat)
#include "kaldi/feat/feature-mfcc.h"
#incldue "kaldi/matrix/kaldi-vector.h"
namespace ppspeech {
class FbankExtractor : FeatureExtractorInterface {
public:
explicit FbankExtractor(const FbankOptions& opts,
share_ptr<FeatureExtractorInterface> pre_extractor);
virtual void AcceptWaveform(
const kaldi::Vector<kaldi::BaseFloat>& input) = 0;
virtual void Read(kaldi::Vector<kaldi::BaseFloat>* feat) = 0;
virtual size_t Dim() const = 0;
private:
bool Compute(const kaldi::Vector<kaldi::BaseFloat>& wave,
kaldi::Vector<kaldi::BaseFloat>* feat) const;
};
} // namespace ppspeech

@ -0,0 +1,83 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "frontend/feature_cache.h"
namespace ppspeech {
using kaldi::Vector;
using kaldi::VectorBase;
using kaldi::BaseFloat;
using std::vector;
using kaldi::SubVector;
using std::unique_ptr;
FeatureCache::FeatureCache(
int max_size, unique_ptr<FeatureExtractorInterface> base_extractor) {
max_size_ = max_size;
base_extractor_ = std::move(base_extractor);
}
void FeatureCache::Accept(const kaldi::VectorBase<kaldi::BaseFloat>& inputs) {
base_extractor_->Accept(inputs);
// feed current data
bool result = false;
do {
result = Compute();
} while (result);
}
// pop feature chunk
bool FeatureCache::Read(kaldi::Vector<kaldi::BaseFloat>* feats) {
kaldi::Timer timer;
std::unique_lock<std::mutex> lock(mutex_);
while (cache_.empty() && base_extractor_->IsFinished() == false) {
ready_read_condition_.wait(lock);
BaseFloat elapsed = timer.Elapsed() * 1000;
// todo replace 1.0 with timeout_
if (elapsed > 1.0) {
return false;
}
usleep(1000); // sleep 1 ms
}
if (cache_.empty()) return false;
feats->Resize(cache_.front().Dim());
feats->CopyFromVec(cache_.front());
cache_.pop();
ready_feed_condition_.notify_one();
return true;
}
// read all data from base_feature_extractor_ into cache_
bool FeatureCache::Compute() {
// compute and feed
Vector<BaseFloat> feature_chunk;
bool result = base_extractor_->Read(&feature_chunk);
std::unique_lock<std::mutex> lock(mutex_);
while (cache_.size() >= max_size_) {
ready_feed_condition_.wait(lock);
}
if (feature_chunk.Dim() != 0) {
cache_.push(feature_chunk);
}
ready_read_condition_.notify_one();
return result;
}
void Reset() {
// std::lock_guard<std::mutex> lock(mutex_);
return;
}
} // namespace ppspeech

@ -0,0 +1,57 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "base/common.h"
#include "frontend/feature_extractor_interface.h"
namespace ppspeech {
class FeatureCache : public FeatureExtractorInterface {
public:
explicit FeatureCache(
int32 max_size = kint16max,
std::unique_ptr<FeatureExtractorInterface> base_extractor = NULL);
virtual void Accept(const kaldi::VectorBase<kaldi::BaseFloat>& inputs);
// feats dim = num_frames * feature_dim
virtual bool Read(kaldi::Vector<kaldi::BaseFloat>* feats);
// feature cache only cache feature which from base extractor
virtual size_t Dim() const { return base_extractor_->Dim(); }
virtual void SetFinished() {
base_extractor_->SetFinished();
// read the last chunk data
Compute();
}
virtual bool IsFinished() const { return base_extractor_->IsFinished(); }
virtual void Reset() {
base_extractor_->Reset();
while (!cache_.empty()) {
cache_.pop();
}
}
private:
bool Compute();
std::mutex mutex_;
size_t max_size_;
std::queue<kaldi::Vector<BaseFloat>> cache_;
std::unique_ptr<FeatureExtractorInterface> base_extractor_;
std::condition_variable ready_feed_condition_;
std::condition_variable ready_read_condition_;
// DISALLOW_COPY_AND_ASSGIN(FeatureCache);
};
} // namespace ppspeech

@ -0,0 +1,13 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

@ -0,0 +1,13 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

@ -0,0 +1,38 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "base/basic_types.h"
#include "kaldi/matrix/kaldi-vector.h"
namespace ppspeech {
class FeatureExtractorInterface {
public:
// accept input data, accept feature or raw waves which decided
// by the base_extractor
virtual void Accept(const kaldi::VectorBase<kaldi::BaseFloat>& inputs) = 0;
// get the processed result
// the length of output = feature_row * feature_dim,
// the Matrix is squashed into Vector
virtual bool Read(kaldi::Vector<kaldi::BaseFloat>* outputs) = 0;
// the Dim is the feature dim
virtual size_t Dim() const = 0;
virtual void SetFinished() = 0;
virtual bool IsFinished() const = 0;
virtual void Reset() = 0;
};
} // namespace ppspeech

@ -0,0 +1,156 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "frontend/linear_spectrogram.h"
#include "kaldi/base/kaldi-math.h"
#include "kaldi/matrix/matrix-functions.h"
namespace ppspeech {
using kaldi::int32;
using kaldi::BaseFloat;
using kaldi::Vector;
using kaldi::VectorBase;
using kaldi::Matrix;
using std::vector;
LinearSpectrogram::LinearSpectrogram(
const LinearSpectrogramOptions& opts,
std::unique_ptr<FeatureExtractorInterface> base_extractor) {
opts_ = opts;
base_extractor_ = std::move(base_extractor);
int32 window_size = opts.frame_opts.WindowSize();
int32 window_shift = opts.frame_opts.WindowShift();
fft_points_ = window_size;
chunk_sample_size_ =
static_cast<int32>(opts.streaming_chunk * opts.frame_opts.samp_freq);
hanning_window_.resize(window_size);
double a = M_2PI / (window_size - 1);
hanning_window_energy_ = 0;
for (int i = 0; i < window_size; ++i) {
hanning_window_[i] = 0.5 - 0.5 * cos(a * i);
hanning_window_energy_ += hanning_window_[i] * hanning_window_[i];
}
dim_ = fft_points_ / 2 + 1; // the dimension is Fs/2 Hz
}
void LinearSpectrogram::Accept(const VectorBase<BaseFloat>& inputs) {
base_extractor_->Accept(inputs);
}
bool LinearSpectrogram::Read(Vector<BaseFloat>* feats) {
Vector<BaseFloat> input_feats(chunk_sample_size_);
bool flag = base_extractor_->Read(&input_feats);
if (flag == false || input_feats.Dim() == 0) return false;
vector<BaseFloat> input_feats_vec(input_feats.Dim());
std::memcpy(input_feats_vec.data(),
input_feats.Data(),
input_feats.Dim() * sizeof(BaseFloat));
vector<vector<BaseFloat>> result;
Compute(input_feats_vec, result);
int32 feat_size = 0;
if (result.size() != 0) {
feat_size = result.size() * result[0].size();
}
feats->Resize(feat_size);
// todo refactor (SimleGoat)
for (size_t idx = 0; idx < feat_size; ++idx) {
(*feats)(idx) = result[idx / dim_][idx % dim_];
}
return true;
}
void LinearSpectrogram::Hanning(vector<float>* data) const {
CHECK_GE(data->size(), hanning_window_.size());
for (size_t i = 0; i < hanning_window_.size(); ++i) {
data->at(i) *= hanning_window_[i];
}
}
bool LinearSpectrogram::NumpyFft(vector<BaseFloat>* v,
vector<BaseFloat>* real,
vector<BaseFloat>* img) const {
Vector<BaseFloat> v_tmp;
v_tmp.Resize(v->size());
std::memcpy(v_tmp.Data(), v->data(), sizeof(BaseFloat) * (v->size()));
RealFft(&v_tmp, true);
v->resize(v_tmp.Dim());
std::memcpy(v->data(), v_tmp.Data(), sizeof(BaseFloat) * (v->size()));
real->push_back(v->at(0));
img->push_back(0);
for (int i = 1; i < v->size() / 2; i++) {
real->push_back(v->at(2 * i));
img->push_back(v->at(2 * i + 1));
}
real->push_back(v->at(1));
img->push_back(0);
return true;
}
// Compute spectrogram feat
// todo: refactor later (SmileGoat)
bool LinearSpectrogram::Compute(const vector<float>& waves,
vector<vector<float>>& feats) {
int num_samples = waves.size();
const int& frame_length = opts_.frame_opts.WindowSize();
const int& sample_rate = opts_.frame_opts.samp_freq;
const int& frame_shift = opts_.frame_opts.WindowShift();
const int& fft_points = fft_points_;
const float scale = hanning_window_energy_ * sample_rate;
if (num_samples < frame_length) {
return true;
}
int num_frames = 1 + ((num_samples - frame_length) / frame_shift);
feats.resize(num_frames);
vector<float> fft_real((fft_points_ / 2 + 1), 0);
vector<float> fft_img((fft_points_ / 2 + 1), 0);
vector<float> v(frame_length, 0);
vector<float> power((fft_points / 2 + 1));
for (int i = 0; i < num_frames; ++i) {
vector<float> data(waves.data() + i * frame_shift,
waves.data() + i * frame_shift + frame_length);
Hanning(&data);
fft_img.clear();
fft_real.clear();
v.assign(data.begin(), data.end());
NumpyFft(&v, &fft_real, &fft_img);
feats[i].resize(fft_points / 2 + 1); // the last dimension is Fs/2 Hz
for (int j = 0; j < (fft_points / 2 + 1); ++j) {
power[j] = fft_real[j] * fft_real[j] + fft_img[j] * fft_img[j];
feats[i][j] = power[j];
if (j == 0 || j == feats[0].size() - 1) {
feats[i][j] /= scale;
} else {
feats[i][j] *= (2.0 / scale);
}
// log added eps=1e-14
feats[i][j] = std::log(feats[i][j] + 1e-14);
}
}
return true;
}
} // namespace ppspeech

@ -0,0 +1,68 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "base/common.h"
#include "frontend/feature_extractor_interface.h"
#include "kaldi/feat/feature-window.h"
namespace ppspeech {
struct LinearSpectrogramOptions {
kaldi::FrameExtractionOptions frame_opts;
kaldi::BaseFloat streaming_chunk;
LinearSpectrogramOptions() : streaming_chunk(0.36), frame_opts() {}
void Register(kaldi::OptionsItf* opts) {
opts->Register(
"streaming-chunk", &streaming_chunk, "streaming chunk size");
frame_opts.Register(opts);
}
};
class LinearSpectrogram : public FeatureExtractorInterface {
public:
explicit LinearSpectrogram(
const LinearSpectrogramOptions& opts,
std::unique_ptr<FeatureExtractorInterface> base_extractor);
virtual void Accept(const kaldi::VectorBase<kaldi::BaseFloat>& inputs);
virtual bool Read(kaldi::Vector<kaldi::BaseFloat>* feats);
// the dim_ is the dim of single frame feature
virtual size_t Dim() const { return dim_; }
virtual void SetFinished() { base_extractor_->SetFinished(); }
virtual bool IsFinished() const { return base_extractor_->IsFinished(); }
virtual void Reset() { base_extractor_->Reset(); }
private:
void Hanning(std::vector<kaldi::BaseFloat>* data) const;
bool Compute(const std::vector<kaldi::BaseFloat>& waves,
std::vector<std::vector<kaldi::BaseFloat>>& feats);
bool NumpyFft(std::vector<kaldi::BaseFloat>* v,
std::vector<kaldi::BaseFloat>* real,
std::vector<kaldi::BaseFloat>* img) const;
kaldi::int32 fft_points_;
size_t dim_;
std::vector<kaldi::BaseFloat> hanning_window_;
kaldi::BaseFloat hanning_window_energy_;
LinearSpectrogramOptions opts_;
std::unique_ptr<FeatureExtractorInterface> base_extractor_;
int chunk_sample_size_;
DISALLOW_COPY_AND_ASSIGN(LinearSpectrogram);
};
} // namespace ppspeech

@ -0,0 +1,16 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// wrap the mfcc feat of kaldi, todo (SmileGoat)
#include "kaldi/feat/feature-mfcc.h"

@ -0,0 +1,188 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "frontend/normalizer.h"
#include "kaldi/feat/cmvn.h"
#include "kaldi/util/kaldi-io.h"
namespace ppspeech {
using kaldi::Vector;
using kaldi::VectorBase;
using kaldi::BaseFloat;
using std::vector;
using kaldi::SubVector;
using std::unique_ptr;
DecibelNormalizer::DecibelNormalizer(
const DecibelNormalizerOptions& opts,
std::unique_ptr<FeatureExtractorInterface> base_extractor) {
base_extractor_ = std::move(base_extractor);
opts_ = opts;
dim_ = 1;
}
void DecibelNormalizer::Accept(const kaldi::VectorBase<BaseFloat>& waves) {
base_extractor_->Accept(waves);
}
bool DecibelNormalizer::Read(kaldi::Vector<BaseFloat>* waves) {
if (base_extractor_->Read(waves) == false || waves->Dim() == 0) {
return false;
}
Compute(waves);
return true;
}
bool DecibelNormalizer::Compute(VectorBase<BaseFloat>* waves) const {
// calculate db rms
BaseFloat rms_db = 0.0;
BaseFloat mean_square = 0.0;
BaseFloat gain = 0.0;
BaseFloat wave_float_normlization = 1.0f / (std::pow(2, 16 - 1));
vector<BaseFloat> samples;
samples.resize(waves->Dim());
for (size_t i = 0; i < samples.size(); ++i) {
samples[i] = (*waves)(i);
}
// square
for (auto& d : samples) {
if (opts_.convert_int_float) {
d = d * wave_float_normlization;
}
mean_square += d * d;
}
// mean
mean_square /= samples.size();
rms_db = 10 * std::log10(mean_square);
gain = opts_.target_db - rms_db;
if (gain > opts_.max_gain_db) {
LOG(ERROR)
<< "Unable to normalize segment to " << opts_.target_db << "dB,"
<< "because the the probable gain have exceeds opts_.max_gain_db"
<< opts_.max_gain_db << "dB.";
return false;
}
// Note that this is an in-place transformation.
for (auto& item : samples) {
// python item *= 10.0 ** (gain / 20.0)
item *= std::pow(10.0, gain / 20.0);
}
std::memcpy(
waves->Data(), samples.data(), sizeof(BaseFloat) * samples.size());
return true;
}
CMVN::CMVN(std::string cmvn_file,
unique_ptr<FeatureExtractorInterface> base_extractor)
: var_norm_(true) {
base_extractor_ = std::move(base_extractor);
bool binary;
kaldi::Input ki(cmvn_file, &binary);
stats_.Read(ki.Stream(), binary);
dim_ = stats_.NumCols() - 1;
}
void CMVN::Accept(const kaldi::VectorBase<kaldi::BaseFloat>& inputs) {
base_extractor_->Accept(inputs);
return;
}
bool CMVN::Read(kaldi::Vector<BaseFloat>* feats) {
if (base_extractor_->Read(feats) == false) {
return false;
}
Compute(feats);
return true;
}
// feats contain num_frames feature.
void CMVN::Compute(VectorBase<BaseFloat>* feats) const {
KALDI_ASSERT(feats != NULL);
int32 dim = stats_.NumCols() - 1;
if (stats_.NumRows() > 2 || stats_.NumRows() < 1 ||
feats->Dim() % dim != 0) {
KALDI_ERR << "Dim mismatch: cmvn " << stats_.NumRows() << 'x'
<< stats_.NumCols() << ", feats " << feats->Dim() << 'x';
}
if (stats_.NumRows() == 1 && var_norm_) {
KALDI_ERR
<< "You requested variance normalization but no variance stats_ "
<< "are supplied.";
}
double count = stats_(0, dim);
// Do not change the threshold of 1.0 here: in the balanced-cmvn code, when
// computing an offset and representing it as stats_, we use a count of one.
if (count < 1.0)
KALDI_ERR << "Insufficient stats_ for cepstral mean and variance "
"normalization: "
<< "count = " << count;
if (!var_norm_) {
Vector<BaseFloat> offset(feats->Dim());
SubVector<double> mean_stats(stats_.RowData(0), dim);
Vector<double> mean_stats_apply(feats->Dim());
// fill the datat of mean_stats in mean_stats_appy whose dim is equal
// with the dim of feature.
// the dim of feats = dim * num_frames;
for (int32 idx = 0; idx < feats->Dim() / dim; ++idx) {
SubVector<double> stats_tmp(mean_stats_apply.Data() + dim * idx,
dim);
stats_tmp.CopyFromVec(mean_stats);
}
offset.AddVec(-1.0 / count, mean_stats_apply);
feats->AddVec(1.0, offset);
return;
}
// norm(0, d) = mean offset;
// norm(1, d) = scale, e.g. x(d) <-- x(d)*norm(1, d) + norm(0, d).
kaldi::Matrix<BaseFloat> norm(2, feats->Dim());
for (int32 d = 0; d < dim; d++) {
double mean, offset, scale;
mean = stats_(0, d) / count;
double var = (stats_(1, d) / count) - mean * mean, floor = 1.0e-20;
if (var < floor) {
KALDI_WARN << "Flooring cepstral variance from " << var << " to "
<< floor;
var = floor;
}
scale = 1.0 / sqrt(var);
if (scale != scale || 1 / scale == 0.0)
KALDI_ERR
<< "NaN or infinity in cepstral mean/variance computation";
offset = -(mean * scale);
for (int32 d_skip = d; d_skip < feats->Dim();) {
norm(0, d_skip) = offset;
norm(1, d_skip) = scale;
d_skip = d_skip + dim;
}
}
// Apply the normalization.
feats->MulElements(norm.Row(1));
feats->AddVec(1.0, norm.Row(0));
}
void CMVN::ApplyCMVN(kaldi::MatrixBase<BaseFloat>* feats) {
ApplyCmvn(stats_, var_norm_, feats);
}
} // namespace ppspeech

@ -0,0 +1,89 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "base/common.h"
#include "frontend/feature_extractor_interface.h"
#include "kaldi/matrix/kaldi-matrix.h"
#include "kaldi/util/options-itf.h"
namespace ppspeech {
struct DecibelNormalizerOptions {
float target_db;
float max_gain_db;
bool convert_int_float;
DecibelNormalizerOptions()
: target_db(-20), max_gain_db(300.0), convert_int_float(false) {}
void Register(kaldi::OptionsItf* opts) {
opts->Register(
"target-db", &target_db, "target db for db normalization");
opts->Register(
"max-gain-db", &max_gain_db, "max gain db for db normalization");
opts->Register("convert-int-float",
&convert_int_float,
"if convert int samples to float");
}
};
class DecibelNormalizer : public FeatureExtractorInterface {
public:
explicit DecibelNormalizer(
const DecibelNormalizerOptions& opts,
std::unique_ptr<FeatureExtractorInterface> base_extractor);
virtual void Accept(const kaldi::VectorBase<kaldi::BaseFloat>& waves);
virtual bool Read(kaldi::Vector<kaldi::BaseFloat>* waves);
// noramlize audio, the dim is 1.
virtual size_t Dim() const { return dim_; }
virtual void SetFinished() { base_extractor_->SetFinished(); }
virtual bool IsFinished() const { return base_extractor_->IsFinished(); }
virtual void Reset() { base_extractor_->Reset(); }
private:
bool Compute(kaldi::VectorBase<kaldi::BaseFloat>* waves) const;
DecibelNormalizerOptions opts_;
size_t dim_;
std::unique_ptr<FeatureExtractorInterface> base_extractor_;
kaldi::Vector<kaldi::BaseFloat> waveform_;
};
class CMVN : public FeatureExtractorInterface {
public:
explicit CMVN(std::string cmvn_file,
std::unique_ptr<FeatureExtractorInterface> base_extractor);
virtual void Accept(const kaldi::VectorBase<kaldi::BaseFloat>& inputs);
// the length of feats = feature_row * feature_dim,
// the Matrix is squashed into Vector
virtual bool Read(kaldi::Vector<kaldi::BaseFloat>* feats);
// the dim_ is the feautre dim.
virtual size_t Dim() const { return dim_; }
virtual void SetFinished() { base_extractor_->SetFinished(); }
virtual bool IsFinished() const { return base_extractor_->IsFinished(); }
virtual void Reset() { base_extractor_->Reset(); }
private:
void Compute(kaldi::VectorBase<kaldi::BaseFloat>* feats) const;
void ApplyCMVN(kaldi::MatrixBase<BaseFloat>* feats);
kaldi::Matrix<double> stats_;
std::unique_ptr<FeatureExtractorInterface> base_extractor_;
size_t dim_;
bool var_norm_;
};
} // namespace ppspeech

@ -0,0 +1,78 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "frontend/raw_audio.h"
#include "kaldi/base/timer.h"
namespace ppspeech {
using kaldi::BaseFloat;
using kaldi::VectorBase;
using kaldi::Vector;
RawAudioCache::RawAudioCache(int buffer_size)
: finished_(false), data_length_(0), start_(0), timeout_(1) {
ring_buffer_.resize(buffer_size);
}
void RawAudioCache::Accept(const VectorBase<BaseFloat>& waves) {
std::unique_lock<std::mutex> lock(mutex_);
while (data_length_ + waves.Dim() > ring_buffer_.size()) {
ready_feed_condition_.wait(lock);
}
for (size_t idx = 0; idx < waves.Dim(); ++idx) {
int32 buffer_idx = (idx + start_) % ring_buffer_.size();
ring_buffer_[buffer_idx] = waves(idx);
}
data_length_ += waves.Dim();
}
bool RawAudioCache::Read(Vector<BaseFloat>* waves) {
size_t chunk_size = waves->Dim();
kaldi::Timer timer;
std::unique_lock<std::mutex> lock(mutex_);
while (chunk_size > data_length_) {
// when audio is empty and no more data feed
// ready_read_condition will block in dead lock. so replace with
// timeout_
// ready_read_condition_.wait(lock);
int32 elapsed = static_cast<int32>(timer.Elapsed() * 1000);
if (elapsed > timeout_) {
if (finished_ == true) { // read last chunk data
break;
}
if (chunk_size > data_length_) {
return false;
}
}
usleep(100); // sleep 0.1 ms
}
// read last chunk data
if (chunk_size > data_length_) {
chunk_size = data_length_;
waves->Resize(chunk_size);
}
for (size_t idx = 0; idx < chunk_size; ++idx) {
int buff_idx = (start_ + idx) % ring_buffer_.size();
waves->Data()[idx] = ring_buffer_[buff_idx];
}
data_length_ -= chunk_size;
start_ = (start_ + chunk_size) % ring_buffer_.size();
ready_feed_condition_.notify_one();
return true;
}
} // namespace ppspeech

@ -0,0 +1,85 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "base/common.h"
#include "frontend/feature_extractor_interface.h"
#pragma once
namespace ppspeech {
class RawAudioCache : public FeatureExtractorInterface {
public:
explicit RawAudioCache(int buffer_size = kint16max);
virtual void Accept(const kaldi::VectorBase<BaseFloat>& waves);
virtual bool Read(kaldi::Vector<kaldi::BaseFloat>* waves);
// the audio dim is 1
virtual size_t Dim() const { return 1; }
virtual void SetFinished() {
std::lock_guard<std::mutex> lock(mutex_);
finished_ = true;
}
virtual bool IsFinished() const { return finished_; }
virtual void Reset() {
start_ = 0;
data_length_ = 0;
finished_ = false;
}
private:
std::vector<kaldi::BaseFloat> ring_buffer_;
size_t start_;
size_t data_length_;
bool finished_;
mutable std::mutex mutex_;
std::condition_variable ready_feed_condition_;
kaldi::int32 timeout_;
DISALLOW_COPY_AND_ASSIGN(RawAudioCache);
};
// it is a datasource for testing different frontend module.
// it accepts waves or feats.
class RawDataCache : public FeatureExtractorInterface {
public:
explicit RawDataCache() { finished_ = false; }
virtual void Accept(const kaldi::VectorBase<kaldi::BaseFloat>& inputs) {
data_ = inputs;
}
virtual bool Read(kaldi::Vector<kaldi::BaseFloat>* feats) {
if (data_.Dim() == 0) {
return false;
}
(*feats) = data_;
data_.Resize(0);
return true;
}
virtual size_t Dim() const { return dim_; }
virtual void SetFinished() { finished_ = true; }
virtual bool IsFinished() const { return finished_; }
void SetDim(int32 dim) { dim_ = dim; }
virtual void Reset() { finished_ = true; }
private:
kaldi::Vector<kaldi::BaseFloat> data_;
bool finished_;
int32 dim_;
DISALLOW_COPY_AND_ASSIGN(RawDataCache);
};
} // namespace ppspeech

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save