NumPy compatibility enhancements (#3907)

* NumPy compatibility enhancements

* update code
pull/3918/head
Wang Xin 4 weeks ago committed by GitHub
parent e22173f739
commit 61728f8db6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -129,7 +129,7 @@ def _compute_mask_indices(
[sequence_length for _ in range(batch_size)])
# SpecAugment mask to fill
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=np.bool)
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=np.bool_)
spec_aug_mask_idxs = []
max_num_masked_span = compute_num_masked_span(sequence_length)
@ -207,9 +207,9 @@ def _sample_negative_indices(features_shape: Tuple,
sampled_negative_indices = np.zeros(
shape=(batch_size, sequence_length, num_negatives), dtype=np.int32)
mask_time_indices = (mask_time_indices.astype(np.bool)
mask_time_indices = (mask_time_indices.astype(np.bool_)
if mask_time_indices is not None else
np.ones(features_shape, dtype=np.bool))
np.ones(features_shape, dtype=np.bool_))
for batch_idx in range(batch_size):
high = mask_time_indices[batch_idx].sum() - 1

@ -1476,7 +1476,7 @@ def compute_mask_indices(
lens = np.fromiter(
(e - s if e - s >= length + min_space else 0
for s, e in parts),
np.int, )
np.int_, )
l_sum = np.sum(lens)
if l_sum == 0:
break

@ -6,25 +6,24 @@
# Based on fairseq code bases
# https://github.com/pytorch/fairseq
# --------------------------------------------------------
import math
import logging
from typing import List, Optional, Tuple
import math
from typing import List
from typing import Optional
from typing import Tuple
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import LayerNorm
from paddle import Tensor
from .modules.modules import (
MultiheadAttention,
SamePad,
get_activation_fn,
TransposeLast,
GLU_Linear,
)
from paddle.nn import LayerNorm
from .modules.modules import get_activation_fn
from .modules.modules import GLU_Linear
from .modules.modules import MultiheadAttention
from .modules.modules import SamePad
from .modules.modules import TransposeLast
logger = logging.getLogger(__name__)
@ -34,12 +33,11 @@ def compute_mask_indices(
padding_mask: Optional[Tensor],
mask_prob: float,
mask_length: int,
mask_type: str = "static",
mask_other: float = 0.0,
min_masks: int = 0,
no_overlap: bool = False,
min_space: int = 0,
) -> np.ndarray:
mask_type: str="static",
mask_other: float=0.0,
min_masks: int=0,
no_overlap: bool=False,
min_space: int=0, ) -> np.ndarray:
"""
Computes random mask spans for a given shape
@ -65,9 +63,7 @@ def compute_mask_indices(
all_num_mask = int(
# add a random number for probabilistic rounding
mask_prob * all_sz / float(mask_length)
+ np.random.rand()
)
mask_prob * all_sz / float(mask_length) + np.random.rand())
all_num_mask = max(min_masks, all_num_mask)
@ -77,9 +73,7 @@ def compute_mask_indices(
sz = all_sz - padding_mask[i].long().sum().item()
num_mask = int(
# add a random number for probabilistic rounding
mask_prob * sz / float(mask_length)
+ np.random.rand()
)
mask_prob * sz / float(mask_length) + np.random.rand())
num_mask = max(min_masks, num_mask)
else:
sz = all_sz
@ -88,7 +82,8 @@ def compute_mask_indices(
if mask_type == "static":
lengths = np.full(num_mask, mask_length)
elif mask_type == "uniform":
lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask)
lengths = np.random.randint(
mask_other, mask_length * 2 + 1, size=num_mask)
elif mask_type == "normal":
lengths = np.random.normal(mask_length, mask_other, size=num_mask)
lengths = [max(1, int(round(x))) for x in lengths]
@ -119,9 +114,9 @@ def compute_mask_indices(
min_length = min(lengths)
for length in sorted(lengths, reverse=True):
lens = np.fromiter(
(e - s if e - s >= length + min_space else 0 for s, e in parts),
np.int,
)
(e - s if e - s >= length + min_space else 0
for s, e in parts),
np.int_, )
l_sum = np.sum(lens)
if l_sum == 0:
break
@ -137,13 +132,10 @@ def compute_mask_indices(
mask_idc = np.random.choice(sz - min_len, num_mask, replace=False)
mask_idc = np.asarray(
[
mask_idc = np.asarray([
mask_idc[j] + offset
for j in range(len(mask_idc))
for offset in range(lengths[j])
]
)
for j in range(len(mask_idc)) for offset in range(lengths[j])
])
mask_idcs.append(np.unique(mask_idc[mask_idc < sz]))
@ -217,8 +209,7 @@ class WavLMConfig:
class WavLM(nn.Layer):
def __init__(
self,
cfg: WavLMConfig,
) -> None:
cfg: WavLMConfig, ) -> None:
super().__init__()
logger.info(f"WavLM Config: {cfg.__dict__}")
@ -230,14 +221,11 @@ class WavLM(nn.Layer):
conv_layers=feature_enc_layers,
dropout=0.0,
mode=cfg.extractor_mode,
conv_bias=cfg.conv_bias,
)
conv_bias=cfg.conv_bias, )
self.post_extract_proj = (
nn.Linear(self.embed, cfg.encoder_embed_dim)
if self.embed != cfg.encoder_embed_dim
else None
)
self.post_extract_proj = (nn.Linear(self.embed, cfg.encoder_embed_dim)
if self.embed != cfg.encoder_embed_dim else
None)
self.mask_prob = cfg.mask_prob
self.mask_selection = cfg.mask_selection
@ -260,8 +248,7 @@ class WavLM(nn.Layer):
self.mask_emb = self.create_parameter(
shape=[cfg.encoder_embed_dim],
default_initializer=nn.initializer.Uniform(),
)
default_initializer=nn.initializer.Uniform(), )
self.encoder = TransformerEncoder(cfg)
self.layer_norm = LayerNorm(self.embed)
@ -278,8 +265,7 @@ class WavLM(nn.Layer):
self.mask_other,
min_masks=2,
no_overlap=self.no_mask_overlap,
min_space=self.mask_min_space,
)
min_space=self.mask_min_space, )
# mask_indices = torch.from_numpy(mask_indices).to(x.device)
mask_indices = paddle.to_tensor(mask_indices, dtype='int64')
x[mask_indices] = self.mask_emb
@ -295,40 +281,35 @@ class WavLM(nn.Layer):
self.mask_channel_selection,
self.mask_channel_other,
no_overlap=self.no_mask_channel_overlap,
min_space=self.mask_channel_min_space,
)
min_space=self.mask_channel_min_space, )
mask_channel_indices = (
# torch.from_numpy(mask_channel_indices)
paddle.to_tensor(mask_channel_indices, dtype='int64')
.to(x.device)
.unsqueeze(1)
.expand(-1, T, -1)
)
.to(x.device).unsqueeze(1).expand(-1, T, -1))
x[mask_channel_indices] = 0
return x, mask_indices
def forward_padding_mask(
self, features: Tensor, padding_mask: Tensor,
) -> Tensor:
self,
features: Tensor,
padding_mask: Tensor, ) -> Tensor:
extra = padding_mask.size(1) % features.size(1)
if extra > 0:
padding_mask = padding_mask[:, :-extra]
padding_mask = padding_mask.view(
padding_mask.size(0), features.size(1), -1
)
padding_mask.size(0), features.size(1), -1)
padding_mask = padding_mask.all(-1)
return padding_mask
def extract_features(
self,
source: Tensor,
padding_mask: Optional[Tensor] = None,
mask: bool = False,
ret_conv: bool = False,
output_layer: Optional[int] = None,
ret_layer_results: bool = False,
):
padding_mask: Optional[Tensor]=None,
mask: bool=False,
ret_conv: bool=False,
output_layer: Optional[int]=None,
ret_layer_results: bool=False, ):
if self.feature_grad_mult > 0:
features = self.feature_extractor(source)
@ -351,9 +332,7 @@ class WavLM(nn.Layer):
features = self.dropout_input(features)
if mask:
x, mask_indices = self.apply_mask(
features, padding_mask
)
x, mask_indices = self.apply_mask(features, padding_mask)
else:
x = features
@ -366,10 +345,14 @@ class WavLM(nn.Layer):
x, layer_results = self.encoder(
x,
padding_mask=padding_mask,
layer=None if output_layer is None else output_layer - 1
)
layer=None if output_layer is None else output_layer - 1)
# print(f"Debugging: x.shape: {x.shape}, x.mean(): {x.mean()}, x.std(): {x.std()}")
res = {"x": x, "padding_mask": padding_mask, "features": features, "layer_results": layer_results}
res = {
"x": x,
"padding_mask": padding_mask,
"features": features,
"layer_results": layer_results
}
feature = res["features"] if ret_conv else res["x"]
if ret_layer_results:
@ -381,14 +364,12 @@ class WavLM(nn.Layer):
class ConvFeatureExtractionModel(nn.Layer):
def __init__(
self,
def __init__(self,
conv_layers: List[Tuple[int, int, int]],
dropout: float = 0.0,
mode: str = "default",
conv_bias: bool = False,
conv_type: str = "default"
):
dropout: float=0.0,
mode: str="default",
conv_bias: bool=False,
conv_type: str="default"):
super().__init__()
assert mode in {"default", "layer_norm"}
@ -400,16 +381,19 @@ class ConvFeatureExtractionModel(nn.Layer):
stride,
is_layer_norm=False,
is_group_norm=False,
conv_bias=False,
):
conv_bias=False, ):
def make_conv():
conv = nn.Conv1D(n_in, n_out, k, stride=stride, bias_attr=conv_bias,
conv = nn.Conv1D(
n_in,
n_out,
k,
stride=stride,
bias_attr=conv_bias,
weight_attr=nn.initializer.KaimingNormal())
# nn.init.kaiming_normal_(conv.weight)
return conv
assert (
is_layer_norm and is_group_norm
assert (is_layer_norm and is_group_norm
) == False, "layer norm and group norm are exclusive"
if is_layer_norm:
@ -419,19 +403,18 @@ class ConvFeatureExtractionModel(nn.Layer):
nn.Sequential(
TransposeLast(),
nn.LayerNorm(normalized_shape=dim, epsilon=1e-5),
TransposeLast(),
),
nn.GELU(),
)
TransposeLast(), ),
nn.GELU(), )
elif is_group_norm:
return nn.Sequential(
make_conv(),
nn.Dropout(p=dropout),
nn.GroupNorm(num_groups=dim, num_channels=dim, epsilon=1e-5),
nn.GELU(),
)
nn.GroupNorm(
num_groups=dim, num_channels=dim, epsilon=1e-5),
nn.GELU(), )
else:
return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU())
return nn.Sequential(
make_conv(), nn.Dropout(p=dropout), nn.GELU())
self.conv_type = conv_type
if self.conv_type == "default":
@ -449,9 +432,7 @@ class ConvFeatureExtractionModel(nn.Layer):
stride,
is_layer_norm=mode == "layer_norm",
is_group_norm=mode == "default" and i == 0,
conv_bias=conv_bias,
)
)
conv_bias=conv_bias, ))
in_d = dim
elif self.conv_type == "conv2d":
in_d = 1
@ -460,9 +441,7 @@ class ConvFeatureExtractionModel(nn.Layer):
assert len(cl) == 3
(dim, k, stride) = cl
self.conv_layers.append(
paddle.nn.Conv2D(in_d, dim, k, stride)
)
self.conv_layers.append(paddle.nn.Conv2D(in_d, dim, k, stride))
self.conv_layers.append(paddle.nn.ReLU())
in_d = dim
elif self.conv_type == "custom":
@ -473,17 +452,13 @@ class ConvFeatureExtractionModel(nn.Layer):
assert len(cl) == 3
(dim, k, stride) = cl
self.conv_layers.append(
paddle.nn.Conv2D(in_d, dim, k, stride, padding=1)
)
self.conv_layers.append(
paddle.nn.LayerNorm([dim, idim])
)
paddle.nn.Conv2D(in_d, dim, k, stride, padding=1))
self.conv_layers.append(paddle.nn.LayerNorm([dim, idim]))
self.conv_layers.append(paddle.nn.ReLU())
in_d = dim
if (i + 1) % 2 == 0:
self.conv_layers.append(
paddle.nn.MaxPool2D(2, stride=2, ceil_mode=True)
)
paddle.nn.MaxPool2D(2, stride=2, ceil_mode=True))
idim = int(math.ceil(idim / 2))
else:
pass
@ -518,8 +493,8 @@ class TransformerEncoder(nn.Layer):
self.dropout = args.dropout
self.embedding_dim = args.encoder_embed_dim
dropout = 0
std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim))
std = math.sqrt(
(4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim))
self.pos_conv = nn.Conv1D(
self.embedding_dim,
@ -528,15 +503,16 @@ class TransformerEncoder(nn.Layer):
padding=args.conv_pos // 2,
groups=args.conv_pos_groups,
weight_attr=nn.initializer.Normal(mean=0, std=std),
bias_attr=True
)
bias_attr=True)
# nn.init.normal_(self.pos_conv.weight, mean=0, std=std)
# nn.init.constant_(self.pos_conv.bias, 0)
# self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2)
# self.pos_conv.weight_g = self.pos_conv.weight_g.unsqueeze(0).unsqueeze(0)
self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2)
self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU())
self.pos_conv = nn.utils.weight_norm(
self.pos_conv, name="weight", dim=2)
self.pos_conv = nn.Sequential(self.pos_conv,
SamePad(args.conv_pos), nn.GELU())
if hasattr(args, "relative_position_embedding"):
self.relative_position_embedding = args.relative_position_embedding
@ -547,8 +523,7 @@ class TransformerEncoder(nn.Layer):
self.num_buckets = 0
self.max_distance = 0
self.layers = nn.LayerList(
[
self.layers = nn.LayerList([
TransformerSentenceEncoderLayer(
embedding_dim=self.embedding_dim,
ffn_embedding_dim=args.encoder_ffn_embed_dim,
@ -558,14 +533,13 @@ class TransformerEncoder(nn.Layer):
activation_dropout=args.activation_dropout,
activation_fn=args.activation_fn,
layer_norm_first=args.layer_norm_first,
has_relative_attention_bias=(self.relative_position_embedding and i == 0),
has_relative_attention_bias=(
self.relative_position_embedding and i == 0),
num_buckets=self.num_buckets,
max_distance=self.max_distance,
gru_rel_pos=args.gru_rel_pos,
)
gru_rel_pos=args.gru_rel_pos, )
for i in range(args.encoder_layers)
]
)
])
self.layer_norm_first = args.layer_norm_first
self.layer_norm = LayerNorm(self.embedding_dim)
@ -574,14 +548,19 @@ class TransformerEncoder(nn.Layer):
# self.apply(init_bert_params)
def forward(self, x, padding_mask=None, streaming_mask=None, layer=None):
x, layer_results = self.extract_features(x, padding_mask, streaming_mask, layer)
x, layer_results = self.extract_features(x, padding_mask,
streaming_mask, layer)
# print("x.shape", x.shape)
if self.layer_norm_first and layer is None:
x = self.layer_norm(x)
return x, layer_results
def extract_features(self, x, padding_mask=None, streaming_mask=None, tgt_layer=None):
def extract_features(self,
x,
padding_mask=None,
streaming_mask=None,
tgt_layer=None):
if padding_mask is not None:
x[padding_mask] = 0
@ -598,7 +577,6 @@ class TransformerEncoder(nn.Layer):
# x = x.transpose(0, 1)
x = x.transpose([1, 0, 2])
layer_results = []
z = None
if tgt_layer is not None:
@ -608,7 +586,12 @@ class TransformerEncoder(nn.Layer):
for i, layer in enumerate(self.layers):
dropout_probability = np.random.random()
if not self.training or (dropout_probability > self.layerdrop):
x, z, pos_bias = layer(x, self_attn_padding_mask=padding_mask, need_weights=False,self_attn_mask=streaming_mask, pos_bias=pos_bias)
x, z, pos_bias = layer(
x,
self_attn_padding_mask=padding_mask,
need_weights=False,
self_attn_mask=streaming_mask,
pos_bias=pos_bias)
if tgt_layer is not None:
layer_results.append((x, z))
if i == tgt_layer:
@ -633,20 +616,19 @@ class TransformerSentenceEncoderLayer(nn.Layer):
def __init__(
self,
embedding_dim: float = 768,
ffn_embedding_dim: float = 3072,
num_attention_heads: float = 8,
dropout: float = 0.1,
attention_dropout: float = 0.1,
activation_dropout: float = 0.1,
activation_fn: str = "relu",
layer_norm_first: bool = False,
has_relative_attention_bias: bool = True,
num_buckets: int = 0,
max_distance: int = 0,
rescale_init: bool = False,
gru_rel_pos: bool = True,
) -> None:
embedding_dim: float=768,
ffn_embedding_dim: float=3072,
num_attention_heads: float=8,
dropout: float=0.1,
attention_dropout: float=0.1,
activation_dropout: float=0.1,
activation_fn: str="relu",
layer_norm_first: bool=False,
has_relative_attention_bias: bool=True,
num_buckets: int=0,
max_distance: int=0,
rescale_init: bool=False,
gru_rel_pos: bool=True, ) -> None:
super().__init__()
# Initialize parameters
@ -666,8 +648,7 @@ class TransformerSentenceEncoderLayer(nn.Layer):
num_buckets=num_buckets,
max_distance=max_distance,
rescale_init=rescale_init,
gru_rel_pos=gru_rel_pos,
)
gru_rel_pos=gru_rel_pos, )
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(self.activation_dropout)
@ -679,7 +660,8 @@ class TransformerSentenceEncoderLayer(nn.Layer):
self.self_attn_layer_norm = LayerNorm(self.embedding_dim)
if self.activation_name == "glu":
self.fc1 = GLU_Linear(self.embedding_dim, ffn_embedding_dim, "swish")
self.fc1 = GLU_Linear(self.embedding_dim, ffn_embedding_dim,
"swish")
else:
self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)
@ -687,14 +669,12 @@ class TransformerSentenceEncoderLayer(nn.Layer):
# layer norm associated with the position wise feed-forward NN
self.final_layer_norm = LayerNorm(self.embedding_dim)
def forward(
self,
def forward(self,
x: Tensor,
self_attn_mask: Tensor = None,
self_attn_padding_mask: Tensor = None,
need_weights: bool = False,
pos_bias=None
):
self_attn_mask: Tensor=None,
self_attn_padding_mask: Tensor=None,
need_weights: bool=False,
pos_bias=None):
"""
LayerNorm is applied either before or after the self-attention/ffn
modules similar to the original Transformer imlementation.
@ -710,8 +690,7 @@ class TransformerSentenceEncoderLayer(nn.Layer):
key_padding_mask=self_attn_padding_mask,
need_weights=False,
attn_mask=self_attn_mask,
position_bias=pos_bias
)
position_bias=pos_bias)
# import pdb; pdb.set_trace()
x = self.dropout1(x)
x = residual + x
@ -734,8 +713,7 @@ class TransformerSentenceEncoderLayer(nn.Layer):
key_padding_mask=self_attn_padding_mask,
need_weights=need_weights,
attn_mask=self_attn_mask,
position_bias=pos_bias
)
position_bias=pos_bias)
x = self.dropout1(x)
x = residual + x

@ -138,7 +138,7 @@ class Pitch():
input: np.ndarray,
use_continuous_f0: bool=True,
use_log_f0: bool=True) -> np.ndarray:
input = input.astype(np.float)
input = input.astype(np.float_)
frame_period = 1000 * self.hop_length / self.sr
f0, timeaxis = pyworld.dio(
input,

@ -36,7 +36,7 @@ def convert_dtype_to_np_dtype_(dtype):
elif dtype is core.VarDesc.VarType.FP16:
return np.float16
elif dtype is core.VarDesc.VarType.BOOL:
return np.bool
return np.bool_
elif dtype is core.VarDesc.VarType.INT32:
return np.int32
elif dtype is core.VarDesc.VarType.INT64:

Loading…
Cancel
Save