mv ctc_beam_search_decoder into deep_speech_2/

pull/2/head
Yibing Liu 8 years ago
parent e016778e20
commit c943ca79ac

@ -0,0 +1,162 @@
## This is a prototype of ctc beam search decoder
import copy
import random
import numpy as np
# vocab = blank + space + English characters
#vocab = ['-', ' '] + [chr(i) for i in range(97, 123)]
vocab = ['-', '_', 'a']
def ids_str2list(ids_str):
ids_str = ids_str.split(' ')
ids_list = [int(elem) for elem in ids_str]
return ids_list
def ids_list2str(ids_list):
ids_str = [str(elem) for elem in ids_list]
ids_str = ' '.join(ids_str)
return ids_str
def ids_id2token(ids_list):
ids_str = ''
for ids in ids_list:
ids_str += vocab[ids]
return ids_str
def ctc_beam_search_decoder(input_probs_matrix,
beam_size,
max_time_steps=None,
lang_model=None,
alpha=1.0,
beta=1.0,
blank_id=0,
space_id=1,
num_results_per_sample=None):
'''
beam search decoder for CTC-trained network, called outside of the recurrent group.
adapted from Algorithm 1 in https://arxiv.org/abs/1408.2873.
param input_probs_matrix: probs matrix for input sequence, row major
type input_probs_matrix: 2D matrix.
param beam_size: width for beam search
type beam_size: int
max_time_steps: maximum steps' number for input sequence, <=len(input_probs_matrix)
type max_time_steps: int
lang_model: language model for scoring
type lang_model: function
......
'''
if num_results_per_sample is None:
num_results_per_sample = beam_size
assert num_results_per_sample <= beam_size
if max_time_steps is None:
max_time_steps = len(input_probs_matrix)
else:
max_time_steps = min(max_time_steps, len(input_probs_matrix))
assert max_time_steps > 0
vocab_dim = len(input_probs_matrix[0])
assert blank_id < vocab_dim
assert space_id < vocab_dim
## initialize
start_id = -1
# the set containing selected prefixes
prefix_set_prev = {str(start_id): 1.0}
probs_b, probs_nb = {str(start_id): 1.0}, {str(start_id): 0.0}
## extend prefix in loop
for time_step in range(max_time_steps):
# the set containing candidate prefixes
prefix_set_next = {}
probs_b_cur, probs_nb_cur = {}, {}
for l in prefix_set_prev:
prob = input_probs_matrix[time_step]
# convert ids in string to list
ids_list = ids_str2list(l)
end_id = ids_list[-1]
if not prefix_set_next.has_key(l):
probs_b_cur[l], probs_nb_cur[l] = 0.0, 0.0
# extend prefix by travering vocabulary
for c in range(0, vocab_dim):
if c == blank_id:
probs_b_cur[l] += prob[c] * (probs_b[l] + probs_nb[l])
else:
l_plus = l + ' ' + str(c)
if not prefix_set_next.has_key(l_plus):
probs_b_cur[l_plus], probs_nb_cur[l_plus] = 0.0, 0.0
if c == end_id:
probs_nb_cur[l_plus] += prob[c] * probs_b[l]
probs_nb_cur[l] += prob[c] * probs_nb[l]
elif c == space_id:
lm = 1.0 if lang_model is None \
else np.power(lang_model(ids_list), alpha)
probs_nb_cur[l_plus] += lm * prob[c] * (
probs_b[l] + probs_nb[l])
else:
probs_nb_cur[l_plus] += prob[c] * (
probs_b[l] + probs_nb[l])
# add l_plus into prefix_set_next
prefix_set_next[l_plus] = probs_nb_cur[
l_plus] + probs_b_cur[l_plus]
# add l into prefix_set_next
prefix_set_next[l] = probs_b_cur[l] + probs_nb_cur[l]
# update probs
probs_b, probs_nb = copy.deepcopy(probs_b_cur), copy.deepcopy(
probs_nb_cur)
## store top beam_size prefixes
prefix_set_prev = sorted(
prefix_set_next.iteritems(), key=lambda asd: asd[1], reverse=True)
if beam_size < len(prefix_set_prev):
prefix_set_prev = prefix_set_prev[:beam_size]
prefix_set_prev = dict(prefix_set_prev)
beam_result = []
for (seq, prob) in prefix_set_prev.items():
if prob > 0.0:
ids_list = ids_str2list(seq)
log_prob = np.log(prob)
beam_result.append([log_prob, ids_list[1:]])
## output top beam_size decoding results
beam_result = sorted(beam_result, key=lambda asd: asd[0], reverse=True)
if num_results_per_sample < beam_size:
beam_result = beam_result[:num_results_per_sample]
return beam_result
def language_model(input):
# TODO
return random.uniform(0, 1)
def simple_test():
input_probs_matrix = [[0.1, 0.3, 0.6], [0.2, 0.1, 0.7], [0.5, 0.2, 0.3]]
beam_result = ctc_beam_search_decoder(
input_probs_matrix=input_probs_matrix,
beam_size=20,
blank_id=0,
space_id=1, )
print "\nbeam search output:"
for result in beam_result:
print("%6f\t%s" % (result[0], ids_id2token(result[1])))
if __name__ == '__main__':
simple_test()

@ -0,0 +1,69 @@
from __future__ import absolute_import
from __future__ import print_function
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
import ctc_beam_search_decoder as tested_decoder
def test_beam_search_decoder():
max_time_steps = 6
beam_size = 20
num_results_per_sample = 20
input_prob_matrix_0 = np.asarray(
[
[0.30999, 0.309938, 0.0679938, 0.0673362, 0.0708352, 0.173908],
[0.215136, 0.439699, 0.0370931, 0.0393967, 0.0381581, 0.230517],
[0.199959, 0.489485, 0.0233221, 0.0251417, 0.0233289, 0.238763],
[0.279611, 0.452966, 0.0204795, 0.0209126, 0.0194803, 0.20655],
[0.51286, 0.288951, 0.0243026, 0.0220788, 0.0219297, 0.129878],
# Random entry added in at time=5
[0.155251, 0.164444, 0.173517, 0.176138, 0.169979, 0.160671]
],
dtype=np.float32)
# Add arbitrary offset - this is fine
input_log_prob_matrix_0 = np.log(input_prob_matrix_0) #+ 2.0
# len max_time_steps array of batch_size x depth matrices
inputs = ([
input_log_prob_matrix_0[t, :][np.newaxis, :]
for t in range(max_time_steps)
])
inputs_t = [ops.convert_to_tensor(x) for x in inputs]
inputs_t = array_ops.stack(inputs_t)
# run CTC beam search decoder in tensorflow
with tf.Session() as sess:
decoded, log_probabilities = tf.nn.ctc_beam_search_decoder(
inputs_t, [max_time_steps],
beam_width=beam_size,
top_paths=num_results_per_sample,
merge_repeated=False)
tf_decoded = sess.run(decoded)
tf_log_probs = sess.run(log_probabilities)
# run tested CTC beam search decoder
beam_result = tested_decoder.ctc_beam_search_decoder(
input_probs_matrix=input_prob_matrix_0,
beam_size=beam_size,
blank_id=5, # default blank_id in tensorflow decoder is (num classes-1)
space_id=4, # doesn't matter
max_time_steps=max_time_steps,
num_results_per_sample=num_results_per_sample)
# compare decoding result
print(
"{tf_decoder log probs} \t {tested_decoder log probs}: {tf_decoder result} {tested_decoder result}"
)
for index in range(len(beam_result)):
print(('%6f\t%6f: ') % (tf_log_probs[0][index], beam_result[index][0]),
tf_decoded[index].values, ' ', beam_result[index][1])
if __name__ == '__main__':
test_beam_search_decoder()
Loading…
Cancel
Save