Merge pull request #78 from xinghai-sun/ds2_libri

Update librispeech.py for DeepSpeech2.
pull/2/head
Xinghai Sun 8 years ago committed by GitHub
commit e016778e20

@ -18,9 +18,14 @@ For some machines, we also need to install libsndfile1. Details to be added.
```
cd data
python librispeech.py
cat manifest.libri.train-* > manifest.libri.train-all
cd ..
```
After running librispeech.py, we have several "manifest" json files named with a prefix `manifest.libri.`. A manifest file summarizes a speech data set, with each line containing the meta data (i.e. audio filepath, transcription text, audio duration) of each audio file within the data set, in json format.
By `cat manifest.libri.train-* > manifest.libri.train-all`, we simply merge the three seperate sample sets of LibriSpeech (train-clean-100, train-clean-360, train-other-500) into one training set. This is a simple way for merging different data sets.
More help for arguments:
```
@ -32,13 +37,13 @@ python librispeech.py --help
For GPU Training:
```
CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --trainer_count 4
CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --trainer_count 4 --train_manifest_path ./data/manifest.libri.train-all
```
For CPU Training:
```
python train.py --trainer_count 8 --use_gpu False
python train.py --trainer_count 8 --use_gpu False -- train_manifest_path ./data/manifest.libri.train-all
```
More help for arguments:

@ -1,13 +1,14 @@
"""
Download, unpack and create manifest for Librespeech dataset.
Download, unpack and create manifest json files for the Librespeech dataset.
Manifest is a json file with each line containing one audio clip filepath,
its transcription text string, and its duration. It servers as a unified
interfance to organize different data sets.
A manifest is a json file summarizing filelist in a data set, with each line
containing the meta data (i.e. audio filepath, transcription text, audio
duration) of each audio file in the data set.
"""
import paddle.v2 as paddle
from paddle.v2.dataset.common import md5file
import distutils.util
import os
import wget
import tarfile
@ -27,7 +28,9 @@ URL_TRAIN_CLEAN_360 = URL_ROOT + "/train-clean-360.tar.gz"
URL_TRAIN_OTHER_500 = URL_ROOT + "/train-other-500.tar.gz"
MD5_TEST_CLEAN = "32fa31d27d2e1cad72775fee3f4849a9"
MD5_TEST_OTHER = "fb5a50374b501bb3bac4815ee91d3135"
MD5_DEV_CLEAN = "42e2234ba48799c1f50f24a7926300a1"
MD5_DEV_OTHER = "c8d0bcc9cca99d4f8b62fcc847357931"
MD5_TRAIN_CLEAN_100 = "2a93770f6d5c6c964bc36631d331a522"
MD5_TRAIN_CLEAN_360 = "c0e676e450a7ff2f54aeade5171606fa"
MD5_TRAIN_OTHER_500 = "d1a0fd59409feb2c614ce4d30c387708"
@ -44,6 +47,13 @@ parser.add_argument(
default="manifest.libri",
type=str,
help="Filepath prefix for output manifests. (default: %(default)s)")
parser.add_argument(
"--full_download",
default="True",
type=distutils.util.strtobool,
help="Download all datasets for Librispeech."
" If False, only download a minimal requirement (test-clean, dev-clean"
" train-clean-100). (default: %(default)s)")
args = parser.parse_args()
@ -57,7 +67,10 @@ def download(url, md5sum, target_dir):
print("Downloading %s ..." % url)
wget.download(url, target_dir)
print("\nMD5 Chesksum %s ..." % filepath)
assert md5file(filepath) == md5sum, "MD5 checksum failed."
if not md5file(filepath) == md5sum:
raise RuntimeError("MD5 checksum failed.")
else:
print("File exists, skip downloading. (%s)" % filepath)
return filepath
@ -69,21 +82,17 @@ def unpack(filepath, target_dir):
tar = tarfile.open(filepath)
tar.extractall(target_dir)
tar.close()
return target_dir
def create_manifest(data_dir, manifest_path):
"""
Create a manifest file summarizing the dataset (list of filepath and meta
data).
Each line of the manifest contains one audio clip filepath, its
transcription text string, and its duration. Manifest file servers as a
unified interfance to organize data sets.
Create a manifest json file summarizing the data set, with each line
containing the meta data (i.e. audio filepath, transcription text, audio
duration) of each audio file within the data set.
"""
print("Creating manifest %s ..." % manifest_path)
json_lines = []
for subfolder, _, filelist in os.walk(data_dir):
for subfolder, _, filelist in sorted(os.walk(data_dir)):
text_filelist = [
filename for filename in filelist if filename.endswith('trans.txt')
]
@ -111,9 +120,16 @@ def prepare_dataset(url, md5sum, target_dir, manifest_path):
"""
Download, unpack and create summmary manifest file.
"""
filepath = download(url, md5sum, target_dir)
unpacked_dir = unpack(filepath, target_dir)
create_manifest(unpacked_dir, manifest_path)
if not os.path.exists(os.path.join(target_dir, "LibriSpeech")):
# download
filepath = download(url, md5sum, target_dir)
# unpack
unpack(filepath, target_dir)
else:
print("Skip downloading and unpacking. Data already exists in %s." %
target_dir)
# create manifest json file
create_manifest(target_dir, manifest_path)
def main():
@ -132,6 +148,27 @@ def main():
md5sum=MD5_TRAIN_CLEAN_100,
target_dir=os.path.join(args.target_dir, "train-clean-100"),
manifest_path=args.manifest_prefix + ".train-clean-100")
if args.full_download:
prepare_dataset(
url=URL_TEST_OTHER,
md5sum=MD5_TEST_OTHER,
target_dir=os.path.join(args.target_dir, "test-other"),
manifest_path=args.manifest_prefix + ".test-other")
prepare_dataset(
url=URL_DEV_OTHER,
md5sum=MD5_DEV_OTHER,
target_dir=os.path.join(args.target_dir, "dev-other"),
manifest_path=args.manifest_prefix + ".dev-other")
prepare_dataset(
url=URL_TRAIN_CLEAN_360,
md5sum=MD5_TRAIN_CLEAN_360,
target_dir=os.path.join(args.target_dir, "train-clean-360"),
manifest_path=args.manifest_prefix + ".train-clean-360")
prepare_dataset(
url=URL_TRAIN_OTHER_500,
md5sum=MD5_TRAIN_OTHER_500,
target_dir=os.path.join(args.target_dir, "train-other-500"),
manifest_path=args.manifest_prefix + ".train-other-500")
if __name__ == '__main__':

Loading…
Cancel
Save