parent
3bed29ddda
commit
e9a42044f5
@ -0,0 +1,109 @@
|
||||
"""Prepare Aishell mandarin dataset
|
||||
|
||||
Download, unpack and create manifest files.
|
||||
Manifest file is a json-format file with each line containing the
|
||||
meta data (i.e. audio filepath, transcript and audio duration)
|
||||
of each audio file in the data set.
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
import codecs
|
||||
import soundfile
|
||||
import json
|
||||
import argparse
|
||||
from data_utils.utility import download, unpack
|
||||
|
||||
DATA_HOME = os.path.expanduser('~/.cache/paddle/dataset/speech')
|
||||
|
||||
URL_ROOT = 'http://www.openslr.org/resources/33'
|
||||
DATA_URL = URL_ROOT + '/data_aishell.tgz'
|
||||
MD5_DATA = '2f494334227864a8a8fec932999db9d8'
|
||||
|
||||
parser = argparse.ArgumentParser(description=__doc__)
|
||||
parser.add_argument(
|
||||
"--target_dir",
|
||||
default=DATA_HOME + "/Aishell",
|
||||
type=str,
|
||||
help="Directory to save the dataset. (default: %(default)s)")
|
||||
parser.add_argument(
|
||||
"--manifest_prefix",
|
||||
default="manifest",
|
||||
type=str,
|
||||
help="Filepath prefix for output manifests. (default: %(default)s)")
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
def create_manifest(data_dir, manifest_path_prefix):
|
||||
print("Creating manifest %s ..." % manifest_path_prefix)
|
||||
json_lines = []
|
||||
transcript_path = os.path.join(data_dir, 'transcript',
|
||||
'aishell_transcript_v0.8.txt')
|
||||
transcript_dict = {}
|
||||
for line in codecs.open(transcript_path, 'r', 'utf-8'):
|
||||
line = line.strip()
|
||||
if line == '': continue
|
||||
audio_id, text = line.split(' ', 1)
|
||||
# remove withespace
|
||||
text = ''.join(text.split())
|
||||
transcript_dict[audio_id] = text
|
||||
|
||||
data_types = ['train', 'dev', 'test']
|
||||
for type in data_types:
|
||||
audio_dir = os.path.join(data_dir, 'wav', type)
|
||||
for subfolder, _, filelist in sorted(os.walk(audio_dir)):
|
||||
for fname in filelist:
|
||||
audio_path = os.path.join(subfolder, fname)
|
||||
audio_id = fname[:-4]
|
||||
# if no transcription for audio then skipped
|
||||
if audio_id not in transcript_dict:
|
||||
continue
|
||||
audio_data, samplerate = soundfile.read(audio_path)
|
||||
duration = float(len(audio_data) / samplerate)
|
||||
text = transcript_dict[audio_id]
|
||||
json_lines.append(
|
||||
json.dumps(
|
||||
{
|
||||
'audio_filepath': audio_path,
|
||||
'duration': duration,
|
||||
'text': text
|
||||
},
|
||||
ensure_ascii=False))
|
||||
manifest_path = manifest_path_prefix + '.' + type
|
||||
with codecs.open(manifest_path, 'w', 'utf-8') as fout:
|
||||
for line in json_lines:
|
||||
fout.write(line + '\n')
|
||||
|
||||
|
||||
def prepare_dataset(url, md5sum, target_dir, manifest_path):
|
||||
"""Download, unpack and create manifest file."""
|
||||
data_dir = os.path.join(target_dir, 'data_aishell')
|
||||
if not os.path.exists(data_dir):
|
||||
filepath = download(url, md5sum, target_dir)
|
||||
unpack(filepath, target_dir)
|
||||
# unpack all audio tar files
|
||||
audio_dir = os.path.join(data_dir, 'wav')
|
||||
for subfolder, _, filelist in sorted(os.walk(audio_dir)):
|
||||
for ftar in filelist:
|
||||
unpack(os.path.join(subfolder, ftar), subfolder, True)
|
||||
else:
|
||||
print("Skip downloading and unpacking. Data already exists in %s." %
|
||||
target_dir)
|
||||
create_manifest(data_dir, manifest_path)
|
||||
|
||||
|
||||
def main():
|
||||
if args.target_dir.startswith('~'):
|
||||
args.target_dir = os.path.expanduser(args.target_dir)
|
||||
|
||||
prepare_dataset(
|
||||
url=DATA_URL,
|
||||
md5sum=MD5_DATA,
|
||||
target_dir=args.target_dir,
|
||||
manifest_path=args.manifest_prefix)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -0,0 +1,42 @@
|
||||
#! /usr/bin/env bash
|
||||
|
||||
pushd ../.. > /dev/null
|
||||
|
||||
# download data, generate manifests
|
||||
PYTHONPATH=.:$PYTHONPATH python data/aishell/aishell.py \
|
||||
--manifest_prefix='data/aishell/manifest' \
|
||||
--target_dir='~/.cache/paddle/dataset/speech/Aishell'
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Prepare Aishell failed. Terminated."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
# build vocabulary
|
||||
python tools/build_vocab.py \
|
||||
--count_threshold=0 \
|
||||
--vocab_path='data/aishell/vocab.txt' \
|
||||
--manifest_paths='data/aishell/manifest.train'
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Build vocabulary failed. Terminated."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
# compute mean and stddev for normalizer
|
||||
python tools/compute_mean_std.py \
|
||||
--manifest_path='data/aishell/manifest.train' \
|
||||
--num_samples=2000 \
|
||||
--specgram_type='linear' \
|
||||
--output_path='data/aishell/mean_std.npz'
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Compute mean and stddev failed. Terminated."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
echo "Aishell data preparation done."
|
||||
exit 0
|
Loading…
Reference in new issue