update the code, test=asr

pull/1577/head
huangyuxin 3 years ago
parent ab16d8ce3c
commit d53e1163a6

@ -21,7 +21,6 @@ from paddle import nn
from paddle.fluid import core
from paddle.nn import functional as F
from paddlespeech.s2t.modules import initializer
from paddlespeech.s2t.utils.log import Log
#TODO(Hui Zhang): remove fluid import
@ -506,8 +505,3 @@ if not hasattr(paddle.nn, 'LayerDict'):
logger.debug(
"register user LayerDict to paddle.nn, remove this when fixed!")
setattr(paddle.nn, 'LayerDict', LayerDict)
"""
hack KaiminigUniform: change limit from np.sqrt(6.0 / float(fan_in)) to np.sqrt(1.0 / float(fan_in))
"""
paddle.nn.initializer.KaimingUniform = initializer.KaimingUniform

@ -239,7 +239,7 @@ class U2Trainer(Trainer):
n_iter_processes=config.num_workers,
subsampling_factor=1,
num_encs=1,
dist_sampler=False,
dist_sampler=True,
shortest_first=False)
self.valid_loader = BatchDataLoader(
@ -260,7 +260,7 @@ class U2Trainer(Trainer):
n_iter_processes=config.num_workers,
subsampling_factor=1,
num_encs=1,
dist_sampler=False,
dist_sampler=True,
shortest_first=False)
logger.info("Setup train/valid Dataloader!")
else:

@ -41,7 +41,6 @@ from paddlespeech.s2t.modules.mask import make_pad_mask
from paddlespeech.s2t.modules.mask import mask_finished_preds
from paddlespeech.s2t.modules.mask import mask_finished_scores
from paddlespeech.s2t.modules.mask import subsequent_mask
from paddlespeech.s2t.modules.nets_utils import initialize
from paddlespeech.s2t.utils import checkpoint
from paddlespeech.s2t.utils import layer_tools
from paddlespeech.s2t.utils.ctc_utils import remove_duplicates_and_blank
@ -51,6 +50,8 @@ from paddlespeech.s2t.utils.tensor_utils import pad_sequence
from paddlespeech.s2t.utils.tensor_utils import th_accuracy
from paddlespeech.s2t.utils.utility import log_add
from paddlespeech.s2t.utils.utility import UpdateConfig
from paddlespeech.s2t.modules.initializer import DefaultInitializerContext
# from paddlespeech.s2t.modules.initializer import initialize
__all__ = ["U2Model", "U2InferModel"]
@ -784,11 +785,8 @@ class U2Model(U2DecodeModel):
def __init__(self, configs: dict):
model_conf = configs.get('model_conf', dict())
init_type = model_conf.get("init_type", None)
if init_type is not None:
logger.info(f"Use {init_type} initializer as default initializer")
initialize(self, init_type)
vocab_size, encoder, decoder, ctc = U2Model._init_from_config(configs)
nn.initializer.set_global_initializer(None)
with DefaultInitializerContext(init_type):
vocab_size, encoder, decoder, ctc = U2Model._init_from_config(configs)
super().__init__(
vocab_size=vocab_size,

@ -16,7 +16,8 @@ from collections import OrderedDict
import paddle
from paddle import nn
from paddle.nn import functional as F
from paddlespeech.s2t.modules.align import Linear
from paddlespeech.s2t.modules.align import Conv2D
from paddlespeech.s2t.utils.log import Log
logger = Log(__name__).getlog()
@ -51,7 +52,7 @@ class LinearGLUBlock(nn.Layer):
idim (int): input and output dimension
"""
super().__init__()
self.fc = nn.Linear(idim, idim * 2)
self.fc = Linear(idim, idim * 2)
def forward(self, xs):
return glu(self.fc(xs), dim=-1)
@ -75,7 +76,7 @@ class ConvGLUBlock(nn.Layer):
self.conv_residual = None
if in_ch != out_ch:
self.conv_residual = nn.utils.weight_norm(
nn.Conv2D(
Conv2D(
in_channels=in_ch, out_channels=out_ch, kernel_size=(1, 1)),
name='weight',
dim=0)
@ -86,7 +87,7 @@ class ConvGLUBlock(nn.Layer):
layers = OrderedDict()
if bottlececk_dim == 0:
layers['conv'] = nn.utils.weight_norm(
nn.Conv2D(
Conv2D(
in_channels=in_ch,
out_channels=out_ch * 2,
kernel_size=(kernel_size, 1)),
@ -106,7 +107,7 @@ class ConvGLUBlock(nn.Layer):
dim=0)
layers['dropout_in'] = nn.Dropout(p=dropout)
layers['conv_bottleneck'] = nn.utils.weight_norm(
nn.Conv2D(
Conv2D(
in_channels=bottlececk_dim,
out_channels=bottlececk_dim,
kernel_size=(kernel_size, 1)),
@ -115,7 +116,7 @@ class ConvGLUBlock(nn.Layer):
layers['dropout'] = nn.Dropout(p=dropout)
layers['glu'] = GLU()
layers['conv_out'] = nn.utils.weight_norm(
nn.Conv2D(
Conv2D(
in_channels=bottlececk_dim,
out_channels=out_ch * 2,
kernel_size=(1, 1)),

@ -0,0 +1,74 @@
import paddle
from paddle import nn
from paddlespeech.s2t.modules.initializer import KaimingUniform
"""
To align the initializer between paddle and torch,
the API below are set defalut initializer with priority higger than global initializer.
"""
global_init_type = None
class LayerNorm(nn.LayerNorm):
def __init__(self, normalized_shape, epsilon=1e-05, weight_attr=None, bias_attr=None, name=None):
if weight_attr is None:
weight_attr = paddle.ParamAttr(
initializer=nn.initializer.Constant(1.0))
if bias_attr is None:
bias_attr = paddle.ParamAttr(
initializer=nn.initializer.Constant(0.0))
super(LayerNorm, self).__init__(normalized_shape, epsilon, weight_attr, bias_attr, name)
class BatchNorm1D(nn.BatchNorm1D):
def __init__(self, num_features, momentum=0.9, epsilon=1e-05, weight_attr=None, bias_attr=None, data_format='NCL', name=None):
if weight_attr is None:
weight_attr = paddle.ParamAttr(
initializer=nn.initializer.Constant(1.0))
if bias_attr is None:
bias_attr = paddle.ParamAttr(
initializer=nn.initializer.Constant(0.0))
super(BatchNorm1D, self).__init__(num_features, momentum, epsilon, weight_attr, bias_attr, data_format, name)
class Embedding(nn.Embedding):
def __init__(self, num_embeddings, embedding_dim, padding_idx=None, sparse=False, weight_attr=None, name=None):
if weight_attr is None:
weight_attr = paddle.ParamAttr(
initializer=nn.initializer.Normal())
super(Embedding, self).__init__(num_embeddings, embedding_dim, padding_idx, sparse, weight_attr, name)
class Linear(nn.Linear):
def __init__(self, in_features, out_features, weight_attr=None, bias_attr=None, name=None):
if weight_attr is None:
if global_init_type == "kaiming_uniform":
weight_attr = paddle.ParamAttr(
initializer=KaimingUniform())
if bias_attr is None:
if global_init_type == "kaiming_uniform":
bias_attr = paddle.ParamAttr(
initializer=KaimingUniform())
super(Linear, self).__init__(in_features, out_features, weight_attr, bias_attr, name)
class Conv1D(nn.Conv1D):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', weight_attr=None, bias_attr=None, data_format='NCL'):
if weight_attr is None:
if global_init_type == "kaiming_uniform":
print("set kaiming_uniform")
weight_attr = paddle.ParamAttr(
initializer=KaimingUniform())
if bias_attr is None:
if global_init_type == "kaiming_uniform":
bias_attr = paddle.ParamAttr(
initializer=KaimingUniform())
super(Conv1D, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, padding_mode, weight_attr, bias_attr, data_format)
class Conv2D(nn.Conv2D):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', weight_attr=None, bias_attr=None, data_format='NCHW'):
if weight_attr is None:
if global_init_type == "kaiming_uniform":
weight_attr = paddle.ParamAttr(
initializer=KaimingUniform())
if bias_attr is None:
if global_init_type == "kaiming_uniform":
bias_attr = paddle.ParamAttr(
initializer=KaimingUniform())
super(Conv2D, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, padding_mode, weight_attr, bias_attr, data_format)

@ -22,6 +22,7 @@ import paddle
from paddle import nn
from paddle.nn import initializer as I
from paddlespeech.s2t.modules.align import Linear
from paddlespeech.s2t.utils.log import Log
logger = Log(__name__).getlog()
@ -48,10 +49,10 @@ class MultiHeadedAttention(nn.Layer):
# We assume d_v always equals d_k
self.d_k = n_feat // n_head
self.h = n_head
self.linear_q = nn.Linear(n_feat, n_feat)
self.linear_k = nn.Linear(n_feat, n_feat)
self.linear_v = nn.Linear(n_feat, n_feat)
self.linear_out = nn.Linear(n_feat, n_feat)
self.linear_q = Linear(n_feat, n_feat)
self.linear_k = Linear(n_feat, n_feat)
self.linear_v = Linear(n_feat, n_feat)
self.linear_out = Linear(n_feat, n_feat)
self.dropout = nn.Dropout(p=dropout_rate)
def forward_qkv(self,
@ -150,7 +151,7 @@ class RelPositionMultiHeadedAttention(MultiHeadedAttention):
"""
super().__init__(n_head, n_feat, dropout_rate)
# linear transformation for positional encoding
self.linear_pos = nn.Linear(n_feat, n_feat, bias_attr=False)
self.linear_pos = Linear(n_feat, n_feat, bias_attr=False)
# these two learnable bias are used in matrix c and matrix d
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
#self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))

@ -21,6 +21,9 @@ import paddle
from paddle import nn
from typeguard import check_argument_types
from paddlespeech.s2t.modules.align import BatchNorm1D
from paddlespeech.s2t.modules.align import Conv1D
from paddlespeech.s2t.modules.align import LayerNorm
from paddlespeech.s2t.utils.log import Log
logger = Log(__name__).getlog()
@ -49,7 +52,7 @@ class ConvolutionModule(nn.Layer):
"""
assert check_argument_types()
super().__init__()
self.pointwise_conv1 = nn.Conv1D(
self.pointwise_conv1 = Conv1D(
channels,
2 * channels,
kernel_size=1,
@ -73,7 +76,7 @@ class ConvolutionModule(nn.Layer):
padding = (kernel_size - 1) // 2
self.lorder = 0
self.depthwise_conv = nn.Conv1D(
self.depthwise_conv = Conv1D(
channels,
channels,
kernel_size,
@ -87,22 +90,12 @@ class ConvolutionModule(nn.Layer):
assert norm in ['batch_norm', 'layer_norm']
if norm == "batch_norm":
self.use_layer_norm = False
self.norm = nn.BatchNorm1D(
channels,
weight_attr=paddle.ParamAttr(
initializer=nn.initializer.Constant(1.0)),
bias_attr=paddle.ParamAttr(
initializer=nn.initializer.Constant(0.0)))
self.norm = BatchNorm1D(channels)
else:
self.use_layer_norm = True
self.norm = nn.LayerNorm(
channels,
weight_attr=paddle.ParamAttr(
initializer=nn.initializer.Constant(1.0)),
bias_attr=paddle.ParamAttr(
initializer=nn.initializer.Constant(0.0)))
self.pointwise_conv2 = nn.Conv1D(
self.norm = LayerNorm(channels)
self.pointwise_conv2 = Conv1D(
channels,
channels,
kernel_size=1,

@ -18,6 +18,7 @@ from paddle import nn
from paddle.nn import functional as F
from typeguard import check_argument_types
from paddlespeech.s2t.modules.align import Linear
from paddlespeech.s2t.modules.loss import CTCLoss
from paddlespeech.s2t.utils import ctc_utils
from paddlespeech.s2t.utils.log import Log
@ -69,7 +70,7 @@ class CTCDecoderBase(nn.Layer):
self.blank_id = blank_id
self.odim = odim
self.dropout = nn.Dropout(dropout_rate)
self.ctc_lo = nn.Linear(enc_n_units, self.odim)
self.ctc_lo = Linear(enc_n_units, self.odim)
reduction_type = "sum" if reduction else "none"
self.criterion = CTCLoss(
blank=self.blank_id,

@ -24,6 +24,9 @@ from paddle import nn
from typeguard import check_argument_types
from paddlespeech.s2t.decoders.scorers.scorer_interface import BatchScorerInterface
from paddlespeech.s2t.modules.align import Embedding
from paddlespeech.s2t.modules.align import LayerNorm
from paddlespeech.s2t.modules.align import Linear
from paddlespeech.s2t.modules.attention import MultiHeadedAttention
from paddlespeech.s2t.modules.decoder_layer import DecoderLayer
from paddlespeech.s2t.modules.embedding import PositionalEncoding
@ -83,25 +86,15 @@ class TransformerDecoder(BatchScorerInterface, nn.Layer):
if input_layer == "embed":
self.embed = nn.Sequential(
nn.Embedding(
vocab_size,
attention_dim,
weight_attr=paddle.ParamAttr(
initializer=nn.initializer.Normal())),
Embedding(vocab_size, attention_dim),
PositionalEncoding(attention_dim, positional_dropout_rate), )
else:
raise ValueError(f"only 'embed' is supported: {input_layer}")
self.normalize_before = normalize_before
self.after_norm = nn.LayerNorm(
attention_dim,
epsilon=1e-12,
weight_attr=paddle.ParamAttr(
initializer=nn.initializer.Constant(1.0)),
bias_attr=paddle.ParamAttr(
initializer=nn.initializer.Constant(0.0)))
self.after_norm = LayerNorm(attention_dim, epsilon=1e-12)
self.use_output_layer = use_output_layer
self.output_layer = nn.Linear(attention_dim, vocab_size)
self.output_layer = Linear(attention_dim, vocab_size)
self.decoders = nn.LayerList([
DecoderLayer(

@ -20,6 +20,8 @@ from typing import Tuple
import paddle
from paddle import nn
from paddlespeech.s2t.modules.align import LayerNorm
from paddlespeech.s2t.modules.align import Linear
from paddlespeech.s2t.utils.log import Log
logger = Log(__name__).getlog()
@ -62,32 +64,14 @@ class DecoderLayer(nn.Layer):
self.self_attn = self_attn
self.src_attn = src_attn
self.feed_forward = feed_forward
self.norm1 = nn.LayerNorm(
size,
epsilon=1e-12,
weight_attr=paddle.ParamAttr(
initializer=nn.initializer.Constant(1.0)),
bias_attr=paddle.ParamAttr(
initializer=nn.initializer.Constant(0.0)))
self.norm2 = nn.LayerNorm(
size,
epsilon=1e-12,
weight_attr=paddle.ParamAttr(
initializer=nn.initializer.Constant(1.0)),
bias_attr=paddle.ParamAttr(
initializer=nn.initializer.Constant(0.0)))
self.norm3 = nn.LayerNorm(
size,
epsilon=1e-12,
weight_attr=paddle.ParamAttr(
initializer=nn.initializer.Constant(1.0)),
bias_attr=paddle.ParamAttr(
initializer=nn.initializer.Constant(0.0)))
self.norm1 = LayerNorm(size, epsilon=1e-12)
self.norm2 = LayerNorm(size, epsilon=1e-12)
self.norm3 = LayerNorm(size, epsilon=1e-12)
self.dropout = nn.Dropout(dropout_rate)
self.normalize_before = normalize_before
self.concat_after = concat_after
self.concat_linear1 = nn.Linear(size + size, size)
self.concat_linear2 = nn.Linear(size + size, size)
self.concat_linear1 = Linear(size + size, size)
self.concat_linear2 = Linear(size + size, size)
def forward(
self,

@ -23,6 +23,8 @@ from paddle import nn
from typeguard import check_argument_types
from paddlespeech.s2t.modules.activation import get_activation
from paddlespeech.s2t.modules.align import LayerNorm
from paddlespeech.s2t.modules.align import Linear
from paddlespeech.s2t.modules.attention import MultiHeadedAttention
from paddlespeech.s2t.modules.attention import RelPositionMultiHeadedAttention
from paddlespeech.s2t.modules.conformer_convolution import ConvolutionModule
@ -129,13 +131,7 @@ class BaseEncoder(nn.Layer):
d_model=output_size, dropout_rate=positional_dropout_rate), )
self.normalize_before = normalize_before
self.after_norm = nn.LayerNorm(
output_size,
epsilon=1e-12,
weight_attr=paddle.ParamAttr(
initializer=nn.initializer.Constant(1.0)),
bias_attr=paddle.ParamAttr(
initializer=nn.initializer.Constant(0.0)))
self.after_norm = LayerNorm(output_size, epsilon=1e-12)
self.static_chunk_size = static_chunk_size
self.use_dynamic_chunk = use_dynamic_chunk
self.use_dynamic_left_chunk = use_dynamic_left_chunk

@ -20,6 +20,8 @@ from typing import Tuple
import paddle
from paddle import nn
from paddlespeech.s2t.modules.align import LayerNorm
from paddlespeech.s2t.modules.align import Linear
from paddlespeech.s2t.utils.log import Log
logger = Log(__name__).getlog()
@ -59,15 +61,15 @@ class TransformerEncoderLayer(nn.Layer):
super().__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.norm1 = nn.LayerNorm(size, epsilon=1e-12)
self.norm2 = nn.LayerNorm(size, epsilon=1e-12)
self.norm1 = LayerNorm(size, epsilon=1e-12)
self.norm2 = LayerNorm(size, epsilon=1e-12)
self.dropout = nn.Dropout(dropout_rate)
self.size = size
self.normalize_before = normalize_before
self.concat_after = concat_after
# concat_linear may be not used in forward fuction,
# but will be saved in the *.pt
self.concat_linear = nn.Linear(size + size, size)
self.concat_linear = Linear(size + size, size)
def forward(
self,
@ -174,51 +176,23 @@ class ConformerEncoderLayer(nn.Layer):
self.feed_forward = feed_forward
self.feed_forward_macaron = feed_forward_macaron
self.conv_module = conv_module
self.norm_ff = nn.LayerNorm(
size,
epsilon=1e-12,
weight_attr=paddle.ParamAttr(
initializer=nn.initializer.Constant(1.0)),
bias_attr=paddle.ParamAttr(
initializer=nn.initializer.Constant(0.0))) # for the FNN module
self.norm_mha = nn.LayerNorm(
size,
epsilon=1e-12,
weight_attr=paddle.ParamAttr(
initializer=nn.initializer.Constant(1.0)),
bias_attr=paddle.ParamAttr(
initializer=nn.initializer.Constant(0.0))) # for the MHA module
self.norm_ff = LayerNorm(size, epsilon=1e-12) # for the FNN module
self.norm_mha = LayerNorm(size, epsilon=1e-12) # for the MHA module
if feed_forward_macaron is not None:
self.norm_ff_macaron = nn.LayerNorm(
size,
epsilon=1e-12,
weight_attr=paddle.ParamAttr(
initializer=nn.initializer.Constant(1.0)),
bias_attr=paddle.ParamAttr(
initializer=nn.initializer.Constant(0.0)))
self.norm_ff_macaron = LayerNorm(size, epsilon=1e-12)
self.ff_scale = 0.5
else:
self.ff_scale = 1.0
if self.conv_module is not None:
self.norm_conv = nn.LayerNorm(
size,
epsilon=1e-12,
weight_attr=paddle.ParamAttr(
initializer=nn.initializer.Constant(1.0)),
bias_attr=paddle.ParamAttr(initializer=nn.initializer.Constant(
0.0))) # for the CNN module
self.norm_final = nn.LayerNorm(
size,
epsilon=1e-12,
weight_attr=paddle.ParamAttr(
initializer=nn.initializer.Constant(1.0)),
bias_attr=paddle.ParamAttr(initializer=nn.initializer.Constant(
0.0))) # for the final output of the block
self.norm_conv = LayerNorm(
size, epsilon=1e-12) # for the CNN module
self.norm_final = LayerNorm(
size, epsilon=1e-12) # for the final output of the block
self.dropout = nn.Dropout(dropout_rate)
self.size = size
self.normalize_before = normalize_before
self.concat_after = concat_after
self.concat_linear = nn.Linear(size + size, size)
self.concat_linear = Linear(size + size, size)
def forward(
self,

@ -11,93 +11,35 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from paddle.fluid import framework
from paddle.fluid.framework import in_dygraph_mode, default_main_program
import numpy as np
from paddle.fluid.core import VarDesc
from paddle import nn
from paddle.fluid import framework
from paddle.fluid import unique_name
from paddle.fluid.core import VarDesc
from paddle.fluid.framework import default_main_program
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.initializer import Initializer
from paddle.fluid.initializer import MSRAInitializer
from typeguard import check_argument_types
__all__ = [
'MSRAInitializer'
]
class Initializer(object):
"""Base class for variable initializers
Defines the common interface of variable initializers.
They add operations to the init program that are used
to initialize variables. Users should not use this class
directly, but need to use one of its implementations.
"""
def __init__(self):
pass
def __call__(self, param, block=None):
"""Add corresponding initialization operations to the network
"""
raise NotImplementedError()
def _check_block(self, block):
if block is None:
block = default_main_program().global_block()
return block
def _compute_fans(self, var):
"""Compute the fan_in and the fan_out for layers
This method computes the fan_in and the fan_out
for neural network layers, if not specified. It is
not possible to perfectly estimate fan_in and fan_out.
This method will estimate it correctly for matrix multiply and
convolutions.
Args:
var: variable for which fan_in and fan_out have to be computed
Returns:
tuple of two integers (fan_in, fan_out)
"""
shape = var.shape
if not shape or len(shape) == 0:
fan_in = fan_out = 1
elif len(shape) == 1:
fan_in = fan_out = shape[0]
elif len(shape) == 2:
# This is the case for simple matrix multiply
fan_in = shape[0]
fan_out = shape[1]
else:
# Assume this to be a convolutional kernel
# In PaddlePaddle, the shape of the kernel is like:
# [num_filters, num_filter_channels, ...] where the remaining
# dimensions are the filter_size
receptive_field_size = np.prod(shape[2:])
fan_in = shape[1] * receptive_field_size
fan_out = shape[0] * receptive_field_size
return (fan_in, fan_out)
__all__ = ['KaimingUniform']
class MSRAInitializer(Initializer):
r"""Implements the MSRA initializer a.k.a. Kaiming Initializer
class KaimingUniform(MSRAInitializer):
r"""Implements the Kaiming Uniform initializer
This class implements the weight initialization from the paper
`Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
robust initialization method that particularly considers the rectifier
nonlinearities. In case of Uniform distribution, the range is [-x, x], where
nonlinearities.
In case of Uniform distribution, the range is [-x, x], where
.. math::
x = \sqrt{\\frac{6.0}{fan\_in}}
x = \sqrt{\frac{1.0}{fan\_in}}
In case of Normal distribution, the mean is 0 and the standard deviation
is
@ -107,10 +49,8 @@ class MSRAInitializer(Initializer):
\sqrt{\\frac{2.0}{fan\_in}}
Args:
uniform (bool): whether to use uniform or normal distribution
fan_in (float32|None): fan_in for MSRAInitializer. If None, it is\
fan_in (float32|None): fan_in for Kaiming uniform Initializer. If None, it is\
inferred from the variable. default is None.
seed (int32): random seed
Note:
It is recommended to set fan_in to None for most cases.
@ -119,23 +59,19 @@ class MSRAInitializer(Initializer):
.. code-block:: python
import paddle
import paddle.fluid as fluid
paddle.enable_static()
x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.MSRA(uniform=False))
import paddle.nn as nn
linear = nn.Linear(2,
4,
weight_attr=nn.initializer.KaimingUniform())
data = paddle.rand([30, 10, 2], dtype='float32')
res = linear(data)
"""
def __init__(self, uniform=True, fan_in=None, seed=0):
"""Constructor for MSRAInitializer
"""
assert uniform is not None
assert seed is not None
super(MSRAInitializer, self).__init__()
self._uniform = uniform
self._fan_in = fan_in
self._seed = seed
def __init__(self, fan_in=None):
super(KaimingUniform, self).__init__(
uniform=True, fan_in=fan_in, seed=0)
def __call__(self, var, block=None):
"""Initialize the input tensor with MSRA initialization.
@ -165,8 +101,8 @@ class MSRAInitializer(Initializer):
var.dtype == VarDesc.VarType.BF16 and not self._uniform):
out_dtype = VarDesc.VarType.FP32
out_var = block.create_var(
name=unique_name.generate(".".join(
['masra_init', var.name, 'tmp'])),
name=unique_name.generate(
".".join(['masra_init', var.name, 'tmp'])),
shape=var.shape,
dtype=out_dtype,
type=VarDesc.VarType.LOD_TENSOR,
@ -217,56 +153,23 @@ class MSRAInitializer(Initializer):
var.op = op
return op
class KaimingUniform(MSRAInitializer):
r"""Implements the Kaiming Uniform initializer
This class implements the weight initialization from the paper
`Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
robust initialization method that particularly considers the rectifier
nonlinearities.
In case of Uniform distribution, the range is [-x, x], where
.. math::
x = \sqrt{\frac{6.0}{fan\_in}}
Args:
fan_in (float32|None): fan_in for Kaiming uniform Initializer. If None, it is\
inferred from the variable. default is None.
Note:
It is recommended to set fan_in to None for most cases.
Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
linear = nn.Linear(2,
4,
weight_attr=nn.initializer.KaimingUniform())
data = paddle.rand([30, 10, 2], dtype='float32')
res = linear(data)
class DefaultInitializerContext(object):
"""
def __init__(self, fan_in=None):
super(KaimingUniform, self).__init__(
uniform=True, fan_in=fan_in, seed=0)
egs:
with DefaultInitializerContext("kaiming_uniform"):
code for setup_model
"""
def __init__(self, init_type=None):
self.init_type = init_type
def __enter__(self):
from paddlespeech.s2t.modules import align
align.global_init_type = self.init_type
return self
def __exit__(self, exc_type, exc_val, exc_tb):
from paddlespeech.s2t.modules import align
align.global_init_type = None
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
# param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
MSRA = MSRAInitializer

@ -1,44 +0,0 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from espnet(https://github.com/espnet/espnet)
from paddle import nn
from typeguard import check_argument_types
def initialize(model: nn.Layer, init: str):
"""Initialize weights of a neural network module.
Parameters are initialized using the given method or distribution.
Custom initialization routines can be implemented into submodules
Args:
model (nn.Layer): Target.
init (str): Method of initialization.
"""
assert check_argument_types()
if init == "xavier_uniform":
nn.initializer.set_global_initializer(nn.initializer.XavierUniform(),
nn.initializer.Constant())
elif init == "xavier_normal":
nn.initializer.set_global_initializer(nn.initializer.XavierNormal(),
nn.initializer.Constant())
elif init == "kaiming_uniform":
nn.initializer.set_global_initializer(nn.initializer.KaimingUniform(),
nn.initializer.KaimingUniform())
elif init == "kaiming_normal":
nn.initializer.set_global_initializer(nn.initializer.KaimingNormal(),
nn.initializer.Constant())
else:
raise ValueError("Unknown initialization: " + init)

@ -17,6 +17,7 @@
import paddle
from paddle import nn
from paddlespeech.s2t.modules.align import Linear
from paddlespeech.s2t.utils.log import Log
logger = Log(__name__).getlog()
@ -44,10 +45,10 @@ class PositionwiseFeedForward(nn.Layer):
activation (paddle.nn.Layer): Activation function
"""
super().__init__()
self.w_1 = nn.Linear(idim, hidden_units)
self.w_1 = Linear(idim, hidden_units)
self.activation = activation
self.dropout = nn.Dropout(dropout_rate)
self.w_2 = nn.Linear(hidden_units, idim)
self.w_2 = Linear(hidden_units, idim)
def forward(self, xs: paddle.Tensor) -> paddle.Tensor:
"""Forward function.

@ -19,6 +19,9 @@ from typing import Tuple
import paddle
from paddle import nn
from paddlespeech.s2t.modules.align import Conv2D
from paddlespeech.s2t.modules.align import LayerNorm
from paddlespeech.s2t.modules.align import Linear
from paddlespeech.s2t.modules.embedding import PositionalEncoding
from paddlespeech.s2t.utils.log import Log
@ -60,8 +63,8 @@ class LinearNoSubsampling(BaseSubsampling):
"""
super().__init__(pos_enc_class)
self.out = nn.Sequential(
nn.Linear(idim, odim),
nn.LayerNorm(odim, epsilon=1e-12),
Linear(idim, odim),
LayerNorm(odim, epsilon=1e-12),
nn.Dropout(dropout_rate),
nn.ReLU(), )
self.right_context = 0
@ -108,12 +111,12 @@ class Conv2dSubsampling4(Conv2dSubsampling):
"""
super().__init__(pos_enc_class)
self.conv = nn.Sequential(
nn.Conv2D(1, odim, 3, 2),
Conv2D(1, odim, 3, 2),
nn.ReLU(),
nn.Conv2D(odim, odim, 3, 2),
Conv2D(odim, odim, 3, 2),
nn.ReLU(), )
self.out = nn.Sequential(
nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim))
Linear(odim * (((idim - 1) // 2 - 1) // 2), odim))
self.subsampling_rate = 4
# The right context for every conv layer is computed by:
# (kernel_size - 1) * frame_rate_of_this_layer
@ -160,13 +163,13 @@ class Conv2dSubsampling6(Conv2dSubsampling):
"""
super().__init__(pos_enc_class)
self.conv = nn.Sequential(
nn.Conv2D(1, odim, 3, 2),
Conv2D(1, odim, 3, 2),
nn.ReLU(),
nn.Conv2D(odim, odim, 5, 3),
Conv2D(odim, odim, 5, 3),
nn.ReLU(), )
# O = (I - F + Pstart + Pend) // S + 1
# when Padding == 0, O = (I - F - S) // S
self.linear = nn.Linear(odim * (((idim - 1) // 2 - 2) // 3), odim)
self.linear = Linear(odim * (((idim - 1) // 2 - 2) // 3), odim)
# The right context for every conv layer is computed by:
# (kernel_size - 1) * frame_rate_of_this_layer
# 10 = (3 - 1) * 1 + (5 - 1) * 2
@ -212,14 +215,14 @@ class Conv2dSubsampling8(Conv2dSubsampling):
"""
super().__init__(pos_enc_class)
self.conv = nn.Sequential(
nn.Conv2D(1, odim, 3, 2),
Conv2D(1, odim, 3, 2),
nn.ReLU(),
nn.Conv2D(odim, odim, 3, 2),
Conv2D(odim, odim, 3, 2),
nn.ReLU(),
nn.Conv2D(odim, odim, 3, 2),
Conv2D(odim, odim, 3, 2),
nn.ReLU(), )
self.linear = nn.Linear(odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2),
odim)
self.linear = Linear(odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2),
odim)
self.subsampling_rate = 8
# The right context for every conv layer is computed by:
# (kernel_size - 1) * frame_rate_of_this_layer

Loading…
Cancel
Save