add vox2 data into VoxCeleb class

pull/1523/head
xiongxinlei 3 years ago
parent 584a2c0e39
commit 8ed5c287a3

@ -23,39 +23,6 @@ VoxCeleb2 stores files with the m4a audio format. To use them in PaddleSpeech,
ffmpeg -y -i %s -ac 1 -vn -acodec pcm_s16le -ar 16000 %s
```
``` shell
# copy this to root directory of data and
# chmod a+x convert.sh
# ./convert.sh
# https://unix.stackexchange.com/questions/103920/parallelize-a-bash-for-loop
open_sem(){
mkfifo pipe-$$
exec 3<>pipe-$$
rm pipe-$$
local i=$1
for((;i>0;i--)); do
printf %s 000 >&3
done
}
run_with_lock(){
local x
read -u 3 -n 3 x && ((0==x)) || exit $x
(
( "$@"; )
printf '%.3d' $? >&3
)&
}
N=32 # number of vCPU
open_sem $N
for f in $(find . -name "*.m4a"); do
run_with_lock ffmpeg -loglevel panic -i "$f" -ar 16000 "${f%.*}.wav"
done
```
You can do the conversion using ffmpeg https://gist.github.com/seungwonpark/4f273739beef2691cd53b5c39629d830). This operation might take several hours and should be only once.
3. Put all the wav files in a folder called `wav`. You should have something like `voxceleb2/wav/id*/*.wav` (e.g, `voxceleb2/wav/id00012/21Uxsk56VDQ/00001.wav`)
4.

@ -1,17 +1,32 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import numpy as np
import paddle
from paddleaudio.paddleaudio.datasets.voxceleb import VoxCeleb1
from paddleaudio.paddleaudio.datasets.voxceleb import VoxCeleb
from paddlespeech.s2t.utils.log import Log
from paddlespeech.vector.io.augment import build_augment_pipeline
from paddlespeech.vector.training.seeding import seed_everything
logger = Log(__name__).getlog()
def main(args):
# stage0: set the cpu device, all data prepare process will be done in cpu mode
paddle.set_device("cpu")
# set the random seed, it is a must for multiprocess training
@ -19,14 +34,18 @@ def main(args):
# stage 1: generate the voxceleb csv file
# Note: this may occurs c++ execption, but the program will execute fine
# so we can ignore the execption
train_dataset = VoxCeleb1('train', target_dir=args.data_dir)
dev_dataset = VoxCeleb1('dev', target_dir=args.data_dir)
# so we ignore the execption
# we explicitly pass the vox2 base path to data prepare and generate the audio info
train_dataset = VoxCeleb(
'train', target_dir=args.data_dir, vox2_base_path=args.vox2_base_path)
dev_dataset = VoxCeleb(
'dev', target_dir=args.data_dir, vox2_base_path=args.vox2_base_path)
# stage 2: generate the augment noise csv file
if args.augment:
augment_pipeline = build_augment_pipeline(target_dir=args.data_dir)
if __name__ == "__main__":
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
@ -38,6 +57,10 @@ if __name__ == "__main__":
default="./data/",
type=str,
help="data directory")
parser.add_argument("--vox2-base-path",
default=None,
type=str,
help="vox2 base path, where is store the wav audio")
parser.add_argument("--augment",
action="store_true",
default=False,

@ -1,3 +1,17 @@
#!/bin/bash
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
export MAIN_ROOT=`realpath ${PWD}/../../../`
export PATH=${MAIN_ROOT}:${MAIN_ROOT}/utils:${PATH}
@ -10,5 +24,5 @@ export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/lib/
MODEL=ecapa-tdnn
MODEL=ecapa_tdnn
export BIN_DIR=${MAIN_ROOT}/paddlespeech/vector/exps/${MODEL}

@ -1,4 +1,17 @@
#!/bin/bash
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
. ./path.sh
set -e
@ -11,19 +24,30 @@ set -e
# stage 3: extract the training embeding to train the LDA and PLDA
######################################################################
# you can set the variable PPAUDIO_HOME to specifiy the downloaded the vox1 and vox2 dataset
# default the dataset is the ~/.paddleaudio/
# we can set the variable PPAUDIO_HOME to specifiy the root directory of the downloaded vox1 and vox2 dataset
# default the dataset will be stored in the ~/.paddleaudio/
# the vox2 dataset is stored in m4a format, we need to convert the audio from m4a to wav yourself
# and put all of them to ${PPAUDIO_HOME}/datasets/vox2
# we will find the wav from ${PPAUDIO_HOME}/datasets/vox1/wav and ${PPAUDIO_HOME}/datasets/vox2/wav
# export PPAUDIO_HOME=
stage=0
dir=data.bak/ # data directory
# data directory
# if we set the variable ${dir}, we will store the wav info to this directory
# otherwise, we will store the wav info to vox1 and vox2 directory respectively
dir=data/
exp_dir=exp/ecapa-tdnn/ # experiment directory
# vox2 wav path, we must convert the m4a format to wav format
# and store them in the ${PPAUDIO_HOME}/datasets/vox2/wav/ directory
vox2_base_path=${PPAUDIO_HOME}/datasets/vox2/wav/
mkdir -p ${dir}
mkdir -p ${exp_dir}
if [ $stage -le 0 ]; then
# stage 0: data prepare for vox1 and vox2, vox2 must be converted from m4a to wav
python3 local/data_prepare.py --data-dir ${dir} --augment
python3 local/data_prepare.py \
--data-dir ${dir} --augment --vox2-base-path ${vox2_base_path}
fi
if [ $stage -le 1 ]; then

@ -15,5 +15,5 @@ from .esc50 import ESC50
from .gtzan import GTZAN
from .tess import TESS
from .urban_sound import UrbanSound8K
from .voxceleb import VoxCeleb1
from .voxceleb import VoxCeleb
from .rirs_noises import OpenRIRNoise

@ -25,10 +25,10 @@ from paddle.io import Dataset
from pathos.multiprocessing import Pool
from tqdm import tqdm
from .dataset import feat_funcs
from ..backends import load as load_audio
from ..utils import DATA_HOME
from ..utils import decompress
from .dataset import feat_funcs
from paddlespeech.s2t.utils.log import Log
from paddlespeech.vector.utils.download import download_and_decompress
from utils.utility import download
@ -36,10 +36,10 @@ from utils.utility import unpack
logger = Log(__name__).getlog()
__all__ = ['VoxCeleb1']
__all__ = ['VoxCeleb']
class VoxCeleb1(Dataset):
class VoxCeleb(Dataset):
source_url = 'https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/'
archieves_audio_dev = [
{
@ -94,8 +94,18 @@ class VoxCeleb1(Dataset):
split_ratio: float=0.9, # train split ratio
seed: int=0,
target_dir: str=None,
vox2_base_path=None,
**kwargs):
"""VoxCeleb data prepare and get the specific dataset audio info
Args:
subset (str, optional): dataset name, such as train, dev, enroll or test. Defaults to 'train'.
feat_type (str, optional): feat type, such raw, melspectrogram(fbank) or mfcc . Defaults to 'raw'.
random_chunk (bool, optional): random select a duration from audio. Defaults to True.
chunk_duration (float, optional): chunk duration if random_chunk flag is set. Defaults to 3.0.
target_dir (str, optional): data dir, audio info will be stored in this directory. Defaults to None.
vox2_base_path (_type_, optional): vox2 directory. vox2 data must be converted from m4a to wav. Defaults to None.
"""
assert subset in self.subsets, \
'Dataset subset must be one in {}, but got {}'.format(self.subsets, subset)
@ -106,19 +116,20 @@ class VoxCeleb1(Dataset):
self.random_chunk = random_chunk
self.chunk_duration = chunk_duration
self.split_ratio = split_ratio
self.target_dir = target_dir if target_dir else VoxCeleb1.base_path
self.target_dir = target_dir if target_dir else VoxCeleb.base_path
self.vox2_base_path = vox2_base_path
# if we set the target dir, we will change the vox data info data from base path to target dir
VoxCeleb1.csv_path = os.path.join(
target_dir, "voxceleb", 'csv') if target_dir else VoxCeleb1.csv_path
VoxCeleb1.meta_path = os.path.join(
VoxCeleb.csv_path = os.path.join(
target_dir, "voxceleb", 'csv') if target_dir else VoxCeleb.csv_path
VoxCeleb.meta_path = os.path.join(
target_dir, "voxceleb",
'meta') if target_dir else VoxCeleb1.meta_path
VoxCeleb1.veri_test_file = os.path.join(VoxCeleb1.meta_path,
'meta') if target_dir else VoxCeleb.meta_path
VoxCeleb.veri_test_file = os.path.join(VoxCeleb.meta_path,
'veri_test2.txt')
# self._data = self._get_data()[:1000] # KP: Small dataset test.
self._data = self._get_data()
super(VoxCeleb1, self).__init__()
super(VoxCeleb, self).__init__()
# Set up a seed to reproduce training or predicting result.
# random.seed(seed)
@ -300,7 +311,14 @@ class VoxCeleb1(Dataset):
# get all the train and dev audios file path
audio_files = []
speakers = set()
for path in [self.wav_path]:
for path in [self.wav_path, self.vox2_base_path]:
# if vox2 directory is not set and vox2 is not a directory
# we will not process this directory
if not path or not os.path.exists(path):
logger.warning(
f"{path} is an invalid path, please check again, "
"and we will ignore the vox2 base path")
continue
for file in glob.glob(
os.path.join(path, "**", "*.wav"), recursive=True):
spk = file.split('/wav/')[1].split('/')[0]

@ -28,6 +28,7 @@ from paddlespeech.vector.training.seeding import seed_everything
logger = Log(__name__).getlog()
def extract_audio_embedding(args, config):
# stage 0: set the training device, cpu or gpu
paddle.set_device(args.device)

@ -17,15 +17,15 @@ import os
import numpy as np
import paddle
from yacs.config import CfgNode
import paddle.nn.functional as F
from paddle.io import BatchSampler
from paddle.io import DataLoader
from tqdm import tqdm
from yacs.config import CfgNode
from paddleaudio.paddleaudio.datasets import VoxCeleb1
from paddlespeech.s2t.utils.log import Log
from paddleaudio.paddleaudio.datasets import VoxCeleb
from paddleaudio.paddleaudio.metric import compute_eer
from paddlespeech.s2t.utils.log import Log
from paddlespeech.vector.io.batch import batch_feature_normalize
from paddlespeech.vector.models.ecapa_tdnn import EcapaTdnn
from paddlespeech.vector.modules.sid_model import SpeakerIdetification
@ -33,6 +33,7 @@ from paddlespeech.vector.training.seeding import seed_everything
logger = Log(__name__).getlog()
def main(args, config):
# stage0: set the training device, cpu or gpu
paddle.set_device(args.device)
@ -44,7 +45,7 @@ def main(args, config):
# stage2: build the speaker verification eval instance with backbone model
model = SpeakerIdetification(
backbone=ecapa_tdnn, num_class=VoxCeleb1.num_speakers)
backbone=ecapa_tdnn, num_class=VoxCeleb.num_speakers)
# stage3: load the pre-trained model
args.load_checkpoint = os.path.abspath(
@ -57,7 +58,7 @@ def main(args, config):
logger.info(f'Checkpoint loaded from {args.load_checkpoint}')
# stage4: construct the enroll and test dataloader
enroll_dataset = VoxCeleb1(
enroll_dataset = VoxCeleb(
subset='enroll',
target_dir=args.data_dir,
feat_type='melspectrogram',
@ -73,7 +74,7 @@ def main(args, config):
num_workers=config.num_workers,
return_list=True,)
test_dataset = VoxCeleb1(
test_dataset = VoxCeleb(
subset='test',
target_dir=args.data_dir,
feat_type='melspectrogram',
@ -145,7 +146,7 @@ def main(args, config):
labels = []
enrol_ids = []
test_ids = []
with open(VoxCeleb1.veri_test_file, 'r') as f:
with open(VoxCeleb.veri_test_file, 'r') as f:
for line in f.readlines():
label, enrol_id, test_id = line.strip().split(' ')
labels.append(int(label))

@ -20,8 +20,9 @@ from paddle.io import BatchSampler
from paddle.io import DataLoader
from paddle.io import DistributedBatchSampler
from yacs.config import CfgNode
from paddleaudio.paddleaudio.compliance.librosa import melspectrogram
from paddleaudio.paddleaudio.datasets.voxceleb import VoxCeleb1
from paddleaudio.paddleaudio.datasets.voxceleb import VoxCeleb
from paddlespeech.s2t.utils.log import Log
from paddlespeech.vector.io.augment import build_augment_pipeline
from paddlespeech.vector.io.augment import waveform_augment
@ -30,13 +31,14 @@ from paddlespeech.vector.io.batch import waveform_collate_fn
from paddlespeech.vector.models.ecapa_tdnn import EcapaTdnn
from paddlespeech.vector.modules.loss import AdditiveAngularMargin
from paddlespeech.vector.modules.loss import LogSoftmaxWrapper
from paddlespeech.vector.training.scheduler import CyclicLRScheduler
from paddlespeech.vector.modules.sid_model import SpeakerIdetification
from paddlespeech.vector.training.scheduler import CyclicLRScheduler
from paddlespeech.vector.training.seeding import seed_everything
from paddlespeech.vector.utils.time import Timer
logger = Log(__name__).getlog()
def main(args, config):
# stage0: set the training device, cpu or gpu
paddle.set_device(args.device)
@ -50,8 +52,8 @@ def main(args, config):
# stage2: data prepare, such vox1 and vox2 data, and augment noise data and pipline
# note: some cmd must do in rank==0, so wo will refactor the data prepare code
train_dataset = VoxCeleb1('train', target_dir=args.data_dir)
dev_dataset = VoxCeleb1('dev', target_dir=args.data_dir)
train_dataset = VoxCeleb('train', target_dir=args.data_dir)
dev_dataset = VoxCeleb('dev', target_dir=args.data_dir)
if args.augment:
augment_pipeline = build_augment_pipeline(target_dir=args.data_dir)
@ -63,7 +65,7 @@ def main(args, config):
# stage4: build the speaker verification train instance with backbone model
model = SpeakerIdetification(
backbone=ecapa_tdnn, num_class=VoxCeleb1.num_speakers)
backbone=ecapa_tdnn, num_class=VoxCeleb.num_speakers)
# stage5: build the optimizer, we now only construct the AdamW optimizer
lr_schedule = CyclicLRScheduler(

@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this is modified from https://github.com/speechbrain/speechbrain/blob/085be635c07f16d42cd1295045bc46c407f1e15b/speechbrain/lobes/augment.py
import math
import os
from typing import List

@ -19,16 +19,6 @@ import paddle.nn.functional as F
def length_to_mask(length, max_len=None, dtype=None):
"""_summary_
Args:
length (_type_): _description_
max_len (_type_, optional): _description_. Defaults to None.
dtype (_type_, optional): _description_. Defaults to None.
Returns:
_type_: _description_
"""
assert len(length.shape) == 1
if max_len is None:
@ -60,15 +50,15 @@ class Conv1d(nn.Layer):
"""_summary_
Args:
in_channels (_type_): _description_
out_channels (_type_): _description_
kernel_size (_type_): _description_
stride (int, optional): _description_. Defaults to 1.
padding (str, optional): _description_. Defaults to "same".
dilation (int, optional): _description_. Defaults to 1.
groups (int, optional): _description_. Defaults to 1.
bias (bool, optional): _description_. Defaults to True.
padding_mode (str, optional): _description_. Defaults to "reflect".
in_channels (int): intput channel or input data dimensions
out_channels (int): output channel or output data dimensions
kernel_size (int): kernel size of 1-d convolution
stride (int, optional): strid in 1-d convolution . Defaults to 1.
padding (str, optional): padding value. Defaults to "same".
dilation (int, optional): dilation in 1-d convolution. Defaults to 1.
groups (int, optional): groups in 1-d convolution. Defaults to 1.
bias (bool, optional): bias in 1-d convolution . Defaults to True.
padding_mode (str, optional): padding mode. Defaults to "reflect".
"""
super().__init__()
@ -89,17 +79,6 @@ class Conv1d(nn.Layer):
bias_attr=bias, )
def forward(self, x):
"""_summary_
Args:
x (_type_): _description_
Raises:
ValueError: _description_
Returns:
_type_: _description_
"""
if self.padding == "same":
x = self._manage_padding(x, self.kernel_size, self.dilation,
self.stride)
@ -109,17 +88,6 @@ class Conv1d(nn.Layer):
return self.conv(x)
def _manage_padding(self, x, kernel_size: int, dilation: int, stride: int):
"""_summary_
Args:
x (_type_): _description_
kernel_size (int): _description_
dilation (int): _description_
stride (int): _description_
Returns:
_type_: _description_
"""
L_in = x.shape[-1] # Detecting input shape
padding = self._get_padding_elem(L_in, stride, kernel_size,
dilation) # Time padding
@ -133,17 +101,6 @@ class Conv1d(nn.Layer):
stride: int,
kernel_size: int,
dilation: int):
"""_summary_
Args:
L_in (int): _description_
stride (int): _description_
kernel_size (int): _description_
dilation (int): _description_
Returns:
_type_: _description_
"""
if stride > 1:
n_steps = math.ceil(((L_in - kernel_size * dilation) / stride) + 1)
L_out = stride * (n_steps - 1) + kernel_size * dilation
@ -220,8 +177,8 @@ class Res2NetBlock(nn.Layer):
Args:
in_channels (int): input channels or input dimensions
out_channels (int): output channels or output dimensions
scale (int, optional): _description_. Defaults to 8.
dilation (int, optional): _description_. Defaults to 1.
scale (int, optional): scale in res2net bolck. Defaults to 8.
dilation (int, optional): dilation of 1-d convolution in TDNN block. Defaults to 1.
"""
super().__init__()
assert in_channels % scale == 0
@ -358,15 +315,16 @@ class SERes2NetBlock(nn.Layer):
dilation=1,
activation=nn.ReLU, ):
"""Implementation of Squeeze-Extraction Res2Blocks in ECAPA-TDNN network model
The paper is refered "Squeeze-and-Excitation Networks"
whose url is: https://arxiv.org/pdf/1709.01507.pdf
Args:
in_channels (int): input channels or input data dimensions
out_channels (_type_): _description_
res2net_scale (int, optional): _description_. Defaults to 8.
se_channels (int, optional): _description_. Defaults to 128.
kernel_size (int, optional): _description_. Defaults to 1.
dilation (int, optional): _description_. Defaults to 1.
activation (_type_, optional): _description_. Defaults to nn.ReLU.
out_channels (int): output channels or output data dimensions
res2net_scale (int, optional): scale in the res2net block. Defaults to 8.
se_channels (int, optional): embedding dimensions of res2net block. Defaults to 128.
kernel_size (int, optional): kernel size of 1-d convolution in TDNN block. Defaults to 1.
dilation (int, optional): dilation of 1-d convolution in TDNN block. Defaults to 1.
activation (paddle.nn.class, optional): activation function. Defaults to nn.ReLU.
"""
super().__init__()
self.out_channels = out_channels
@ -419,7 +377,21 @@ class EcapaTdnn(nn.Layer):
res2net_scale=8,
se_channels=128,
global_context=True, ):
"""Implementation of ECAPA-TDNN backbone model network
The paper is refered as "ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification"
whose url is: https://arxiv.org/abs/2005.07143
Args:
input_size (_type_): input fature dimension
lin_neurons (int, optional): speaker embedding size. Defaults to 192.
activation (paddle.nn.class, optional): activation function. Defaults to nn.ReLU.
channels (list, optional): inter embedding dimension. Defaults to [512, 512, 512, 512, 1536].
kernel_sizes (list, optional): kernel size of 1-d convolution in TDNN block . Defaults to [5, 3, 3, 3, 1].
dilations (list, optional): dilations of 1-d convolution in TDNN block. Defaults to [1, 2, 3, 4, 1].
attention_channels (int, optional): attention dimensions. Defaults to 128.
res2net_scale (int, optional): scale value in res2net. Defaults to 8.
se_channels (int, optional): dimensions of squeeze-excitation block. Defaults to 128.
global_context (bool, optional): global context flag. Defaults to True.
"""
super().__init__()
assert len(channels) == len(kernel_sizes)
assert len(channels) == len(dilations)

Loading…
Cancel
Save