Merge pull request #183 from xinghai-sun/refine_decoder2
Simplify train.py, evaluate.py, infer.py and tune.py by adding DeepSpeech2Model class for DS2.pull/2/head
commit
a3807d9cb5
@ -0,0 +1,177 @@
|
||||
"""Contains DeepSpeech2 layers."""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import paddle.v2 as paddle
|
||||
|
||||
|
||||
def conv_bn_layer(input, filter_size, num_channels_in, num_channels_out, stride,
|
||||
padding, act):
|
||||
"""Convolution layer with batch normalization.
|
||||
|
||||
:param input: Input layer.
|
||||
:type input: LayerOutput
|
||||
:param filter_size: The x dimension of a filter kernel. Or input a tuple for
|
||||
two image dimension.
|
||||
:type filter_size: int|tuple|list
|
||||
:param num_channels_in: Number of input channels.
|
||||
:type num_channels_in: int
|
||||
:type num_channels_out: Number of output channels.
|
||||
:type num_channels_in: out
|
||||
:param padding: The x dimension of the padding. Or input a tuple for two
|
||||
image dimension.
|
||||
:type padding: int|tuple|list
|
||||
:param act: Activation type.
|
||||
:type act: BaseActivation
|
||||
:return: Batch norm layer after convolution layer.
|
||||
:rtype: LayerOutput
|
||||
"""
|
||||
conv_layer = paddle.layer.img_conv(
|
||||
input=input,
|
||||
filter_size=filter_size,
|
||||
num_channels=num_channels_in,
|
||||
num_filters=num_channels_out,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
act=paddle.activation.Linear(),
|
||||
bias_attr=False)
|
||||
return paddle.layer.batch_norm(input=conv_layer, act=act)
|
||||
|
||||
|
||||
def bidirectional_simple_rnn_bn_layer(name, input, size, act):
|
||||
"""Bidirectonal simple rnn layer with sequence-wise batch normalization.
|
||||
The batch normalization is only performed on input-state weights.
|
||||
|
||||
:param name: Name of the layer.
|
||||
:type name: string
|
||||
:param input: Input layer.
|
||||
:type input: LayerOutput
|
||||
:param size: Number of RNN cells.
|
||||
:type size: int
|
||||
:param act: Activation type.
|
||||
:type act: BaseActivation
|
||||
:return: Bidirectional simple rnn layer.
|
||||
:rtype: LayerOutput
|
||||
"""
|
||||
# input-hidden weights shared across bi-direcitonal rnn.
|
||||
input_proj = paddle.layer.fc(
|
||||
input=input, size=size, act=paddle.activation.Linear(), bias_attr=False)
|
||||
# batch norm is only performed on input-state projection
|
||||
input_proj_bn = paddle.layer.batch_norm(
|
||||
input=input_proj, act=paddle.activation.Linear())
|
||||
# forward and backward in time
|
||||
forward_simple_rnn = paddle.layer.recurrent(
|
||||
input=input_proj_bn, act=act, reverse=False)
|
||||
backward_simple_rnn = paddle.layer.recurrent(
|
||||
input=input_proj_bn, act=act, reverse=True)
|
||||
return paddle.layer.concat(input=[forward_simple_rnn, backward_simple_rnn])
|
||||
|
||||
|
||||
def conv_group(input, num_stacks):
|
||||
"""Convolution group with stacked convolution layers.
|
||||
|
||||
:param input: Input layer.
|
||||
:type input: LayerOutput
|
||||
:param num_stacks: Number of stacked convolution layers.
|
||||
:type num_stacks: int
|
||||
:return: Output layer of the convolution group.
|
||||
:rtype: LayerOutput
|
||||
"""
|
||||
conv = conv_bn_layer(
|
||||
input=input,
|
||||
filter_size=(11, 41),
|
||||
num_channels_in=1,
|
||||
num_channels_out=32,
|
||||
stride=(3, 2),
|
||||
padding=(5, 20),
|
||||
act=paddle.activation.BRelu())
|
||||
for i in xrange(num_stacks - 1):
|
||||
conv = conv_bn_layer(
|
||||
input=conv,
|
||||
filter_size=(11, 21),
|
||||
num_channels_in=32,
|
||||
num_channels_out=32,
|
||||
stride=(1, 2),
|
||||
padding=(5, 10),
|
||||
act=paddle.activation.BRelu())
|
||||
output_num_channels = 32
|
||||
output_height = 160 // pow(2, num_stacks) + 1
|
||||
return conv, output_num_channels, output_height
|
||||
|
||||
|
||||
def rnn_group(input, size, num_stacks):
|
||||
"""RNN group with stacked bidirectional simple RNN layers.
|
||||
|
||||
:param input: Input layer.
|
||||
:type input: LayerOutput
|
||||
:param size: Number of RNN cells in each layer.
|
||||
:type size: int
|
||||
:param num_stacks: Number of stacked rnn layers.
|
||||
:type num_stacks: int
|
||||
:return: Output layer of the RNN group.
|
||||
:rtype: LayerOutput
|
||||
"""
|
||||
output = input
|
||||
for i in xrange(num_stacks):
|
||||
output = bidirectional_simple_rnn_bn_layer(
|
||||
name=str(i), input=output, size=size, act=paddle.activation.BRelu())
|
||||
return output
|
||||
|
||||
|
||||
def deep_speech2(audio_data,
|
||||
text_data,
|
||||
dict_size,
|
||||
num_conv_layers=2,
|
||||
num_rnn_layers=3,
|
||||
rnn_size=256):
|
||||
"""
|
||||
The whole DeepSpeech2 model structure (a simplified version).
|
||||
|
||||
:param audio_data: Audio spectrogram data layer.
|
||||
:type audio_data: LayerOutput
|
||||
:param text_data: Transcription text data layer.
|
||||
:type text_data: LayerOutput
|
||||
:param dict_size: Dictionary size for tokenized transcription.
|
||||
:type dict_size: int
|
||||
:param num_conv_layers: Number of stacking convolution layers.
|
||||
:type num_conv_layers: int
|
||||
:param num_rnn_layers: Number of stacking RNN layers.
|
||||
:type num_rnn_layers: int
|
||||
:param rnn_size: RNN layer size (number of RNN cells).
|
||||
:type rnn_size: int
|
||||
:return: A tuple of an output unnormalized log probability layer (
|
||||
before softmax) and a ctc cost layer.
|
||||
:rtype: tuple of LayerOutput
|
||||
"""
|
||||
# convolution group
|
||||
conv_group_output, conv_group_num_channels, conv_group_height = conv_group(
|
||||
input=audio_data, num_stacks=num_conv_layers)
|
||||
# convert data form convolution feature map to sequence of vectors
|
||||
conv2seq = paddle.layer.block_expand(
|
||||
input=conv_group_output,
|
||||
num_channels=conv_group_num_channels,
|
||||
stride_x=1,
|
||||
stride_y=1,
|
||||
block_x=1,
|
||||
block_y=conv_group_height)
|
||||
# rnn group
|
||||
rnn_group_output = rnn_group(
|
||||
input=conv2seq, size=rnn_size, num_stacks=num_rnn_layers)
|
||||
fc = paddle.layer.fc(
|
||||
input=rnn_group_output,
|
||||
size=dict_size + 1,
|
||||
act=paddle.activation.Linear(),
|
||||
bias_attr=True)
|
||||
# probability distribution with softmax
|
||||
log_probs = paddle.layer.mixed(
|
||||
input=paddle.layer.identity_projection(input=fc),
|
||||
act=paddle.activation.Softmax())
|
||||
# ctc cost
|
||||
ctc_loss = paddle.layer.warp_ctc(
|
||||
input=fc,
|
||||
label=text_data,
|
||||
size=dict_size + 1,
|
||||
blank=dict_size,
|
||||
norm_by_times=True)
|
||||
return log_probs, ctc_loss
|
Loading…
Reference in new issue