commit
4f785a7b7b
@ -0,0 +1,109 @@
|
|||||||
|
"""Prepare Aishell mandarin dataset
|
||||||
|
|
||||||
|
Download, unpack and create manifest files.
|
||||||
|
Manifest file is a json-format file with each line containing the
|
||||||
|
meta data (i.e. audio filepath, transcript and audio duration)
|
||||||
|
of each audio file in the data set.
|
||||||
|
"""
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import os
|
||||||
|
import codecs
|
||||||
|
import soundfile
|
||||||
|
import json
|
||||||
|
import argparse
|
||||||
|
from data_utils.utility import download, unpack
|
||||||
|
|
||||||
|
DATA_HOME = os.path.expanduser('~/.cache/paddle/dataset/speech')
|
||||||
|
|
||||||
|
URL_ROOT = 'http://www.openslr.org/resources/33'
|
||||||
|
DATA_URL = URL_ROOT + '/data_aishell.tgz'
|
||||||
|
MD5_DATA = '2f494334227864a8a8fec932999db9d8'
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description=__doc__)
|
||||||
|
parser.add_argument(
|
||||||
|
"--target_dir",
|
||||||
|
default=DATA_HOME + "/Aishell",
|
||||||
|
type=str,
|
||||||
|
help="Directory to save the dataset. (default: %(default)s)")
|
||||||
|
parser.add_argument(
|
||||||
|
"--manifest_prefix",
|
||||||
|
default="manifest",
|
||||||
|
type=str,
|
||||||
|
help="Filepath prefix for output manifests. (default: %(default)s)")
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def create_manifest(data_dir, manifest_path_prefix):
|
||||||
|
print("Creating manifest %s ..." % manifest_path_prefix)
|
||||||
|
json_lines = []
|
||||||
|
transcript_path = os.path.join(data_dir, 'transcript',
|
||||||
|
'aishell_transcript_v0.8.txt')
|
||||||
|
transcript_dict = {}
|
||||||
|
for line in codecs.open(transcript_path, 'r', 'utf-8'):
|
||||||
|
line = line.strip()
|
||||||
|
if line == '': continue
|
||||||
|
audio_id, text = line.split(' ', 1)
|
||||||
|
# remove withespace
|
||||||
|
text = ''.join(text.split())
|
||||||
|
transcript_dict[audio_id] = text
|
||||||
|
|
||||||
|
data_types = ['train', 'dev', 'test']
|
||||||
|
for type in data_types:
|
||||||
|
audio_dir = os.path.join(data_dir, 'wav', type)
|
||||||
|
for subfolder, _, filelist in sorted(os.walk(audio_dir)):
|
||||||
|
for fname in filelist:
|
||||||
|
audio_path = os.path.join(subfolder, fname)
|
||||||
|
audio_id = fname[:-4]
|
||||||
|
# if no transcription for audio then skipped
|
||||||
|
if audio_id not in transcript_dict:
|
||||||
|
continue
|
||||||
|
audio_data, samplerate = soundfile.read(audio_path)
|
||||||
|
duration = float(len(audio_data) / samplerate)
|
||||||
|
text = transcript_dict[audio_id]
|
||||||
|
json_lines.append(
|
||||||
|
json.dumps(
|
||||||
|
{
|
||||||
|
'audio_filepath': audio_path,
|
||||||
|
'duration': duration,
|
||||||
|
'text': text
|
||||||
|
},
|
||||||
|
ensure_ascii=False))
|
||||||
|
manifest_path = manifest_path_prefix + '.' + type
|
||||||
|
with codecs.open(manifest_path, 'w', 'utf-8') as fout:
|
||||||
|
for line in json_lines:
|
||||||
|
fout.write(line + '\n')
|
||||||
|
|
||||||
|
|
||||||
|
def prepare_dataset(url, md5sum, target_dir, manifest_path):
|
||||||
|
"""Download, unpack and create manifest file."""
|
||||||
|
data_dir = os.path.join(target_dir, 'data_aishell')
|
||||||
|
if not os.path.exists(data_dir):
|
||||||
|
filepath = download(url, md5sum, target_dir)
|
||||||
|
unpack(filepath, target_dir)
|
||||||
|
# unpack all audio tar files
|
||||||
|
audio_dir = os.path.join(data_dir, 'wav')
|
||||||
|
for subfolder, _, filelist in sorted(os.walk(audio_dir)):
|
||||||
|
for ftar in filelist:
|
||||||
|
unpack(os.path.join(subfolder, ftar), subfolder, True)
|
||||||
|
else:
|
||||||
|
print("Skip downloading and unpacking. Data already exists in %s." %
|
||||||
|
target_dir)
|
||||||
|
create_manifest(data_dir, manifest_path)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
if args.target_dir.startswith('~'):
|
||||||
|
args.target_dir = os.path.expanduser(args.target_dir)
|
||||||
|
|
||||||
|
prepare_dataset(
|
||||||
|
url=DATA_URL,
|
||||||
|
md5sum=MD5_DATA,
|
||||||
|
target_dir=args.target_dir,
|
||||||
|
manifest_path=args.manifest_prefix)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
@ -0,0 +1,42 @@
|
|||||||
|
#! /usr/bin/env bash
|
||||||
|
|
||||||
|
pushd ../.. > /dev/null
|
||||||
|
|
||||||
|
# download data, generate manifests
|
||||||
|
PYTHONPATH=.:$PYTHONPATH python data/aishell/aishell.py \
|
||||||
|
--manifest_prefix='data/aishell/manifest' \
|
||||||
|
--target_dir='~/.cache/paddle/dataset/speech/Aishell'
|
||||||
|
|
||||||
|
if [ $? -ne 0 ]; then
|
||||||
|
echo "Prepare Aishell failed. Terminated."
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
|
||||||
|
# build vocabulary
|
||||||
|
python tools/build_vocab.py \
|
||||||
|
--count_threshold=0 \
|
||||||
|
--vocab_path='data/aishell/vocab.txt' \
|
||||||
|
--manifest_paths='data/aishell/manifest.train'
|
||||||
|
|
||||||
|
if [ $? -ne 0 ]; then
|
||||||
|
echo "Build vocabulary failed. Terminated."
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
|
||||||
|
# compute mean and stddev for normalizer
|
||||||
|
python tools/compute_mean_std.py \
|
||||||
|
--manifest_path='data/aishell/manifest.train' \
|
||||||
|
--num_samples=2000 \
|
||||||
|
--specgram_type='linear' \
|
||||||
|
--output_path='data/aishell/mean_std.npz'
|
||||||
|
|
||||||
|
if [ $? -ne 0 ]; then
|
||||||
|
echo "Compute mean and stddev failed. Terminated."
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
|
||||||
|
echo "Aishell data preparation done."
|
||||||
|
exit 0
|
Loading…
Reference in new issue