|
|
@ -6,6 +6,7 @@ from itertools import groupby
|
|
|
|
import numpy as np
|
|
|
|
import numpy as np
|
|
|
|
import copy
|
|
|
|
import copy
|
|
|
|
import kenlm
|
|
|
|
import kenlm
|
|
|
|
|
|
|
|
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def ctc_best_path_decode(probs_seq, vocabulary):
|
|
|
|
def ctc_best_path_decode(probs_seq, vocabulary):
|
|
|
@ -54,19 +55,16 @@ class Scorer(object):
|
|
|
|
def __init__(self, alpha, beta, model_path):
|
|
|
|
def __init__(self, alpha, beta, model_path):
|
|
|
|
self._alpha = alpha
|
|
|
|
self._alpha = alpha
|
|
|
|
self._beta = beta
|
|
|
|
self._beta = beta
|
|
|
|
|
|
|
|
if not os.path.isfile(model_path):
|
|
|
|
|
|
|
|
raise IOError("Invaid language model path: %s" % model_path)
|
|
|
|
self._language_model = kenlm.LanguageModel(model_path)
|
|
|
|
self._language_model = kenlm.LanguageModel(model_path)
|
|
|
|
|
|
|
|
|
|
|
|
# language model scoring
|
|
|
|
# n-gram language model scoring
|
|
|
|
def language_model_score(self, sentence, bos=True, eos=False):
|
|
|
|
def language_model_score(self, sentence):
|
|
|
|
words = sentence.strip().split(' ')
|
|
|
|
#log prob of last word
|
|
|
|
length = len(words)
|
|
|
|
log_cond_prob = list(
|
|
|
|
if length == 1:
|
|
|
|
self._language_model.full_scores(sentence, eos=False))[-1][0]
|
|
|
|
log_prob = self._language_model.score(sentence, bos, eos)
|
|
|
|
return np.power(10, log_cond_prob)
|
|
|
|
else:
|
|
|
|
|
|
|
|
prefix_sent = ' '.join(words[0:length - 1])
|
|
|
|
|
|
|
|
log_prob = self._language_model.score(sentence, bos, eos) \
|
|
|
|
|
|
|
|
- self._language_model.score(prefix_sent, bos, eos)
|
|
|
|
|
|
|
|
return np.power(10, log_prob)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# word insertion term
|
|
|
|
# word insertion term
|
|
|
|
def word_count(self, sentence):
|
|
|
|
def word_count(self, sentence):
|
|
|
@ -74,8 +72,8 @@ class Scorer(object):
|
|
|
|
return len(words)
|
|
|
|
return len(words)
|
|
|
|
|
|
|
|
|
|
|
|
# execute evaluation
|
|
|
|
# execute evaluation
|
|
|
|
def evaluate(self, sentence, bos=True, eos=False):
|
|
|
|
def evaluate(self, sentence):
|
|
|
|
lm = self.language_model_score(sentence, bos, eos)
|
|
|
|
lm = self.language_model_score(sentence)
|
|
|
|
word_cnt = self.word_count(sentence)
|
|
|
|
word_cnt = self.word_count(sentence)
|
|
|
|
score = np.power(lm, self._alpha) \
|
|
|
|
score = np.power(lm, self._alpha) \
|
|
|
|
* np.power(word_cnt, self._beta)
|
|
|
|
* np.power(word_cnt, self._beta)
|
|
|
|