[vec][doc] add ppvpr doc, test=doc

pull/1916/head
qingen 3 years ago
parent 397cb74164
commit 758d5fc5e2

@ -0,0 +1,79 @@
([简体中文](./PPVPR_cn.md)|English)
# PP-VPR
## Catalogue
- [1. Introduction](#1)
- [2. Characteristic](#2)
- [3. Tutorials](#3)
- [3.1 Pre-trained Models](#31)
- [3.2 Training](#32)
- [3.3 Inference](#33)
- [3.4 Service Deployment](#33)
- [4. Quick Start](#4)
<a name="1"></a>
## 1. Introduction
PP-VPR is a tool that provides voice print feature extraction and retrieval functions. Provides a variety of quasi-industrial solutions, easy to solve the difficult problems in complex scenes, support the use of command line model reasoning. PP-VPR also supports interface operations and container deployment.
<a name="2"></a>
## 2. Characteristic
The basic process of VPR is shown in the figure below:
<center><img src=https://ai-studio-static-online.cdn.bcebos.com/3aed59b8c8874046ad19fe583d15a8dd53c5b33e68db4383b79706e5add5c2d0 width="800" ></center>
The main characteristics of PP-ASR are shown below:
- Provides pre-trained models on Chinese open source datasets: VoxCeleb(English). The models include ecapa-tdnn.
- Complete quasi-industrial solutions, including labelless training, cross-domain adaptive, super-large scale speaker training, data long tail problem solving, etc.
- Support model training/evaluation.
- Support model inference using the command line. You can use to use `paddlespeech vector --task spk --input xxx.wav` to use the pre-trained model to do model inference.
- Support interface operations and container deployment.
<a name="3"></a>
## 3. Tutorials
<a name="31"></a>
## 3.1 Pre-trained Models
The support pre-trained model list: [released_model](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/released_model.md).
For more information about model design, you can refer to the aistudio tutorial:
- [ecapa-tdnn](https://aistudio.baidu.com/aistudio/projectdetail/4027664)
<a name="32"></a>
## 3.2 Training
The referenced script for model training is stored in [examples](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples) and stored according to "examples/dataset/model". The dataset mainly supports VoxCeleb. The model supports ecapa-tdnn.
The specific steps of executing the script are recorded in `run.sh`.
For more information, you can refer to [sv0](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/voxceleb/sv0)
<a name="33"></a>
## 3.3 Inference
PP-VPR supports use `paddlespeech vector --task spk --input xxx.wav` to use the pre-trained model to do inference after install `paddlespeech` by `pip install paddlespeech`.
Specific supported functions include:
- Prediction of single audio
- Score the similarity between the two audios
- Support RTF calculation
For specific usage, please refer to: [speaker_verification](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/demos/speaker_verification/README_cn.md)
<a name="34"></a>
## 3.4 Service Deployment
PP-VPR supports Docker containerized service deployment. Through Milvus, MySQL performs high performance library building search.
Demo of VPR Server: [audio_searching](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/demos/audio_searching)
![arch](https://ai-studio-static-online.cdn.bcebos.com/7b32dd0200084866863095677e8b40d3b725b867d2e6439e9cf21514e235dfd5)
For more information about service deployment, you can refer to the aistudio tutorial:
- [speaker_recognition](https://aistudio.baidu.com/aistudio/projectdetail/4027664)
<a name="4"></a>
## 4. Quick Start
To use PP-VPR, you can see here [install](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install_cn.md), It supplies three methods to install `paddlespeech`, which are **Easy**, **Medium** and **Hard**. If you want to experience the inference function of paddlespeech, you can use **Easy** installation method.

@ -0,0 +1,80 @@
(简体中文|[English](./PPVPR.md))
# PP-VPR
## 目录
- [1. 简介](#1)
- [2. 特点](#2)
- [3. 使用教程](#3)
- [3.1 预训练模型](#31)
- [3.2 模型训练](#32)
- [3.3 模型推理](#33)
- [3.4 服务部署](#33)
- [4. 快速开始](#4)
<a name="1"></a>
## 1. 简介
PP-VPR 是一个 提供声纹特征提取,检索功能的工具。提供了多种准工业化的方案,轻松搞定复杂场景中的难题,支持使用命令行的方式进行模型的推理。 PP-VPR 也支持界面化的操作,容器化的部署。
<a name="2"></a>
## 2. 特点
VPR 的基本流程如下图所示:
<center><img src=https://ai-studio-static-online.cdn.bcebos.com/3aed59b8c8874046ad19fe583d15a8dd53c5b33e68db4383b79706e5add5c2d0 width="800" ></center>
PP-VPR 的主要特点如下:
- 提供在英文开源数据集 VoxCeleb英文上的预训练模型ecapa-tdnn。
- 完备的准工业化方案,包括无标签训练,跨域自适应,超大规模说话人训练,解决数据长尾问题等。
- 支持模型训练评估功能。
- 支持命令行方式的模型推理,可使用 `paddlespeech vector --task spk --input xxx.wav` 方式调用预训练模型进行推理。
- 支持 VPR 的服务容器化部署,界面化操作。
<a name="3"></a>
## 3. 使用教程
<a name="31"></a>
## 3.1 预训练模型
支持的预训练模型列表:[released_model](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/released_model.md)。
更多关于模型设计的部分,可以参考 AIStudio 教程:
- [ecapa-tdnn](https://aistudio.baidu.com/aistudio/projectdetail/4027664)
<a name="32"></a>
## 3.2 模型训练
模型的训练的参考脚本存放在 [examples](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples) 中,并按照 `examples/数据集/模型` 存放,数据集主要支持 VoxCeleb模型支持 ecapa-tdnn 模型。
具体的执行脚本的步骤记录在 `run.sh` 当中。具体可参考: [sv0](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/voxceleb/sv0)
<a name="33"></a>
## 3.3 模型推理
PP-VPR 支持在使用`pip install paddlespeech`后 使用命令行的方式来使用预训练模型进行推理。
具体支持的功能包括:
- 对单条音频进行预测
- 对两条音频进行打分
- 支持 RTF 的计算
具体的使用方式可以参考: [speaker_verification](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/demos/speaker_verification/README_cn.md)
<a name="34"></a>
## 3.4 服务部署
PP-VPR 支持 Docker 容器化服务部署。通过 Milvus, MySQL 进行高性能建库检索。
server 的 demo [audio_searching](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/demos/audio_searching)
![arch](https://ai-studio-static-online.cdn.bcebos.com/7b32dd0200084866863095677e8b40d3b725b867d2e6439e9cf21514e235dfd5)
关于服务部署方面的更多资料,可以参考 AIStudio 教程:
- [speaker_recognition](https://aistudio.baidu.com/aistudio/projectdetail/4027664)
<a name="4"></a>
## 4. 快速开始
关于如何使用 PP-VPR可以看这里的 [install](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install_cn.md),其中提供了 **简单**、**中等**、**困难** 三种安装方式。如果想体验 paddlespeech 的推理功能,可以用 **简单** 安装方式。
Loading…
Cancel
Save