improve external scorer

pull/2/head
Yibing Liu 8 years ago
parent b046e651e7
commit 9fda521ee3

@ -6,6 +6,7 @@ from itertools import groupby
import numpy as np
import copy
import kenlm
import os
def ctc_best_path_decode(probs_seq, vocabulary):
@ -54,19 +55,16 @@ class Scorer(object):
def __init__(self, alpha, beta, model_path):
self._alpha = alpha
self._beta = beta
if not os.path.isfile(model_path):
raise IOError("Invaid language model path: %s" % model_path)
self._language_model = kenlm.LanguageModel(model_path)
# language model scoring
def language_model_score(self, sentence, bos=True, eos=False):
words = sentence.strip().split(' ')
length = len(words)
if length == 1:
log_prob = self._language_model.score(sentence, bos, eos)
else:
prefix_sent = ' '.join(words[0:length - 1])
log_prob = self._language_model.score(sentence, bos, eos) \
- self._language_model.score(prefix_sent, bos, eos)
return np.power(10, log_prob)
# n-gram language model scoring
def language_model_score(self, sentence):
#log prob of last word
log_cond_prob = list(
self._language_model.full_scores(sentence, eos=False))[-1][0]
return np.power(10, log_cond_prob)
# word insertion term
def word_count(self, sentence):
@ -74,8 +72,8 @@ class Scorer(object):
return len(words)
# execute evaluation
def evaluate(self, sentence, bos=True, eos=False):
lm = self.language_model_score(sentence, bos, eos)
def evaluate(self, sentence):
lm = self.language_model_score(sentence)
word_cnt = self.word_count(sentence)
score = np.power(lm, self._alpha) \
* np.power(word_cnt, self._beta)

Loading…
Cancel
Save