add ctc loss topic

pull/993/head
Hui Zhang 3 years ago
parent f9b66d0d97
commit 37e6f9d745

@ -53,7 +53,7 @@ pull_request_rules:
add: ["T2S"]
- name: "auto add label=Audio"
conditions:
- files~=^paddleaudio/
- files~=^audio/
actions:
label:
add: ["Audio"]
@ -69,6 +69,12 @@ pull_request_rules:
actions:
label:
add: ["Example"]
- name: "auto add label=Demo"
conditions:
- files~=^demos/
actions:
label:
add: ["Demo"]
- name: "auto add label=README"
conditions:
- files~=README.md
@ -77,7 +83,7 @@ pull_request_rules:
add: ["README"]
- name: "auto add label=Documentation"
conditions:
- files~=^doc/
- files~=^docs/
actions:
label:
add: ["Documentation"]

@ -13,8 +13,8 @@
files: (?!.*paddle)^.*$
- id: end-of-file-fixer
files: \.md$
- id: trailing-whitespace
files: \.md$
#- id: trailing-whitespace
# files: \.md$
- id: requirements-txt-fixer
exclude: (?=third_party).*$
- id: check-yaml

@ -0,0 +1,336 @@
## Derivative of CTC Loss
关于CTC的介绍已经有很多不错的教程了但是完整的描述CTCLoss的前向和反向过程的很少而且有些公式推导省略和错误。本文主要关注CTC Loss的梯度是如何计算的关于CTC的介绍这里不做过多赘述具体参看文末参考。
CTC主要应用于语音和OCR中已语音[Deepspeech2](https://arxiv.org/abs/1512.02595)模型为例CTC的网络一般如下图所示包含softmax和CTCLoss两部分。反向传播需要求得loss L相对于logits $u^i$的梯度。下面先介绍CTCLoss的前向计算。
> 图片来源于文末参考
![img](./img/ctc_loss_backward_1.png)
## 1. CTC Loss 的计算
CTC中path的定义与概率的计算如下
<img src="./img/ctc_loss_prob_pi_x.png" alt="image-20211104200811966" style="zoom:50%;" />
path 是 $ L'^T$​​的元素,用 $ \pi $​​表示。 $ \textbf{x} $ 是输入特征,$\textbf{y}$ 是输出label 都是序列。 $ L $ 是输出的 vocab, L 是 $ L \cup {blank}$​​。 $y_{\pi_{t}}^t$ 表示在t时刻$\pi_{t}$ label时的观察概率。其中$\pi_{t}$ 表示 $\pi$ path在t时刻的label。$\pi$ 是 $\textbf{y}$ 与 $ \textbf{x}$ 的一个alignment长度是$T$​​,取值空间为$L'$。path也称为alignment。
公式2解释了给定输入 $\textbf{x}$ ,输出 $ \pi $ path 的概率即从时间t=1到T每个时间点的概率 $y_{\pi_{t}}^t$ 相乘。
求出单条path后就可以计算$p(l \mid x)$ 的概率,计算如下:
<img src="./img/ctc_loss_prob_l_x.png" alt="image-20211104202358513" style="zoom:50%;" />
这里边 $\mathcal{B}$ 就是映射, 即所有多对一的映射many-to-one mapping )的集合。 这样就算出来对应一个真正的 label $\textbf{l}$ 的概率了,这里是求和。 求和的原因就是 aab 和 abb 都是对应成ab, 所以 aab 的概率 + abb 的概率才是生成ab的概率。
公式3解释了给定输入 $\mathbf{x}$ ,求输出$\mathbf{l}$ 的概率, 即所有集合 $\mathcal{B}^{-1} (\mathbf{l})$ 中 path的概率和。
### 1.1 CTC forward-backward 算法
CTC的优化采用算最大似然估计[MLE (maximum likelihood estimation)](https://en.wikipedia.org/wiki/Maximum_likelihood_estimation), 这个和神经网络本身的训练过程是一致的。
这个CTC 计算过程类似HMM的 [forward-backward algorithm](https://en.wikipedia.org/wiki/Forward%E2%80%93backward_algorithm),下面就是这个算法的推导过程:
<img src="./img/ctc_loss_alpha_definition.png" alt="image-20211104203040307" style="zoom:50%;" />
上图中的定义很清楚, 但是$ \alpha_{t-1}(s) $ and $ \alpha_{t-1}(s-1)$ 和 $\alpha_t(s)$ 的关系也不那么好看出来,下图给出了具体的关于 $\alpha_t(s)$ 的推导过程:
<img src="./img/ctc_loss_alpha_recurse.png" alt="image-20211108155714843" style="zoom:50%;" />
<img src="./img/ctc_loss_alpha_recurse_2.png" alt="image-20211109153011816" style="zoom:50%;" />
这里的公式比较适合用下面的图来理解,$\alpha_1(1)$ 其实对应的就是下图中左上角白色的圆圈。 就是上来第一个是blank 的概率, 而 $\alpha_1(2)$是label l 的第一个字母。 这里边我们假设每个字母之间都插入了空白即label l扩展成l'例如l=[a, b, b, c] l'=[-, a, -, b, -, b, -, c, -]。 然后对于其他圆点在时间是1 的情况下概率都是 0. Figure 3中横轴是时间 t从左到右是1到T纵轴是ssequence从上到下是 1 到 $\mathbf{\mid l' \mid}$.
<img src="./img/ctc_loss_cat_lattice.png" alt="image-20211108155918442" style="zoom:50%;" />
接下来我们分析递归公式 (resursion),更多介绍可以参看 [2]. 公式6分情况考虑:
* 第一种情况就是当前的label是blank 或者 $\mathbf{l'}_{s}= \mathbf{l'}_{s-2}$(相邻是重复字符)
![img](https://distill.pub/2017/ctc/assets/cost_no_skip.svg)
这个时候他的概率来自于过去t-1的两个label 概率, 也就是 $a_{t-1} (s)$ 和 $a_{t-1} (s-1)$
$ a_{t-1} (s)$ 就是说当前的 sequence 已经是s 了figure 3中表现为横跳 blank -->blank例如t=3, s=3
而 $a_{t-1} (s-1) $是说明当前的字符还不够, 需要再加一个, 所以在figure 3中就是斜跳从黑色圆圈到白色圆圈例如t=3, s=5
仔细观察figure 3 除了第一排的白色圆圈, 其他白色圆圈都有两个输入, 就是上述的两种情况。 当然判断blank 的方法也可以是判断$I'_{s-2} = I'_{s}$. 这种情况也是说明$I'_{s}$ 是blank, 因为每一个字符必须用 blank 隔开, 即使是相同字符。
* 第二章情况 也可以用类似逻辑得出, 只不过当前的状态s 是黑色圆圈, 有三种情况输入。
![img](https://distill.pub/2017/ctc/assets/cost_regular.svg)
最终的概率就如公式8 所示, 这个计算过程就是 CTC forward algroirthm 基于 Fig. 3 的左边的初始条件。
<img src="./img/ctc_loss_forward_loss.png" alt="image-20211108162544982" style="zoom:50%;" />
基于Fig. 3 右边的初始条件,我们还是可以计算出一个概率, 那个就是 **CTC backward**. 这里我就不详细介绍了, 直接截图。
<img src="./img/ctc_loss_backward_recurse.png" alt="image-20211108162859876" style="zoom:50%;" />
这样一直做乘法, 数字值越来越小很快就会underflow。 这个时候就需要做 scaling.
<img src="./img/ctc_loss_rescale_loss.png" alt="image-20211108163526616" style="zoom:50%;" />
算出了forward probability 和 backward probability 有什么用呢, 解释如下图。
<img src="./img/ctc_loss_forward_backward.png" alt="image-20211108164110404" style="zoom:50%;" />
上图是说 forward probability and backward probability 的乘积, 代表了这个 sequence $\mathbf{l}$ t时刻是s label 的 所有paths 的概率。 这样的话 我们就计算了 Fig. 3 中的每个圆圈的概率。为什么$\alpha_t(s)\beta_t(s)$ 中多出一个 $y^t_{\mathbf{l'_s}}$ ,这是因为它在 $\alpha$ 和 $\beta$ 中都包含该项,合并公式后就多出一项。
<img src="./img/ctc_loss_forward_backward_to_loss.png" alt="image-20211109143104052" style="zoom:50%;" />
$p(\mathbf{l}|\mathbf{x})$ 可以通过任意时刻 t 的所有 s 的 foward-backward 概率计算得来。取负对数后就是单个样本的NLLNegative Log Likelihood
### 1.2 总结
总结一下根据前向概率计算CTCLoss函数可以得出如下结论
1. 对于时序长度为T的输入序列x和输出序列z前向概率
$$
\begin{split}
\alpha_t(s) &= \sum_{ \underset{\pi_t=l'_s}{\pi \in \mathcal{B}^{-1}(z)} } p(\pi_{1:t}|x) \newline
\alpha_1(1) &= y_{-}^1 ; \quad \alpha_1(2)=y^1_{l'_2}, \quad \alpha_1(s)=0, \forall s > 2 \newline
\alpha_t(s) &= 0, \quad \forall s < |l'| - 2(T-t) - 1 ,\quad \text{or} \quad \forall s < 1 \newline
\alpha_t(s) &=
\begin{cases}
(\alpha_{t-1}(s) + \alpha_{t-1}(s-1) ) y^t_{l'_s} & \text{if $l'_s=b$ or $l'_{s-2} = l'_s$} \newline
(\alpha_{t-1}(s) + \alpha_{t-1}(s-1) + \alpha_{t-1}(s-2))y^t_{l'_s} & \text{otherwise}\newline
\end{cases}
\end{split}
$$
2. 利用 $\alpha_t(s)$计算CTCLoss
$$
-ln(p(l \mid x)) = -ln(\alpha_{T}(|l'|)+\alpha_{T}(|l'|-1))
$$
根据后向概率计算CTCLoss函数可以得出如下结论
1. 对于时序长度为T的输入序列x和输出序列z后向概率
$$
\begin{split}
\beta_t(s) &= \sum_{ \underset{\pi_t=l'_s}{\pi \in \mathcal{B}^{-1}(z)} } p(\pi_{t:T}|x) \newline
\beta_T(|l'|) &= y_{-}^T ; \quad \beta_T(|l'|-1)=y^T_{l'_{|l'|-1}}, \quad \beta_T(s)=0, \forall s < |l'| - 1 \newline
\beta_t(s) &= 0, \text{$\forall s > 2t$ or $\forall s < |l'|$} \newline
\beta_t(s) &=
\begin{cases}
(\beta_{t+1}(s) + \beta_{t+1}(s+1) ) y^t_{l'_s} & \text{if $l'_s=b$ or $l'_{s+2} = l'_s$} \newline
(\beta_{t+1}(s) + \beta_{t+1}(s+1) + \beta_{t+1}(s+2))y^t_{l'_s} & \text{otherwise}\newline
\end{cases}
\end{split}
$$
2. 利用 $\beta_t(s)$计算CTCLoss
$$
-ln(p(l \mid x)) = -ln(\beta_{1}(1)+\beta_{1}(2)) \newline
$$
根据任意时刻的前向概率和后向概率计算CTC Loss函数得到如下结论
1. 对于任意时刻t利用前向概率和后向概率计算CTCLoss
$$
p(l \mid x) = \sum_{s=1}^{|l'|} \frac{\alpha_t(s)\beta_t(s)}{y_{l'_s}^t} \newline
-ln(p(l \mid x)) = -ln( \sum_{s=1}^{|l'|} \frac{\alpha_t(s) \beta_t(s)}{y_{l'_s}^t} )
$$
我们已经得到CTCLoss的计算方法接下来对其进行求导。
## 2. CTC梯度计算
### 2.1 微分公式
在计算梯度前,我们先回顾下基本的微分公式:
$$
C' &= 0 \newline
x' &= 1 \newline
x^n &= n \cdot x^{n-1} \newline
(e^x)' &= e^x \newline
log(x)' &= \frac{1}{x} \newline
(u + v)' &= u' + v' \newline
(\frac{u}{v})' &= \frac{u'v-uv'}{v^2} \newline
\frac{\mathrm{d}f(g(x))}{\mathrm{d}x} &= \frac{\mathrm{d}f(g(x))}{\mathrm{d}g(x)} \cdot \frac{\mathrm{d}g(x)}{\mathrm{d}x}
$$
### 2.2 CTC梯度
最大似然估计训练就是最大化训练集中每一个分类的对数概率即最小化Eq. 12。
<img src="./img/ctc_loss_gradient_of_y_hat.png" alt="image-20211108164206136" style="zoom:50%;" />
最后就是算微分了, 整个推导过程就是加法和乘法, 都可以微分。 $\mathit{O}^{ML}$关于神经网络的输出 $y^t_k$的梯度见Eq. 13。因为训练样本是相互独立的所以可以单独考虑每个样本公式如Eq.13。
下面是CTCLoss的梯度计算
<img src="./img/ctc_loss_gradient_with_y.png" alt="image-20211109143622448" style="zoom:50%;" />
### 2.3 CTC梯度推导
回顾下之前的公式,便于理解后续推导过程。
$$
p(l \mid x) = \sum_{s=1}^{|l'|} \frac{\alpha_t(s)\beta_t(s)}{y_{l'_s}^t} \\
\begin{equation}
\alpha_t(s) \beta_t(s) = \sum_{ \underset{\pi_t=l'_s}{\pi \in \mathcal{B}^{-1}(l):} } y^t_{l'_s} \prod_{t=1}^T y^t_{\pi_t}
\end{equation}
$$
其中Eq. 15的计算过程如下
$$
\begin{align*}
\frac{\part p(
l \mid x)}{\part y_k^t}
& = \sum_{s \in lab(z,k)} \frac{ \part \frac{ \alpha_t(s) \beta_t(s)}{y_{k}^t}}{\part y_k^t}
\newline
& = \sum_{s \in lab(z,k)} \frac{(\alpha_t(s)\beta_t(s))y_k^t - \alpha_t(s)\beta_t(s){y_k^t}'}{{y_k^t}^2}
\newline
&= \sum_{s \in lab(z,k)} \frac{( \prod_{t'=1}^{t-1} y^{t'}_{\pi_{t'}} \cdot y_k^t \cdot y_k^t \cdot \prod_{t'=t+1}^{T} y^{t'}_{\pi_{t'}} ) y_k^t - \alpha_t(s)\beta_t(s){y_k^t}'}{{y_k^t}^2}
\newline
&= \sum_{s \in lab(z,k)} \frac{2\alpha_t(s)\beta_t(s) - \alpha_t(s)\beta_t(s)}{{y_k^t}^2}
\newline
&= \sum_{s \in lab(z,k)} \frac{\alpha_t(s)\beta_t(s)}{{y_k^t}^2}
\newline
&= \frac{1}{{y_k^t}^2} \sum_{s \in lab(z,k)} \alpha_t(s)\beta_t(s) \tag{1} \newline
\end{align*}
$$
NLL的公式推导如下
$$
\begin{split}
\frac{\part {ln(p(l \mid x))} }{ \part y^t_k }
&= \frac{1}{p(l \mid x)} \frac{ \part{p(l \mid x)} }{ \part y_k^t } \newline
&= \frac{1}{p(l \mid x) {y^t_k}^2 } \sum_{s \in lab(z,k)} \alpha_t(s)\beta_t(s)
\end{split}
\tag{2}
$$
已经算出了CTCLoss对于 $y_k^t$ 的梯度,接下来我们需要计算 CTCLoss对于$u^t_k$logits的梯度。套用链式法则并替换$y^t_k$ 为 $y^t_{k'}$​,结果如下图。图中 $k'$ 表示vocab中的某一个token$K$ 是vocab的大小。
![](./img/ctc_loss_backward_2.png)
图中公式4根据链式法则得到
$$
- \frac{ \part ln(p(l \mid x)) }{ \part u^t_k }
= - \sum_{k'=1}^{K} \frac{ \part ln(p(l \mid x)) }{ \part y^t_{k'} } \frac{ \part y^t_{k'} }{ \part u^t_k } \tag{4}
$$
图中公式3是softmax的梯度参考 [4],计算过程如下:
$$
softmax(j) = S_j = \frac{ e^{a_j} }{ \sum_{k=1}^K e^{a_k} }, \enspace \forall j \in 1 \dots K
$$
$$
\begin{split}
\frac{ \part S_i }{ \part a_j}
&= \frac{ \part (\frac{ e^{ a_i } }{ \sum_k e^{ a_k } }) } { \part a_j }
\newline
&=
\begin{cases}
\frac{ e^a_i \sum - e^a_j e^a_i }{ \sum^2 }
&= \frac{ e^a_i }{ \sum } \frac{ \sum - e^a_j }{ \sum } \newline
&= S_i(1-S_j) & \text{i = j, $\sum$ stands for $\sum_{k=1}^K e^a_k$}
\newline
\frac{ 0 - e^a_j e^a_i }{ \sum^2 }
&= - \frac{ e^a_j }{ \sum } \frac{ e^a_i }{ \sum } \newline
&= -S_j S_i & \text{i $\neq$ j, $\sum$ stands for $\sum_{k=1}^K e^a_k$}
\end{cases}
\newline
&=
\begin{cases}
S_i(1 - S_j) & \text{$i = j$}
\newline
-S_j S_i = S_i (0 - S_j) & \text{$i \neq j$}
\end{cases}
\newline
&= S_i (\delta_{ij} - S_j )
\end{split}
\tag{3}
$$
$$
\delta_{ij} =
\begin{cases}
1 & \text{if i = j} \newline
0 & \text{otherwise}
\end{cases}
$$
下图中黄色框中的部分表示公式1即遍历所有的vocab中的token其结果是$p(l \mid x)$。这是因为label $l$ 中的token一定在vocab中且 $s \in lab(l, k')$ 可以是空集。当 $k'$ 在 l 中s 则为label中token是$k'$​的概率;当$k'$不在l中s为空概率为0。
![img](./img/ctc_loss_backward_3.png)
公式23带入4并结合公式1的结果如上图右边
$$
\begin{split}
- \frac{ \part ln(p(l \mid x)) }{ \part u^t_k } &=
- \sum_{k'=1}^K \frac{ \part ln(p(l \mid x)) }{ \part y^t_{k'} } \frac{ \part y^t_{k'}}{ \part u^t_k } \newline
&= - \sum_{k'=1}^K \frac{ y^t_{k'}( \delta_{kk'} - y^t_k ) }{ p(l \mid x) {y^t_{k'}}^2 } \sum_{s \in lab(l, k') } \alpha_t(s) \beta_t(s) \newline
&= - \sum_{k'=1}^K \frac{ \delta_{kk'} - y^t_k }{ p(l \mid x) y^t_{k'} } \sum_{s \in lab(l, k') } \alpha_t(s) \beta_t(s) \newline
&= \sum_{k'=1}^K \frac{ y^t_k - \delta_{kk'} }{ p(l \mid x) y^t_{k'} } \sum_{s \in lab(l, k') } \alpha_t(s) \beta_t(s) \newline
&= \sum_{k'=1}^K \frac{ y^t }{ p(l \mid x) y^t_{k'} } \sum_{s \in lab(l, k') } \alpha_t(s) \beta_t(s) - \sum_{k'=1}^K \frac{ \delta_{kk'} }{ p(l \mid x) y^t_{k'} } \sum_{s \in lab(l, k') } \alpha_t(s) \beta_t(s) \newline
&= \frac{ y^t_k }{ p(l \mid x) } ( \sum_{k'=1}^K \frac{1}{y^t_{k'}} \sum_{s \in lab(l, k') } \alpha_t(s) \beta_t(s) ) - \sum_{k'=1}^K \frac{ \delta_{kk'} }{ p(l \mid x) y^t_{k'} } \sum_{s \in lab(l, k') } \alpha_t(s) \beta_t(s) \newline
&= \frac{ y^t_k }{ p(l \mid x) } p(l \mid x) - \sum_{k'=1}^K \frac{ \delta_{kk'} }{ p(l \mid x) y^t_{k'} } \sum_{s \in lab(l, k') } \alpha_t(s) \beta_t(s) \newline
&= y^t_k - \frac{ 1 }{ p(l \mid x) y^t_k } \sum_{s \in lab(l, k)} \alpha_t(s) \beta_t(s) \newline
\end{split}
$$
最终为了通过softmax层传播CTCLoss的梯度需要计算目标函数与 logits $u^t_k$的偏微分即Eq. 16
$$
\begin{align*}
\hat{\alpha}_t(s) & \overset{def}{=} \frac{ \alpha_t(s) }{ C_t } ,\enspace C_t \overset{def}{=} \sum_s \alpha_t(s)
\newline
\hat{\beta}_t(s) & \overset{def}{=} \frac{ \beta_t(s) }{ D_t } ,\enspace D_t \overset{def}{=} \sum_s \beta_t(s)
\newline
- \frac{ \part ln(p(l \mid x)) }{ \part u^t_k } &= y^t_k - \frac{1}{y^t_k \sum_{s=1}^{\mid l' \mid} \frac{ \hat{\alpha}_t(s) \hat{\beta}_t(s) }{ y^t_{l'_s} } } \sum_{s \in lab(l, k)} \hat{\alpha}_t(s) \hat{\beta}_t(s) \tag{16}
\newline
\end{align*}
$$
### 2.1 总结
* 通过动态规划算法计算$\alpha_t(s)$ 和 $\beta_t(s)$
* 通过$\alpha_t(s)$ 计算 $p(l \mid x)=\alpha_T(\mid l' \mid) + \alpha_T(\mid l' \mid -1)$
* 通过$\alpha_t(s)$ 和 $\beta_t(s)$ 计算CTcLoss函数的导数
$$
\begin{split}
- \frac{ \part ln(p(l \mid x)) }{ \part u^t_k }
&= y^t_k - \frac{ 1 }{ p(l \mid x) y^t_k } \sum_{s \in lab(l, k)} \alpha_t(s) \beta_t(s)
\newline
&= y^t_k - \frac{1}{y^t_k \sum_{s=1}^{\mid l' \mid} \frac{ \hat{\alpha}_t(s) \hat{\beta}_t(s) }{ y^t_{l'_s} } } \sum_{s \in lab(l, k)} \hat{\alpha}_t(s) \hat{\beta}_t(s)
\newline
\end{split}
\tag{16}
$$
## Reference
[[1] A. Graves, S. Fernandez, F. Gomez, J. Schmidhuber. Connectionist Temporal lassification: Labeling Unsegmented Sequence Data with Recurrent Neural Networks. ICML 2006, Pittsburgh, USA, pp. 369-376.](http://www.cs.toronto.edu/~graves/icml_2006.pdf)
[[2] Sequence ModelingWith CTC](https://distill.pub/2017/ctc/)
[[3] NLP 之 CTC Loss 的工作原理](https://www.jianshu.com/p/e073c9d91b20)
[[4] The Softmax function and its derivative](https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/)
[[5] CTC Algorithm Explained Part 1Training the NetworkCTC算法详解之训练篇](https://xiaodu.io/ctc-explained/)

Binary file not shown.

After

Width:  |  Height:  |  Size: 162 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 115 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 123 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 113 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 31 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 223 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 140 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 108 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 126 KiB

Loading…
Cancel
Save