parent
a3807d9cb5
commit
0ebf36b98f
@ -0,0 +1,75 @@
|
||||
from pynput import keyboard
|
||||
import struct
|
||||
import socket
|
||||
import sys
|
||||
import pyaudio
|
||||
|
||||
HOST, PORT = "10.104.18.14", 8086
|
||||
|
||||
is_recording = False
|
||||
enable_trigger_record = True
|
||||
|
||||
|
||||
def on_press(key):
|
||||
global is_recording, enable_trigger_record
|
||||
if key == keyboard.Key.space:
|
||||
if (not is_recording) and enable_trigger_record:
|
||||
sys.stdout.write("Start Recording ... ")
|
||||
sys.stdout.flush()
|
||||
is_recording = True
|
||||
|
||||
|
||||
def on_release(key):
|
||||
global is_recording, enable_trigger_record
|
||||
if key == keyboard.Key.esc:
|
||||
return False
|
||||
elif key == keyboard.Key.space:
|
||||
if is_recording == True:
|
||||
is_recording = False
|
||||
|
||||
|
||||
data_list = []
|
||||
|
||||
|
||||
def callback(in_data, frame_count, time_info, status):
|
||||
global data_list, is_recording, enable_trigger_record
|
||||
if is_recording:
|
||||
data_list.append(in_data)
|
||||
enable_trigger_record = False
|
||||
elif len(data_list) > 0:
|
||||
# Connect to server and send data
|
||||
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
||||
sock.connect((HOST, PORT))
|
||||
sent = ''.join(data_list)
|
||||
sock.sendall(struct.pack('>i', len(sent)) + sent)
|
||||
print('Speech[length=%d] Sent.' % len(sent))
|
||||
# Receive data from the server and shut down
|
||||
received = sock.recv(1024)
|
||||
print "Recognition Results: {}".format(received)
|
||||
sock.close()
|
||||
data_list = []
|
||||
enable_trigger_record = True
|
||||
return (in_data, pyaudio.paContinue)
|
||||
|
||||
|
||||
def main():
|
||||
p = pyaudio.PyAudio()
|
||||
stream = p.open(
|
||||
format=pyaudio.paInt32,
|
||||
channels=1,
|
||||
rate=16000,
|
||||
input=True,
|
||||
stream_callback=callback)
|
||||
stream.start_stream()
|
||||
|
||||
with keyboard.Listener(
|
||||
on_press=on_press, on_release=on_release) as listener:
|
||||
listener.join()
|
||||
|
||||
stream.stop_stream()
|
||||
stream.close()
|
||||
p.terminate()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -0,0 +1,208 @@
|
||||
import os
|
||||
import time
|
||||
import argparse
|
||||
import distutils.util
|
||||
from time import gmtime, strftime
|
||||
import SocketServer
|
||||
import struct
|
||||
import wave
|
||||
import pyaudio
|
||||
import paddle.v2 as paddle
|
||||
from data_utils.data import DataGenerator
|
||||
from model import DeepSpeech2Model
|
||||
import utils
|
||||
|
||||
parser = argparse.ArgumentParser(description=__doc__)
|
||||
parser.add_argument(
|
||||
"--host_ip",
|
||||
default="10.104.18.14",
|
||||
type=str,
|
||||
help="Server IP address. (default: %(default)s)")
|
||||
parser.add_argument(
|
||||
"--host_port",
|
||||
default=8086,
|
||||
type=int,
|
||||
help="Server Port. (default: %(default)s)")
|
||||
parser.add_argument(
|
||||
"--speech_save_dir",
|
||||
default="demo_cache",
|
||||
type=str,
|
||||
help="Directory for saving demo speech. (default: %(default)s)")
|
||||
parser.add_argument(
|
||||
"--vocab_filepath",
|
||||
default='datasets/vocab/eng_vocab.txt',
|
||||
type=str,
|
||||
help="Vocabulary filepath. (default: %(default)s)")
|
||||
parser.add_argument(
|
||||
"--mean_std_filepath",
|
||||
default='mean_std.npz',
|
||||
type=str,
|
||||
help="Manifest path for normalizer. (default: %(default)s)")
|
||||
parser.add_argument(
|
||||
"--specgram_type",
|
||||
default='linear',
|
||||
type=str,
|
||||
help="Feature type of audio data: 'linear' (power spectrum)"
|
||||
" or 'mfcc'. (default: %(default)s)")
|
||||
parser.add_argument(
|
||||
"--num_conv_layers",
|
||||
default=2,
|
||||
type=int,
|
||||
help="Convolution layer number. (default: %(default)s)")
|
||||
parser.add_argument(
|
||||
"--num_rnn_layers",
|
||||
default=3,
|
||||
type=int,
|
||||
help="RNN layer number. (default: %(default)s)")
|
||||
parser.add_argument(
|
||||
"--rnn_layer_size",
|
||||
default=512,
|
||||
type=int,
|
||||
help="RNN layer cell number. (default: %(default)s)")
|
||||
parser.add_argument(
|
||||
"--use_gpu",
|
||||
default=True,
|
||||
type=distutils.util.strtobool,
|
||||
help="Use gpu or not. (default: %(default)s)")
|
||||
parser.add_argument(
|
||||
"--model_filepath",
|
||||
default='checkpoints/params.latest.tar.gz',
|
||||
type=str,
|
||||
help="Model filepath. (default: %(default)s)")
|
||||
parser.add_argument(
|
||||
"--decode_method",
|
||||
default='beam_search',
|
||||
type=str,
|
||||
help="Method for ctc decoding: best_path or beam_search. "
|
||||
"(default: %(default)s)")
|
||||
parser.add_argument(
|
||||
"--beam_size",
|
||||
default=500,
|
||||
type=int,
|
||||
help="Width for beam search decoding. (default: %(default)d)")
|
||||
parser.add_argument(
|
||||
"--language_model_path",
|
||||
default="lm/data/common_crawl_00.prune01111.trie.klm",
|
||||
type=str,
|
||||
help="Path for language model. (default: %(default)s)")
|
||||
parser.add_argument(
|
||||
"--alpha",
|
||||
default=0.36,
|
||||
type=float,
|
||||
help="Parameter associated with language model. (default: %(default)f)")
|
||||
parser.add_argument(
|
||||
"--beta",
|
||||
default=0.25,
|
||||
type=float,
|
||||
help="Parameter associated with word count. (default: %(default)f)")
|
||||
parser.add_argument(
|
||||
"--cutoff_prob",
|
||||
default=0.99,
|
||||
type=float,
|
||||
help="The cutoff probability of pruning"
|
||||
"in beam search. (default: %(default)f)")
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
class AsrTCPServer(SocketServer.TCPServer):
|
||||
def __init__(self,
|
||||
server_address,
|
||||
RequestHandlerClass,
|
||||
speech_save_dir,
|
||||
audio_process_handler,
|
||||
bind_and_activate=True):
|
||||
self.speech_save_dir = speech_save_dir
|
||||
self.audio_process_handler = audio_process_handler
|
||||
SocketServer.TCPServer.__init__(
|
||||
self, server_address, RequestHandlerClass, bind_and_activate=True)
|
||||
|
||||
|
||||
class AsrRequestHandler(SocketServer.BaseRequestHandler):
|
||||
"""The ASR request handler.
|
||||
"""
|
||||
|
||||
def handle(self):
|
||||
# receive data through TCP socket
|
||||
chunk = self.request.recv(1024)
|
||||
target_len = struct.unpack('>i', chunk[:4])[0]
|
||||
data = chunk[4:]
|
||||
while len(data) < target_len:
|
||||
chunk = self.request.recv(1024)
|
||||
data += chunk
|
||||
# write to file
|
||||
filename = self._write_to_file(data)
|
||||
|
||||
print("Received utterance[length=%d] from %s, saved to %s." %
|
||||
(len(data), self.client_address[0], filename))
|
||||
#filename = "/home/work/.cache/paddle/dataset/speech/Libri/train-other-500/LibriSpeech/train-other-500/811/130143/811-130143-0025.flac"
|
||||
start_time = time.time()
|
||||
transcript = self.server.audio_process_handler(filename)
|
||||
finish_time = time.time()
|
||||
print("Response Time: %f, Transcript: %s" %
|
||||
(finish_time - start_time, transcript))
|
||||
self.request.sendall(transcript)
|
||||
|
||||
def _write_to_file(self, data):
|
||||
# prepare save dir and filename
|
||||
if not os.path.exists(self.server.speech_save_dir):
|
||||
os.mkdir(self.server.speech_save_dir)
|
||||
timestamp = strftime("%Y%m%d%H%M%S", gmtime())
|
||||
out_filename = os.path.join(
|
||||
self.server.speech_save_dir,
|
||||
timestamp + "_" + self.client_address[0] + "_" + ".wav")
|
||||
# write to wav file
|
||||
file = wave.open(out_filename, 'wb')
|
||||
file.setnchannels(1)
|
||||
file.setsampwidth(4)
|
||||
file.setframerate(16000)
|
||||
file.writeframes(data)
|
||||
file.close()
|
||||
return out_filename
|
||||
|
||||
|
||||
def start_server():
|
||||
data_generator = DataGenerator(
|
||||
vocab_filepath=args.vocab_filepath,
|
||||
mean_std_filepath=args.mean_std_filepath,
|
||||
augmentation_config='{}',
|
||||
specgram_type=args.specgram_type,
|
||||
num_threads=1)
|
||||
ds2_model = DeepSpeech2Model(
|
||||
vocab_size=data_generator.vocab_size,
|
||||
num_conv_layers=args.num_conv_layers,
|
||||
num_rnn_layers=args.num_rnn_layers,
|
||||
rnn_layer_size=args.rnn_layer_size,
|
||||
pretrained_model_path=args.model_filepath)
|
||||
|
||||
def file_to_transcript(filename):
|
||||
feature = data_generator.process_utterance(filename, "")
|
||||
result_transcript = ds2_model.infer_batch(
|
||||
infer_data=[feature],
|
||||
decode_method=args.decode_method,
|
||||
beam_alpha=args.alpha,
|
||||
beam_beta=args.beta,
|
||||
beam_size=args.beam_size,
|
||||
cutoff_prob=args.cutoff_prob,
|
||||
vocab_list=data_generator.vocab_list,
|
||||
language_model_path=args.language_model_path,
|
||||
num_processes=1)
|
||||
return result_transcript[0]
|
||||
|
||||
server = AsrTCPServer(
|
||||
server_address=(args.host_ip, args.host_port),
|
||||
RequestHandlerClass=AsrRequestHandler,
|
||||
speech_save_dir=args.speech_save_dir,
|
||||
audio_process_handler=file_to_transcript)
|
||||
|
||||
print("ASR Server Started.")
|
||||
server.serve_forever()
|
||||
|
||||
|
||||
def main():
|
||||
utils.print_arguments(args)
|
||||
paddle.init(use_gpu=args.use_gpu, trainer_count=1)
|
||||
start_server()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in new issue