|
|
@ -6,25 +6,24 @@
|
|
|
|
# Based on fairseq code bases
|
|
|
|
# Based on fairseq code bases
|
|
|
|
# https://github.com/pytorch/fairseq
|
|
|
|
# https://github.com/pytorch/fairseq
|
|
|
|
# --------------------------------------------------------
|
|
|
|
# --------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
import math
|
|
|
|
|
|
|
|
import logging
|
|
|
|
import logging
|
|
|
|
from typing import List, Optional, Tuple
|
|
|
|
import math
|
|
|
|
|
|
|
|
from typing import List
|
|
|
|
|
|
|
|
from typing import Optional
|
|
|
|
|
|
|
|
from typing import Tuple
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
import paddle
|
|
|
|
import paddle.nn as nn
|
|
|
|
import paddle.nn as nn
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
from paddle.nn import LayerNorm
|
|
|
|
|
|
|
|
from paddle import Tensor
|
|
|
|
from paddle import Tensor
|
|
|
|
from .modules.modules import (
|
|
|
|
from paddle.nn import LayerNorm
|
|
|
|
MultiheadAttention,
|
|
|
|
|
|
|
|
SamePad,
|
|
|
|
from .modules.modules import get_activation_fn
|
|
|
|
get_activation_fn,
|
|
|
|
from .modules.modules import GLU_Linear
|
|
|
|
TransposeLast,
|
|
|
|
from .modules.modules import MultiheadAttention
|
|
|
|
GLU_Linear,
|
|
|
|
from .modules.modules import SamePad
|
|
|
|
)
|
|
|
|
from .modules.modules import TransposeLast
|
|
|
|
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
@ -34,12 +33,11 @@ def compute_mask_indices(
|
|
|
|
padding_mask: Optional[Tensor],
|
|
|
|
padding_mask: Optional[Tensor],
|
|
|
|
mask_prob: float,
|
|
|
|
mask_prob: float,
|
|
|
|
mask_length: int,
|
|
|
|
mask_length: int,
|
|
|
|
mask_type: str = "static",
|
|
|
|
mask_type: str="static",
|
|
|
|
mask_other: float = 0.0,
|
|
|
|
mask_other: float=0.0,
|
|
|
|
min_masks: int = 0,
|
|
|
|
min_masks: int=0,
|
|
|
|
no_overlap: bool = False,
|
|
|
|
no_overlap: bool=False,
|
|
|
|
min_space: int = 0,
|
|
|
|
min_space: int=0, ) -> np.ndarray:
|
|
|
|
) -> np.ndarray:
|
|
|
|
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
Computes random mask spans for a given shape
|
|
|
|
Computes random mask spans for a given shape
|
|
|
|
|
|
|
|
|
|
|
@ -65,9 +63,7 @@ def compute_mask_indices(
|
|
|
|
|
|
|
|
|
|
|
|
all_num_mask = int(
|
|
|
|
all_num_mask = int(
|
|
|
|
# add a random number for probabilistic rounding
|
|
|
|
# add a random number for probabilistic rounding
|
|
|
|
mask_prob * all_sz / float(mask_length)
|
|
|
|
mask_prob * all_sz / float(mask_length) + np.random.rand())
|
|
|
|
+ np.random.rand()
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
all_num_mask = max(min_masks, all_num_mask)
|
|
|
|
all_num_mask = max(min_masks, all_num_mask)
|
|
|
|
|
|
|
|
|
|
|
@ -77,9 +73,7 @@ def compute_mask_indices(
|
|
|
|
sz = all_sz - padding_mask[i].long().sum().item()
|
|
|
|
sz = all_sz - padding_mask[i].long().sum().item()
|
|
|
|
num_mask = int(
|
|
|
|
num_mask = int(
|
|
|
|
# add a random number for probabilistic rounding
|
|
|
|
# add a random number for probabilistic rounding
|
|
|
|
mask_prob * sz / float(mask_length)
|
|
|
|
mask_prob * sz / float(mask_length) + np.random.rand())
|
|
|
|
+ np.random.rand()
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
num_mask = max(min_masks, num_mask)
|
|
|
|
num_mask = max(min_masks, num_mask)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
sz = all_sz
|
|
|
|
sz = all_sz
|
|
|
@ -88,7 +82,8 @@ def compute_mask_indices(
|
|
|
|
if mask_type == "static":
|
|
|
|
if mask_type == "static":
|
|
|
|
lengths = np.full(num_mask, mask_length)
|
|
|
|
lengths = np.full(num_mask, mask_length)
|
|
|
|
elif mask_type == "uniform":
|
|
|
|
elif mask_type == "uniform":
|
|
|
|
lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask)
|
|
|
|
lengths = np.random.randint(
|
|
|
|
|
|
|
|
mask_other, mask_length * 2 + 1, size=num_mask)
|
|
|
|
elif mask_type == "normal":
|
|
|
|
elif mask_type == "normal":
|
|
|
|
lengths = np.random.normal(mask_length, mask_other, size=num_mask)
|
|
|
|
lengths = np.random.normal(mask_length, mask_other, size=num_mask)
|
|
|
|
lengths = [max(1, int(round(x))) for x in lengths]
|
|
|
|
lengths = [max(1, int(round(x))) for x in lengths]
|
|
|
@ -119,9 +114,9 @@ def compute_mask_indices(
|
|
|
|
min_length = min(lengths)
|
|
|
|
min_length = min(lengths)
|
|
|
|
for length in sorted(lengths, reverse=True):
|
|
|
|
for length in sorted(lengths, reverse=True):
|
|
|
|
lens = np.fromiter(
|
|
|
|
lens = np.fromiter(
|
|
|
|
(e - s if e - s >= length + min_space else 0 for s, e in parts),
|
|
|
|
(e - s if e - s >= length + min_space else 0
|
|
|
|
np.int,
|
|
|
|
for s, e in parts),
|
|
|
|
)
|
|
|
|
np.int_, )
|
|
|
|
l_sum = np.sum(lens)
|
|
|
|
l_sum = np.sum(lens)
|
|
|
|
if l_sum == 0:
|
|
|
|
if l_sum == 0:
|
|
|
|
break
|
|
|
|
break
|
|
|
@ -137,13 +132,10 @@ def compute_mask_indices(
|
|
|
|
|
|
|
|
|
|
|
|
mask_idc = np.random.choice(sz - min_len, num_mask, replace=False)
|
|
|
|
mask_idc = np.random.choice(sz - min_len, num_mask, replace=False)
|
|
|
|
|
|
|
|
|
|
|
|
mask_idc = np.asarray(
|
|
|
|
mask_idc = np.asarray([
|
|
|
|
[
|
|
|
|
|
|
|
|
mask_idc[j] + offset
|
|
|
|
mask_idc[j] + offset
|
|
|
|
for j in range(len(mask_idc))
|
|
|
|
for j in range(len(mask_idc)) for offset in range(lengths[j])
|
|
|
|
for offset in range(lengths[j])
|
|
|
|
])
|
|
|
|
]
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mask_idcs.append(np.unique(mask_idc[mask_idc < sz]))
|
|
|
|
mask_idcs.append(np.unique(mask_idc[mask_idc < sz]))
|
|
|
|
|
|
|
|
|
|
|
@ -217,8 +209,7 @@ class WavLMConfig:
|
|
|
|
class WavLM(nn.Layer):
|
|
|
|
class WavLM(nn.Layer):
|
|
|
|
def __init__(
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
self,
|
|
|
|
cfg: WavLMConfig,
|
|
|
|
cfg: WavLMConfig, ) -> None:
|
|
|
|
) -> None:
|
|
|
|
|
|
|
|
super().__init__()
|
|
|
|
super().__init__()
|
|
|
|
logger.info(f"WavLM Config: {cfg.__dict__}")
|
|
|
|
logger.info(f"WavLM Config: {cfg.__dict__}")
|
|
|
|
|
|
|
|
|
|
|
@ -230,14 +221,11 @@ class WavLM(nn.Layer):
|
|
|
|
conv_layers=feature_enc_layers,
|
|
|
|
conv_layers=feature_enc_layers,
|
|
|
|
dropout=0.0,
|
|
|
|
dropout=0.0,
|
|
|
|
mode=cfg.extractor_mode,
|
|
|
|
mode=cfg.extractor_mode,
|
|
|
|
conv_bias=cfg.conv_bias,
|
|
|
|
conv_bias=cfg.conv_bias, )
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.post_extract_proj = (
|
|
|
|
self.post_extract_proj = (nn.Linear(self.embed, cfg.encoder_embed_dim)
|
|
|
|
nn.Linear(self.embed, cfg.encoder_embed_dim)
|
|
|
|
if self.embed != cfg.encoder_embed_dim else
|
|
|
|
if self.embed != cfg.encoder_embed_dim
|
|
|
|
None)
|
|
|
|
else None
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.mask_prob = cfg.mask_prob
|
|
|
|
self.mask_prob = cfg.mask_prob
|
|
|
|
self.mask_selection = cfg.mask_selection
|
|
|
|
self.mask_selection = cfg.mask_selection
|
|
|
@ -260,8 +248,7 @@ class WavLM(nn.Layer):
|
|
|
|
|
|
|
|
|
|
|
|
self.mask_emb = self.create_parameter(
|
|
|
|
self.mask_emb = self.create_parameter(
|
|
|
|
shape=[cfg.encoder_embed_dim],
|
|
|
|
shape=[cfg.encoder_embed_dim],
|
|
|
|
default_initializer=nn.initializer.Uniform(),
|
|
|
|
default_initializer=nn.initializer.Uniform(), )
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.encoder = TransformerEncoder(cfg)
|
|
|
|
self.encoder = TransformerEncoder(cfg)
|
|
|
|
self.layer_norm = LayerNorm(self.embed)
|
|
|
|
self.layer_norm = LayerNorm(self.embed)
|
|
|
@ -278,8 +265,7 @@ class WavLM(nn.Layer):
|
|
|
|
self.mask_other,
|
|
|
|
self.mask_other,
|
|
|
|
min_masks=2,
|
|
|
|
min_masks=2,
|
|
|
|
no_overlap=self.no_mask_overlap,
|
|
|
|
no_overlap=self.no_mask_overlap,
|
|
|
|
min_space=self.mask_min_space,
|
|
|
|
min_space=self.mask_min_space, )
|
|
|
|
)
|
|
|
|
|
|
|
|
# mask_indices = torch.from_numpy(mask_indices).to(x.device)
|
|
|
|
# mask_indices = torch.from_numpy(mask_indices).to(x.device)
|
|
|
|
mask_indices = paddle.to_tensor(mask_indices, dtype='int64')
|
|
|
|
mask_indices = paddle.to_tensor(mask_indices, dtype='int64')
|
|
|
|
x[mask_indices] = self.mask_emb
|
|
|
|
x[mask_indices] = self.mask_emb
|
|
|
@ -295,40 +281,35 @@ class WavLM(nn.Layer):
|
|
|
|
self.mask_channel_selection,
|
|
|
|
self.mask_channel_selection,
|
|
|
|
self.mask_channel_other,
|
|
|
|
self.mask_channel_other,
|
|
|
|
no_overlap=self.no_mask_channel_overlap,
|
|
|
|
no_overlap=self.no_mask_channel_overlap,
|
|
|
|
min_space=self.mask_channel_min_space,
|
|
|
|
min_space=self.mask_channel_min_space, )
|
|
|
|
)
|
|
|
|
|
|
|
|
mask_channel_indices = (
|
|
|
|
mask_channel_indices = (
|
|
|
|
# torch.from_numpy(mask_channel_indices)
|
|
|
|
# torch.from_numpy(mask_channel_indices)
|
|
|
|
paddle.to_tensor(mask_channel_indices, dtype='int64')
|
|
|
|
paddle.to_tensor(mask_channel_indices, dtype='int64')
|
|
|
|
.to(x.device)
|
|
|
|
.to(x.device).unsqueeze(1).expand(-1, T, -1))
|
|
|
|
.unsqueeze(1)
|
|
|
|
|
|
|
|
.expand(-1, T, -1)
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
x[mask_channel_indices] = 0
|
|
|
|
x[mask_channel_indices] = 0
|
|
|
|
|
|
|
|
|
|
|
|
return x, mask_indices
|
|
|
|
return x, mask_indices
|
|
|
|
|
|
|
|
|
|
|
|
def forward_padding_mask(
|
|
|
|
def forward_padding_mask(
|
|
|
|
self, features: Tensor, padding_mask: Tensor,
|
|
|
|
self,
|
|
|
|
) -> Tensor:
|
|
|
|
features: Tensor,
|
|
|
|
|
|
|
|
padding_mask: Tensor, ) -> Tensor:
|
|
|
|
extra = padding_mask.size(1) % features.size(1)
|
|
|
|
extra = padding_mask.size(1) % features.size(1)
|
|
|
|
if extra > 0:
|
|
|
|
if extra > 0:
|
|
|
|
padding_mask = padding_mask[:, :-extra]
|
|
|
|
padding_mask = padding_mask[:, :-extra]
|
|
|
|
padding_mask = padding_mask.view(
|
|
|
|
padding_mask = padding_mask.view(
|
|
|
|
padding_mask.size(0), features.size(1), -1
|
|
|
|
padding_mask.size(0), features.size(1), -1)
|
|
|
|
)
|
|
|
|
|
|
|
|
padding_mask = padding_mask.all(-1)
|
|
|
|
padding_mask = padding_mask.all(-1)
|
|
|
|
return padding_mask
|
|
|
|
return padding_mask
|
|
|
|
|
|
|
|
|
|
|
|
def extract_features(
|
|
|
|
def extract_features(
|
|
|
|
self,
|
|
|
|
self,
|
|
|
|
source: Tensor,
|
|
|
|
source: Tensor,
|
|
|
|
padding_mask: Optional[Tensor] = None,
|
|
|
|
padding_mask: Optional[Tensor]=None,
|
|
|
|
mask: bool = False,
|
|
|
|
mask: bool=False,
|
|
|
|
ret_conv: bool = False,
|
|
|
|
ret_conv: bool=False,
|
|
|
|
output_layer: Optional[int] = None,
|
|
|
|
output_layer: Optional[int]=None,
|
|
|
|
ret_layer_results: bool = False,
|
|
|
|
ret_layer_results: bool=False, ):
|
|
|
|
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.feature_grad_mult > 0:
|
|
|
|
if self.feature_grad_mult > 0:
|
|
|
|
features = self.feature_extractor(source)
|
|
|
|
features = self.feature_extractor(source)
|
|
|
@ -351,9 +332,7 @@ class WavLM(nn.Layer):
|
|
|
|
features = self.dropout_input(features)
|
|
|
|
features = self.dropout_input(features)
|
|
|
|
|
|
|
|
|
|
|
|
if mask:
|
|
|
|
if mask:
|
|
|
|
x, mask_indices = self.apply_mask(
|
|
|
|
x, mask_indices = self.apply_mask(features, padding_mask)
|
|
|
|
features, padding_mask
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
x = features
|
|
|
|
x = features
|
|
|
|
|
|
|
|
|
|
|
@ -366,10 +345,14 @@ class WavLM(nn.Layer):
|
|
|
|
x, layer_results = self.encoder(
|
|
|
|
x, layer_results = self.encoder(
|
|
|
|
x,
|
|
|
|
x,
|
|
|
|
padding_mask=padding_mask,
|
|
|
|
padding_mask=padding_mask,
|
|
|
|
layer=None if output_layer is None else output_layer - 1
|
|
|
|
layer=None if output_layer is None else output_layer - 1)
|
|
|
|
)
|
|
|
|
|
|
|
|
# print(f"Debugging: x.shape: {x.shape}, x.mean(): {x.mean()}, x.std(): {x.std()}")
|
|
|
|
# print(f"Debugging: x.shape: {x.shape}, x.mean(): {x.mean()}, x.std(): {x.std()}")
|
|
|
|
res = {"x": x, "padding_mask": padding_mask, "features": features, "layer_results": layer_results}
|
|
|
|
res = {
|
|
|
|
|
|
|
|
"x": x,
|
|
|
|
|
|
|
|
"padding_mask": padding_mask,
|
|
|
|
|
|
|
|
"features": features,
|
|
|
|
|
|
|
|
"layer_results": layer_results
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
feature = res["features"] if ret_conv else res["x"]
|
|
|
|
feature = res["features"] if ret_conv else res["x"]
|
|
|
|
if ret_layer_results:
|
|
|
|
if ret_layer_results:
|
|
|
@ -381,14 +364,12 @@ class WavLM(nn.Layer):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ConvFeatureExtractionModel(nn.Layer):
|
|
|
|
class ConvFeatureExtractionModel(nn.Layer):
|
|
|
|
def __init__(
|
|
|
|
def __init__(self,
|
|
|
|
self,
|
|
|
|
|
|
|
|
conv_layers: List[Tuple[int, int, int]],
|
|
|
|
conv_layers: List[Tuple[int, int, int]],
|
|
|
|
dropout: float = 0.0,
|
|
|
|
dropout: float=0.0,
|
|
|
|
mode: str = "default",
|
|
|
|
mode: str="default",
|
|
|
|
conv_bias: bool = False,
|
|
|
|
conv_bias: bool=False,
|
|
|
|
conv_type: str = "default"
|
|
|
|
conv_type: str="default"):
|
|
|
|
):
|
|
|
|
|
|
|
|
super().__init__()
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
|
|
|
|
assert mode in {"default", "layer_norm"}
|
|
|
|
assert mode in {"default", "layer_norm"}
|
|
|
@ -400,16 +381,19 @@ class ConvFeatureExtractionModel(nn.Layer):
|
|
|
|
stride,
|
|
|
|
stride,
|
|
|
|
is_layer_norm=False,
|
|
|
|
is_layer_norm=False,
|
|
|
|
is_group_norm=False,
|
|
|
|
is_group_norm=False,
|
|
|
|
conv_bias=False,
|
|
|
|
conv_bias=False, ):
|
|
|
|
):
|
|
|
|
|
|
|
|
def make_conv():
|
|
|
|
def make_conv():
|
|
|
|
conv = nn.Conv1D(n_in, n_out, k, stride=stride, bias_attr=conv_bias,
|
|
|
|
conv = nn.Conv1D(
|
|
|
|
|
|
|
|
n_in,
|
|
|
|
|
|
|
|
n_out,
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
stride=stride,
|
|
|
|
|
|
|
|
bias_attr=conv_bias,
|
|
|
|
weight_attr=nn.initializer.KaimingNormal())
|
|
|
|
weight_attr=nn.initializer.KaimingNormal())
|
|
|
|
# nn.init.kaiming_normal_(conv.weight)
|
|
|
|
# nn.init.kaiming_normal_(conv.weight)
|
|
|
|
return conv
|
|
|
|
return conv
|
|
|
|
|
|
|
|
|
|
|
|
assert (
|
|
|
|
assert (is_layer_norm and is_group_norm
|
|
|
|
is_layer_norm and is_group_norm
|
|
|
|
|
|
|
|
) == False, "layer norm and group norm are exclusive"
|
|
|
|
) == False, "layer norm and group norm are exclusive"
|
|
|
|
|
|
|
|
|
|
|
|
if is_layer_norm:
|
|
|
|
if is_layer_norm:
|
|
|
@ -419,19 +403,18 @@ class ConvFeatureExtractionModel(nn.Layer):
|
|
|
|
nn.Sequential(
|
|
|
|
nn.Sequential(
|
|
|
|
TransposeLast(),
|
|
|
|
TransposeLast(),
|
|
|
|
nn.LayerNorm(normalized_shape=dim, epsilon=1e-5),
|
|
|
|
nn.LayerNorm(normalized_shape=dim, epsilon=1e-5),
|
|
|
|
TransposeLast(),
|
|
|
|
TransposeLast(), ),
|
|
|
|
),
|
|
|
|
nn.GELU(), )
|
|
|
|
nn.GELU(),
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
elif is_group_norm:
|
|
|
|
elif is_group_norm:
|
|
|
|
return nn.Sequential(
|
|
|
|
return nn.Sequential(
|
|
|
|
make_conv(),
|
|
|
|
make_conv(),
|
|
|
|
nn.Dropout(p=dropout),
|
|
|
|
nn.Dropout(p=dropout),
|
|
|
|
nn.GroupNorm(num_groups=dim, num_channels=dim, epsilon=1e-5),
|
|
|
|
nn.GroupNorm(
|
|
|
|
nn.GELU(),
|
|
|
|
num_groups=dim, num_channels=dim, epsilon=1e-5),
|
|
|
|
)
|
|
|
|
nn.GELU(), )
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU())
|
|
|
|
return nn.Sequential(
|
|
|
|
|
|
|
|
make_conv(), nn.Dropout(p=dropout), nn.GELU())
|
|
|
|
|
|
|
|
|
|
|
|
self.conv_type = conv_type
|
|
|
|
self.conv_type = conv_type
|
|
|
|
if self.conv_type == "default":
|
|
|
|
if self.conv_type == "default":
|
|
|
@ -449,9 +432,7 @@ class ConvFeatureExtractionModel(nn.Layer):
|
|
|
|
stride,
|
|
|
|
stride,
|
|
|
|
is_layer_norm=mode == "layer_norm",
|
|
|
|
is_layer_norm=mode == "layer_norm",
|
|
|
|
is_group_norm=mode == "default" and i == 0,
|
|
|
|
is_group_norm=mode == "default" and i == 0,
|
|
|
|
conv_bias=conv_bias,
|
|
|
|
conv_bias=conv_bias, ))
|
|
|
|
)
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
in_d = dim
|
|
|
|
in_d = dim
|
|
|
|
elif self.conv_type == "conv2d":
|
|
|
|
elif self.conv_type == "conv2d":
|
|
|
|
in_d = 1
|
|
|
|
in_d = 1
|
|
|
@ -460,9 +441,7 @@ class ConvFeatureExtractionModel(nn.Layer):
|
|
|
|
assert len(cl) == 3
|
|
|
|
assert len(cl) == 3
|
|
|
|
(dim, k, stride) = cl
|
|
|
|
(dim, k, stride) = cl
|
|
|
|
|
|
|
|
|
|
|
|
self.conv_layers.append(
|
|
|
|
self.conv_layers.append(paddle.nn.Conv2D(in_d, dim, k, stride))
|
|
|
|
paddle.nn.Conv2D(in_d, dim, k, stride)
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
self.conv_layers.append(paddle.nn.ReLU())
|
|
|
|
self.conv_layers.append(paddle.nn.ReLU())
|
|
|
|
in_d = dim
|
|
|
|
in_d = dim
|
|
|
|
elif self.conv_type == "custom":
|
|
|
|
elif self.conv_type == "custom":
|
|
|
@ -473,17 +452,13 @@ class ConvFeatureExtractionModel(nn.Layer):
|
|
|
|
assert len(cl) == 3
|
|
|
|
assert len(cl) == 3
|
|
|
|
(dim, k, stride) = cl
|
|
|
|
(dim, k, stride) = cl
|
|
|
|
self.conv_layers.append(
|
|
|
|
self.conv_layers.append(
|
|
|
|
paddle.nn.Conv2D(in_d, dim, k, stride, padding=1)
|
|
|
|
paddle.nn.Conv2D(in_d, dim, k, stride, padding=1))
|
|
|
|
)
|
|
|
|
self.conv_layers.append(paddle.nn.LayerNorm([dim, idim]))
|
|
|
|
self.conv_layers.append(
|
|
|
|
|
|
|
|
paddle.nn.LayerNorm([dim, idim])
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
self.conv_layers.append(paddle.nn.ReLU())
|
|
|
|
self.conv_layers.append(paddle.nn.ReLU())
|
|
|
|
in_d = dim
|
|
|
|
in_d = dim
|
|
|
|
if (i + 1) % 2 == 0:
|
|
|
|
if (i + 1) % 2 == 0:
|
|
|
|
self.conv_layers.append(
|
|
|
|
self.conv_layers.append(
|
|
|
|
paddle.nn.MaxPool2D(2, stride=2, ceil_mode=True)
|
|
|
|
paddle.nn.MaxPool2D(2, stride=2, ceil_mode=True))
|
|
|
|
)
|
|
|
|
|
|
|
|
idim = int(math.ceil(idim / 2))
|
|
|
|
idim = int(math.ceil(idim / 2))
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
pass
|
|
|
|
pass
|
|
|
@ -518,8 +493,8 @@ class TransformerEncoder(nn.Layer):
|
|
|
|
self.dropout = args.dropout
|
|
|
|
self.dropout = args.dropout
|
|
|
|
self.embedding_dim = args.encoder_embed_dim
|
|
|
|
self.embedding_dim = args.encoder_embed_dim
|
|
|
|
dropout = 0
|
|
|
|
dropout = 0
|
|
|
|
std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim))
|
|
|
|
std = math.sqrt(
|
|
|
|
|
|
|
|
(4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim))
|
|
|
|
|
|
|
|
|
|
|
|
self.pos_conv = nn.Conv1D(
|
|
|
|
self.pos_conv = nn.Conv1D(
|
|
|
|
self.embedding_dim,
|
|
|
|
self.embedding_dim,
|
|
|
@ -528,15 +503,16 @@ class TransformerEncoder(nn.Layer):
|
|
|
|
padding=args.conv_pos // 2,
|
|
|
|
padding=args.conv_pos // 2,
|
|
|
|
groups=args.conv_pos_groups,
|
|
|
|
groups=args.conv_pos_groups,
|
|
|
|
weight_attr=nn.initializer.Normal(mean=0, std=std),
|
|
|
|
weight_attr=nn.initializer.Normal(mean=0, std=std),
|
|
|
|
bias_attr=True
|
|
|
|
bias_attr=True)
|
|
|
|
)
|
|
|
|
|
|
|
|
# nn.init.normal_(self.pos_conv.weight, mean=0, std=std)
|
|
|
|
# nn.init.normal_(self.pos_conv.weight, mean=0, std=std)
|
|
|
|
# nn.init.constant_(self.pos_conv.bias, 0)
|
|
|
|
# nn.init.constant_(self.pos_conv.bias, 0)
|
|
|
|
|
|
|
|
|
|
|
|
# self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2)
|
|
|
|
# self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2)
|
|
|
|
# self.pos_conv.weight_g = self.pos_conv.weight_g.unsqueeze(0).unsqueeze(0)
|
|
|
|
# self.pos_conv.weight_g = self.pos_conv.weight_g.unsqueeze(0).unsqueeze(0)
|
|
|
|
self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2)
|
|
|
|
self.pos_conv = nn.utils.weight_norm(
|
|
|
|
self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU())
|
|
|
|
self.pos_conv, name="weight", dim=2)
|
|
|
|
|
|
|
|
self.pos_conv = nn.Sequential(self.pos_conv,
|
|
|
|
|
|
|
|
SamePad(args.conv_pos), nn.GELU())
|
|
|
|
|
|
|
|
|
|
|
|
if hasattr(args, "relative_position_embedding"):
|
|
|
|
if hasattr(args, "relative_position_embedding"):
|
|
|
|
self.relative_position_embedding = args.relative_position_embedding
|
|
|
|
self.relative_position_embedding = args.relative_position_embedding
|
|
|
@ -547,8 +523,7 @@ class TransformerEncoder(nn.Layer):
|
|
|
|
self.num_buckets = 0
|
|
|
|
self.num_buckets = 0
|
|
|
|
self.max_distance = 0
|
|
|
|
self.max_distance = 0
|
|
|
|
|
|
|
|
|
|
|
|
self.layers = nn.LayerList(
|
|
|
|
self.layers = nn.LayerList([
|
|
|
|
[
|
|
|
|
|
|
|
|
TransformerSentenceEncoderLayer(
|
|
|
|
TransformerSentenceEncoderLayer(
|
|
|
|
embedding_dim=self.embedding_dim,
|
|
|
|
embedding_dim=self.embedding_dim,
|
|
|
|
ffn_embedding_dim=args.encoder_ffn_embed_dim,
|
|
|
|
ffn_embedding_dim=args.encoder_ffn_embed_dim,
|
|
|
@ -558,14 +533,13 @@ class TransformerEncoder(nn.Layer):
|
|
|
|
activation_dropout=args.activation_dropout,
|
|
|
|
activation_dropout=args.activation_dropout,
|
|
|
|
activation_fn=args.activation_fn,
|
|
|
|
activation_fn=args.activation_fn,
|
|
|
|
layer_norm_first=args.layer_norm_first,
|
|
|
|
layer_norm_first=args.layer_norm_first,
|
|
|
|
has_relative_attention_bias=(self.relative_position_embedding and i == 0),
|
|
|
|
has_relative_attention_bias=(
|
|
|
|
|
|
|
|
self.relative_position_embedding and i == 0),
|
|
|
|
num_buckets=self.num_buckets,
|
|
|
|
num_buckets=self.num_buckets,
|
|
|
|
max_distance=self.max_distance,
|
|
|
|
max_distance=self.max_distance,
|
|
|
|
gru_rel_pos=args.gru_rel_pos,
|
|
|
|
gru_rel_pos=args.gru_rel_pos, )
|
|
|
|
)
|
|
|
|
|
|
|
|
for i in range(args.encoder_layers)
|
|
|
|
for i in range(args.encoder_layers)
|
|
|
|
]
|
|
|
|
])
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.layer_norm_first = args.layer_norm_first
|
|
|
|
self.layer_norm_first = args.layer_norm_first
|
|
|
|
self.layer_norm = LayerNorm(self.embedding_dim)
|
|
|
|
self.layer_norm = LayerNorm(self.embedding_dim)
|
|
|
@ -574,14 +548,19 @@ class TransformerEncoder(nn.Layer):
|
|
|
|
# self.apply(init_bert_params)
|
|
|
|
# self.apply(init_bert_params)
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x, padding_mask=None, streaming_mask=None, layer=None):
|
|
|
|
def forward(self, x, padding_mask=None, streaming_mask=None, layer=None):
|
|
|
|
x, layer_results = self.extract_features(x, padding_mask, streaming_mask, layer)
|
|
|
|
x, layer_results = self.extract_features(x, padding_mask,
|
|
|
|
|
|
|
|
streaming_mask, layer)
|
|
|
|
# print("x.shape", x.shape)
|
|
|
|
# print("x.shape", x.shape)
|
|
|
|
if self.layer_norm_first and layer is None:
|
|
|
|
if self.layer_norm_first and layer is None:
|
|
|
|
x = self.layer_norm(x)
|
|
|
|
x = self.layer_norm(x)
|
|
|
|
|
|
|
|
|
|
|
|
return x, layer_results
|
|
|
|
return x, layer_results
|
|
|
|
|
|
|
|
|
|
|
|
def extract_features(self, x, padding_mask=None, streaming_mask=None, tgt_layer=None):
|
|
|
|
def extract_features(self,
|
|
|
|
|
|
|
|
x,
|
|
|
|
|
|
|
|
padding_mask=None,
|
|
|
|
|
|
|
|
streaming_mask=None,
|
|
|
|
|
|
|
|
tgt_layer=None):
|
|
|
|
|
|
|
|
|
|
|
|
if padding_mask is not None:
|
|
|
|
if padding_mask is not None:
|
|
|
|
x[padding_mask] = 0
|
|
|
|
x[padding_mask] = 0
|
|
|
@ -598,7 +577,6 @@ class TransformerEncoder(nn.Layer):
|
|
|
|
# x = x.transpose(0, 1)
|
|
|
|
# x = x.transpose(0, 1)
|
|
|
|
x = x.transpose([1, 0, 2])
|
|
|
|
x = x.transpose([1, 0, 2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
layer_results = []
|
|
|
|
layer_results = []
|
|
|
|
z = None
|
|
|
|
z = None
|
|
|
|
if tgt_layer is not None:
|
|
|
|
if tgt_layer is not None:
|
|
|
@ -608,7 +586,12 @@ class TransformerEncoder(nn.Layer):
|
|
|
|
for i, layer in enumerate(self.layers):
|
|
|
|
for i, layer in enumerate(self.layers):
|
|
|
|
dropout_probability = np.random.random()
|
|
|
|
dropout_probability = np.random.random()
|
|
|
|
if not self.training or (dropout_probability > self.layerdrop):
|
|
|
|
if not self.training or (dropout_probability > self.layerdrop):
|
|
|
|
x, z, pos_bias = layer(x, self_attn_padding_mask=padding_mask, need_weights=False,self_attn_mask=streaming_mask, pos_bias=pos_bias)
|
|
|
|
x, z, pos_bias = layer(
|
|
|
|
|
|
|
|
x,
|
|
|
|
|
|
|
|
self_attn_padding_mask=padding_mask,
|
|
|
|
|
|
|
|
need_weights=False,
|
|
|
|
|
|
|
|
self_attn_mask=streaming_mask,
|
|
|
|
|
|
|
|
pos_bias=pos_bias)
|
|
|
|
if tgt_layer is not None:
|
|
|
|
if tgt_layer is not None:
|
|
|
|
layer_results.append((x, z))
|
|
|
|
layer_results.append((x, z))
|
|
|
|
if i == tgt_layer:
|
|
|
|
if i == tgt_layer:
|
|
|
@ -633,20 +616,19 @@ class TransformerSentenceEncoderLayer(nn.Layer):
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
self,
|
|
|
|
embedding_dim: float = 768,
|
|
|
|
embedding_dim: float=768,
|
|
|
|
ffn_embedding_dim: float = 3072,
|
|
|
|
ffn_embedding_dim: float=3072,
|
|
|
|
num_attention_heads: float = 8,
|
|
|
|
num_attention_heads: float=8,
|
|
|
|
dropout: float = 0.1,
|
|
|
|
dropout: float=0.1,
|
|
|
|
attention_dropout: float = 0.1,
|
|
|
|
attention_dropout: float=0.1,
|
|
|
|
activation_dropout: float = 0.1,
|
|
|
|
activation_dropout: float=0.1,
|
|
|
|
activation_fn: str = "relu",
|
|
|
|
activation_fn: str="relu",
|
|
|
|
layer_norm_first: bool = False,
|
|
|
|
layer_norm_first: bool=False,
|
|
|
|
has_relative_attention_bias: bool = True,
|
|
|
|
has_relative_attention_bias: bool=True,
|
|
|
|
num_buckets: int = 0,
|
|
|
|
num_buckets: int=0,
|
|
|
|
max_distance: int = 0,
|
|
|
|
max_distance: int=0,
|
|
|
|
rescale_init: bool = False,
|
|
|
|
rescale_init: bool=False,
|
|
|
|
gru_rel_pos: bool = True,
|
|
|
|
gru_rel_pos: bool=True, ) -> None:
|
|
|
|
) -> None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
super().__init__()
|
|
|
|
super().__init__()
|
|
|
|
# Initialize parameters
|
|
|
|
# Initialize parameters
|
|
|
@ -666,8 +648,7 @@ class TransformerSentenceEncoderLayer(nn.Layer):
|
|
|
|
num_buckets=num_buckets,
|
|
|
|
num_buckets=num_buckets,
|
|
|
|
max_distance=max_distance,
|
|
|
|
max_distance=max_distance,
|
|
|
|
rescale_init=rescale_init,
|
|
|
|
rescale_init=rescale_init,
|
|
|
|
gru_rel_pos=gru_rel_pos,
|
|
|
|
gru_rel_pos=gru_rel_pos, )
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.dropout1 = nn.Dropout(dropout)
|
|
|
|
self.dropout1 = nn.Dropout(dropout)
|
|
|
|
self.dropout2 = nn.Dropout(self.activation_dropout)
|
|
|
|
self.dropout2 = nn.Dropout(self.activation_dropout)
|
|
|
@ -679,7 +660,8 @@ class TransformerSentenceEncoderLayer(nn.Layer):
|
|
|
|
self.self_attn_layer_norm = LayerNorm(self.embedding_dim)
|
|
|
|
self.self_attn_layer_norm = LayerNorm(self.embedding_dim)
|
|
|
|
|
|
|
|
|
|
|
|
if self.activation_name == "glu":
|
|
|
|
if self.activation_name == "glu":
|
|
|
|
self.fc1 = GLU_Linear(self.embedding_dim, ffn_embedding_dim, "swish")
|
|
|
|
self.fc1 = GLU_Linear(self.embedding_dim, ffn_embedding_dim,
|
|
|
|
|
|
|
|
"swish")
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
|
|
|
|
self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
|
|
|
|
self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)
|
|
|
|
self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)
|
|
|
@ -687,14 +669,12 @@ class TransformerSentenceEncoderLayer(nn.Layer):
|
|
|
|
# layer norm associated with the position wise feed-forward NN
|
|
|
|
# layer norm associated with the position wise feed-forward NN
|
|
|
|
self.final_layer_norm = LayerNorm(self.embedding_dim)
|
|
|
|
self.final_layer_norm = LayerNorm(self.embedding_dim)
|
|
|
|
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
def forward(self,
|
|
|
|
self,
|
|
|
|
|
|
|
|
x: Tensor,
|
|
|
|
x: Tensor,
|
|
|
|
self_attn_mask: Tensor = None,
|
|
|
|
self_attn_mask: Tensor=None,
|
|
|
|
self_attn_padding_mask: Tensor = None,
|
|
|
|
self_attn_padding_mask: Tensor=None,
|
|
|
|
need_weights: bool = False,
|
|
|
|
need_weights: bool=False,
|
|
|
|
pos_bias=None
|
|
|
|
pos_bias=None):
|
|
|
|
):
|
|
|
|
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
LayerNorm is applied either before or after the self-attention/ffn
|
|
|
|
LayerNorm is applied either before or after the self-attention/ffn
|
|
|
|
modules similar to the original Transformer imlementation.
|
|
|
|
modules similar to the original Transformer imlementation.
|
|
|
@ -710,8 +690,7 @@ class TransformerSentenceEncoderLayer(nn.Layer):
|
|
|
|
key_padding_mask=self_attn_padding_mask,
|
|
|
|
key_padding_mask=self_attn_padding_mask,
|
|
|
|
need_weights=False,
|
|
|
|
need_weights=False,
|
|
|
|
attn_mask=self_attn_mask,
|
|
|
|
attn_mask=self_attn_mask,
|
|
|
|
position_bias=pos_bias
|
|
|
|
position_bias=pos_bias)
|
|
|
|
)
|
|
|
|
|
|
|
|
# import pdb; pdb.set_trace()
|
|
|
|
# import pdb; pdb.set_trace()
|
|
|
|
x = self.dropout1(x)
|
|
|
|
x = self.dropout1(x)
|
|
|
|
x = residual + x
|
|
|
|
x = residual + x
|
|
|
@ -734,8 +713,7 @@ class TransformerSentenceEncoderLayer(nn.Layer):
|
|
|
|
key_padding_mask=self_attn_padding_mask,
|
|
|
|
key_padding_mask=self_attn_padding_mask,
|
|
|
|
need_weights=need_weights,
|
|
|
|
need_weights=need_weights,
|
|
|
|
attn_mask=self_attn_mask,
|
|
|
|
attn_mask=self_attn_mask,
|
|
|
|
position_bias=pos_bias
|
|
|
|
position_bias=pos_bias)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x = self.dropout1(x)
|
|
|
|
x = self.dropout1(x)
|
|
|
|
x = residual + x
|
|
|
|
x = residual + x
|
|
|
|