@ -19,16 +19,6 @@ import paddle.nn.functional as F
def length_to_mask ( length , max_len = None , dtype = None ) :
def length_to_mask ( length , max_len = None , dtype = None ) :
""" _summary_
Args :
length ( _type_ ) : _description_
max_len ( _type_ , optional ) : _description_ . Defaults to None .
dtype ( _type_ , optional ) : _description_ . Defaults to None .
Returns :
_type_ : _description_
"""
assert len ( length . shape ) == 1
assert len ( length . shape ) == 1
if max_len is None :
if max_len is None :
@ -60,15 +50,15 @@ class Conv1d(nn.Layer):
""" _summary_
""" _summary_
Args :
Args :
in_channels ( _type_ ) : _description_
in_channels ( int ) : intput channel or input data dimensions
out_channels ( _type_ ) : _description_
out_channels ( int ) : output channel or output data dimensions
kernel_size ( _type_ ) : _description_
kernel_size ( int ) : kernel size of 1 - d convolution
stride ( int , optional ) : _description_ . Defaults to 1.
stride ( int , optional ) : strid in 1 - d convolution . Defaults to 1.
padding ( str , optional ) : _description_ . Defaults to " same " .
padding ( str , optional ) : padding value . Defaults to " same " .
dilation ( int , optional ) : _description_ . Defaults to 1.
dilation ( int , optional ) : dilation in 1 - d convolution . Defaults to 1.
groups ( int , optional ) : _description_ . Defaults to 1.
groups ( int , optional ) : groups in 1 - d convolution . Defaults to 1.
bias ( bool , optional ) : _description_ . Defaults to True .
bias ( bool , optional ) : bias in 1 - d convolution . Defaults to True .
padding_mode ( str , optional ) : _description_ . Defaults to " reflect " .
padding_mode ( str , optional ) : padding mode . Defaults to " reflect " .
"""
"""
super ( ) . __init__ ( )
super ( ) . __init__ ( )
@ -89,17 +79,6 @@ class Conv1d(nn.Layer):
bias_attr = bias , )
bias_attr = bias , )
def forward ( self , x ) :
def forward ( self , x ) :
""" _summary_
Args :
x ( _type_ ) : _description_
Raises :
ValueError : _description_
Returns :
_type_ : _description_
"""
if self . padding == " same " :
if self . padding == " same " :
x = self . _manage_padding ( x , self . kernel_size , self . dilation ,
x = self . _manage_padding ( x , self . kernel_size , self . dilation ,
self . stride )
self . stride )
@ -109,17 +88,6 @@ class Conv1d(nn.Layer):
return self . conv ( x )
return self . conv ( x )
def _manage_padding ( self , x , kernel_size : int , dilation : int , stride : int ) :
def _manage_padding ( self , x , kernel_size : int , dilation : int , stride : int ) :
""" _summary_
Args :
x ( _type_ ) : _description_
kernel_size ( int ) : _description_
dilation ( int ) : _description_
stride ( int ) : _description_
Returns :
_type_ : _description_
"""
L_in = x . shape [ - 1 ] # Detecting input shape
L_in = x . shape [ - 1 ] # Detecting input shape
padding = self . _get_padding_elem ( L_in , stride , kernel_size ,
padding = self . _get_padding_elem ( L_in , stride , kernel_size ,
dilation ) # Time padding
dilation ) # Time padding
@ -133,17 +101,6 @@ class Conv1d(nn.Layer):
stride : int ,
stride : int ,
kernel_size : int ,
kernel_size : int ,
dilation : int ) :
dilation : int ) :
""" _summary_
Args :
L_in ( int ) : _description_
stride ( int ) : _description_
kernel_size ( int ) : _description_
dilation ( int ) : _description_
Returns :
_type_ : _description_
"""
if stride > 1 :
if stride > 1 :
n_steps = math . ceil ( ( ( L_in - kernel_size * dilation ) / stride ) + 1 )
n_steps = math . ceil ( ( ( L_in - kernel_size * dilation ) / stride ) + 1 )
L_out = stride * ( n_steps - 1 ) + kernel_size * dilation
L_out = stride * ( n_steps - 1 ) + kernel_size * dilation
@ -220,8 +177,8 @@ class Res2NetBlock(nn.Layer):
Args :
Args :
in_channels ( int ) : input channels or input dimensions
in_channels ( int ) : input channels or input dimensions
out_channels ( int ) : output channels or output dimensions
out_channels ( int ) : output channels or output dimensions
scale ( int , optional ) : _description_ . Defaults to 8.
scale ( int , optional ) : scale in res2net bolck . Defaults to 8.
dilation ( int , optional ) : _description_ . Defaults to 1.
dilation ( int , optional ) : dilation of 1 - d convolution in TDNN block . Defaults to 1.
"""
"""
super ( ) . __init__ ( )
super ( ) . __init__ ( )
assert in_channels % scale == 0
assert in_channels % scale == 0
@ -358,15 +315,16 @@ class SERes2NetBlock(nn.Layer):
dilation = 1 ,
dilation = 1 ,
activation = nn . ReLU , ) :
activation = nn . ReLU , ) :
""" Implementation of Squeeze-Extraction Res2Blocks in ECAPA-TDNN network model
""" Implementation of Squeeze-Extraction Res2Blocks in ECAPA-TDNN network model
The paper is refered " Squeeze-and-Excitation Networks "
whose url is : https : / / arxiv . org / pdf / 1709.01507 . pdf
Args :
Args :
in_channels ( int ) : input channels or input data dimensions
in_channels ( int ) : input channels or input data dimensions
out_channels ( _type_ ) : _description_
out_channels ( int ) : output channels or output data dimensions
res2net_scale ( int , optional ) : _description_ . Defaults to 8.
res2net_scale ( int , optional ) : scale in the res2net block . Defaults to 8.
se_channels ( int , optional ) : _description_ . Defaults to 128.
se_channels ( int , optional ) : embedding dimensions of res2net block . Defaults to 128.
kernel_size ( int , optional ) : _description_ . Defaults to 1.
kernel_size ( int , optional ) : kernel size of 1 - d convolution in TDNN block . Defaults to 1.
dilation ( int , optional ) : _description_ . Defaults to 1.
dilation ( int , optional ) : dilation of 1 - d convolution in TDNN block . Defaults to 1.
activation ( _type_, optional ) : _description_ . Defaults to nn . ReLU .
activation ( paddle. nn . class , optional ) : activation function . Defaults to nn . ReLU .
"""
"""
super ( ) . __init__ ( )
super ( ) . __init__ ( )
self . out_channels = out_channels
self . out_channels = out_channels
@ -419,7 +377,21 @@ class EcapaTdnn(nn.Layer):
res2net_scale = 8 ,
res2net_scale = 8 ,
se_channels = 128 ,
se_channels = 128 ,
global_context = True , ) :
global_context = True , ) :
""" Implementation of ECAPA-TDNN backbone model network
The paper is refered as " ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification "
whose url is : https : / / arxiv . org / abs / 2005.07143
Args :
input_size ( _type_ ) : input fature dimension
lin_neurons ( int , optional ) : speaker embedding size . Defaults to 192.
activation ( paddle . nn . class , optional ) : activation function . Defaults to nn . ReLU .
channels ( list , optional ) : inter embedding dimension . Defaults to [ 512 , 512 , 512 , 512 , 1536 ] .
kernel_sizes ( list , optional ) : kernel size of 1 - d convolution in TDNN block . Defaults to [ 5 , 3 , 3 , 3 , 1 ] .
dilations ( list , optional ) : dilations of 1 - d convolution in TDNN block . Defaults to [ 1 , 2 , 3 , 4 , 1 ] .
attention_channels ( int , optional ) : attention dimensions . Defaults to 128.
res2net_scale ( int , optional ) : scale value in res2net . Defaults to 8.
se_channels ( int , optional ) : dimensions of squeeze - excitation block . Defaults to 128.
global_context ( bool , optional ) : global context flag . Defaults to True .
"""
super ( ) . __init__ ( )
super ( ) . __init__ ( )
assert len ( channels ) == len ( kernel_sizes )
assert len ( channels ) == len ( kernel_sizes )
assert len ( channels ) == len ( dilations )
assert len ( channels ) == len ( dilations )