You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/deepspeech/utils/checkpoint.py

299 lines
12 KiB

Support paddle 2.x (#538) * 2.x model * model test pass * fix data * fix soundfile with flac support * one thread dataloader test pass * export feasture size add trainer and utils add setup model and dataloader update travis using Bionic dist * add venv; test under venv * fix unittest; train and valid * add train and config * add config and train script * fix ctc cuda memcopy error * fix imports * fix train valid log * fix dataset batch shuffle shift start from 1 fix rank_zero_only decreator error close tensorboard when train over add decoding config and code * test process can run * test with decoding * test and infer with decoding * fix infer * fix ctc loss lr schedule sortagrad logger * aishell egs * refactor train add aishell egs * fix dataset batch shuffle and add batch sampler log print model parameter * fix model and ctc * sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp add grad clip by global norm add model train test notebook * ctc loss remove run prefix using ord value as text id * using unk when training compute_loss need text ids ord id using in test mode, which compute wer/cer * fix tester * add lr_deacy refactor code * fix tools * fix ci add tune fix gru model bugs add dataset and model test * fix decoding * refactor repo fix decoding * fix musan and rir dataset * refactor io, loss, conv, rnn, gradclip, model, utils * fix ci and import * refactor model add export jit model * add deploy bin and test it * rm uselss egs * add layer tools * refactor socket server new model from pretrain * remve useless * fix instability loss and grad nan or inf for librispeech training * fix sampler * fix libri train.sh * fix doc * add license on cpp * fix doc * fix libri script * fix install * clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
4 years ago
import glob
E2E/Streaming Transformer/Conformer ASR (#578) * add cmvn and label smoothing loss layer * add layer for transformer * add glu and conformer conv * add torch compatiable hack, mask funcs * not hack size since it exists * add test; attention * add attention, common utils, hack paddle * add audio utils * conformer batch padding mask bug fix #223 * fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2 * fix ci * fix ci * add encoder * refactor egs * add decoder * refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils * refactor docs * add fix * fix readme * fix bugs, refactor collator, add pad_sequence, fix ckpt bugs * fix docstring * refactor data feed order * add u2 model * refactor cmvn, test * add utils * add u2 config * fix bugs * fix bugs * fix autograd maybe has problem when using inplace operation * refactor data, build vocab; add format data * fix text featurizer * refactor build vocab * add fbank, refactor feature of speech * refactor audio feat * refactor data preprare * refactor data * model init from config * add u2 bins * flake8 * can train * fix bugs, add coverage, add scripts * test can run * fix data * speed perturb with sox * add spec aug * fix for train * fix train logitc * fix logger * log valid loss, time dataset process * using np for speed perturb, remove some debug log of grad clip * fix logger * fix build vocab * fix logger name * using module logger as default * fix * fix install * reorder imports * fix board logger * fix logger * kaldi fbank and mfcc * fix cmvn and print prarams * fix add_eos_sos and cmvn * fix cmvn compute * fix logger and cmvn * fix subsampling, label smoothing loss, remove useless * add notebook test * fix log * fix tb logger * multi gpu valid * fix log * fix log * fix config * fix compute cmvn, need paddle 2.1 * add cmvn notebook * fix layer tools * fix compute cmvn * add rtf * fix decoding * fix layer tools * fix log, add avg script * more avg and test info * fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh; * add vimrc * refactor tiny script, add transformer and stream conf * spm demo; librisppech scripts and confs * fix log * add librispeech scripts * refactor data pipe; fix conf; fix u2 default params * fix bugs * refactor aishell scripts * fix test * fix cmvn * fix s0 scripts * fix ds2 scripts and bugs * fix dev & test dataset filter * fix dataset filter * filter dev * fix ckpt path * filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test * add comment * add syllable doc * fix ds2 configs * add doc * add pypinyin tools * fix decoder using blank_id=0 * mmseg with pybind11 * format code
4 years ago
import json
Support paddle 2.x (#538) * 2.x model * model test pass * fix data * fix soundfile with flac support * one thread dataloader test pass * export feasture size add trainer and utils add setup model and dataloader update travis using Bionic dist * add venv; test under venv * fix unittest; train and valid * add train and config * add config and train script * fix ctc cuda memcopy error * fix imports * fix train valid log * fix dataset batch shuffle shift start from 1 fix rank_zero_only decreator error close tensorboard when train over add decoding config and code * test process can run * test with decoding * test and infer with decoding * fix infer * fix ctc loss lr schedule sortagrad logger * aishell egs * refactor train add aishell egs * fix dataset batch shuffle and add batch sampler log print model parameter * fix model and ctc * sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp add grad clip by global norm add model train test notebook * ctc loss remove run prefix using ord value as text id * using unk when training compute_loss need text ids ord id using in test mode, which compute wer/cer * fix tester * add lr_deacy refactor code * fix tools * fix ci add tune fix gru model bugs add dataset and model test * fix decoding * refactor repo fix decoding * fix musan and rir dataset * refactor io, loss, conv, rnn, gradclip, model, utils * fix ci and import * refactor model add export jit model * add deploy bin and test it * rm uselss egs * add layer tools * refactor socket server new model from pretrain * remve useless * fix instability loss and grad nan or inf for librispeech training * fix sampler * fix libri train.sh * fix doc * add license on cpp * fix doc * fix libri script * fix install * clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
import os
E2E/Streaming Transformer/Conformer ASR (#578) * add cmvn and label smoothing loss layer * add layer for transformer * add glu and conformer conv * add torch compatiable hack, mask funcs * not hack size since it exists * add test; attention * add attention, common utils, hack paddle * add audio utils * conformer batch padding mask bug fix #223 * fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2 * fix ci * fix ci * add encoder * refactor egs * add decoder * refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils * refactor docs * add fix * fix readme * fix bugs, refactor collator, add pad_sequence, fix ckpt bugs * fix docstring * refactor data feed order * add u2 model * refactor cmvn, test * add utils * add u2 config * fix bugs * fix bugs * fix autograd maybe has problem when using inplace operation * refactor data, build vocab; add format data * fix text featurizer * refactor build vocab * add fbank, refactor feature of speech * refactor audio feat * refactor data preprare * refactor data * model init from config * add u2 bins * flake8 * can train * fix bugs, add coverage, add scripts * test can run * fix data * speed perturb with sox * add spec aug * fix for train * fix train logitc * fix logger * log valid loss, time dataset process * using np for speed perturb, remove some debug log of grad clip * fix logger * fix build vocab * fix logger name * using module logger as default * fix * fix install * reorder imports * fix board logger * fix logger * kaldi fbank and mfcc * fix cmvn and print prarams * fix add_eos_sos and cmvn * fix cmvn compute * fix logger and cmvn * fix subsampling, label smoothing loss, remove useless * add notebook test * fix log * fix tb logger * multi gpu valid * fix log * fix log * fix config * fix compute cmvn, need paddle 2.1 * add cmvn notebook * fix layer tools * fix compute cmvn * add rtf * fix decoding * fix layer tools * fix log, add avg script * more avg and test info * fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh; * add vimrc * refactor tiny script, add transformer and stream conf * spm demo; librisppech scripts and confs * fix log * add librispeech scripts * refactor data pipe; fix conf; fix u2 default params * fix bugs * refactor aishell scripts * fix test * fix cmvn * fix s0 scripts * fix ds2 scripts and bugs * fix dev & test dataset filter * fix dataset filter * filter dev * fix ckpt path * filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test * add comment * add syllable doc * fix ds2 configs * add doc * add pypinyin tools * fix decoder using blank_id=0 * mmseg with pybind11 * format code
4 years ago
import re
4 years ago
from pathlib import Path
4 years ago
from typing import Text
4 years ago
from typing import Union
Support paddle 2.x (#538) * 2.x model * model test pass * fix data * fix soundfile with flac support * one thread dataloader test pass * export feasture size add trainer and utils add setup model and dataloader update travis using Bionic dist * add venv; test under venv * fix unittest; train and valid * add train and config * add config and train script * fix ctc cuda memcopy error * fix imports * fix train valid log * fix dataset batch shuffle shift start from 1 fix rank_zero_only decreator error close tensorboard when train over add decoding config and code * test process can run * test with decoding * test and infer with decoding * fix infer * fix ctc loss lr schedule sortagrad logger * aishell egs * refactor train add aishell egs * fix dataset batch shuffle and add batch sampler log print model parameter * fix model and ctc * sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp add grad clip by global norm add model train test notebook * ctc loss remove run prefix using ord value as text id * using unk when training compute_loss need text ids ord id using in test mode, which compute wer/cer * fix tester * add lr_deacy refactor code * fix tools * fix ci add tune fix gru model bugs add dataset and model test * fix decoding * refactor repo fix decoding * fix musan and rir dataset * refactor io, loss, conv, rnn, gradclip, model, utils * fix ci and import * refactor model add export jit model * add deploy bin and test it * rm uselss egs * add layer tools * refactor socket server new model from pretrain * remve useless * fix instability loss and grad nan or inf for librispeech training * fix sampler * fix libri train.sh * fix doc * add license on cpp * fix doc * fix libri script * fix install * clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
import paddle
from paddle import distributed as dist
from paddle.optimizer import Optimizer
from deepspeech.utils import mp_tools
E2E/Streaming Transformer/Conformer ASR (#578) * add cmvn and label smoothing loss layer * add layer for transformer * add glu and conformer conv * add torch compatiable hack, mask funcs * not hack size since it exists * add test; attention * add attention, common utils, hack paddle * add audio utils * conformer batch padding mask bug fix #223 * fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2 * fix ci * fix ci * add encoder * refactor egs * add decoder * refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils * refactor docs * add fix * fix readme * fix bugs, refactor collator, add pad_sequence, fix ckpt bugs * fix docstring * refactor data feed order * add u2 model * refactor cmvn, test * add utils * add u2 config * fix bugs * fix bugs * fix autograd maybe has problem when using inplace operation * refactor data, build vocab; add format data * fix text featurizer * refactor build vocab * add fbank, refactor feature of speech * refactor audio feat * refactor data preprare * refactor data * model init from config * add u2 bins * flake8 * can train * fix bugs, add coverage, add scripts * test can run * fix data * speed perturb with sox * add spec aug * fix for train * fix train logitc * fix logger * log valid loss, time dataset process * using np for speed perturb, remove some debug log of grad clip * fix logger * fix build vocab * fix logger name * using module logger as default * fix * fix install * reorder imports * fix board logger * fix logger * kaldi fbank and mfcc * fix cmvn and print prarams * fix add_eos_sos and cmvn * fix cmvn compute * fix logger and cmvn * fix subsampling, label smoothing loss, remove useless * add notebook test * fix log * fix tb logger * multi gpu valid * fix log * fix log * fix config * fix compute cmvn, need paddle 2.1 * add cmvn notebook * fix layer tools * fix compute cmvn * add rtf * fix decoding * fix layer tools * fix log, add avg script * more avg and test info * fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh; * add vimrc * refactor tiny script, add transformer and stream conf * spm demo; librisppech scripts and confs * fix log * add librispeech scripts * refactor data pipe; fix conf; fix u2 default params * fix bugs * refactor aishell scripts * fix test * fix cmvn * fix s0 scripts * fix ds2 scripts and bugs * fix dev & test dataset filter * fix dataset filter * filter dev * fix ckpt path * filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test * add comment * add syllable doc * fix ds2 configs * add doc * add pypinyin tools * fix decoder using blank_id=0 * mmseg with pybind11 * format code
4 years ago
from deepspeech.utils.log import Log
E2E/Streaming Transformer/Conformer ASR (#578) * add cmvn and label smoothing loss layer * add layer for transformer * add glu and conformer conv * add torch compatiable hack, mask funcs * not hack size since it exists * add test; attention * add attention, common utils, hack paddle * add audio utils * conformer batch padding mask bug fix #223 * fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2 * fix ci * fix ci * add encoder * refactor egs * add decoder * refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils * refactor docs * add fix * fix readme * fix bugs, refactor collator, add pad_sequence, fix ckpt bugs * fix docstring * refactor data feed order * add u2 model * refactor cmvn, test * add utils * add u2 config * fix bugs * fix bugs * fix autograd maybe has problem when using inplace operation * refactor data, build vocab; add format data * fix text featurizer * refactor build vocab * add fbank, refactor feature of speech * refactor audio feat * refactor data preprare * refactor data * model init from config * add u2 bins * flake8 * can train * fix bugs, add coverage, add scripts * test can run * fix data * speed perturb with sox * add spec aug * fix for train * fix train logitc * fix logger * log valid loss, time dataset process * using np for speed perturb, remove some debug log of grad clip * fix logger * fix build vocab * fix logger name * using module logger as default * fix * fix install * reorder imports * fix board logger * fix logger * kaldi fbank and mfcc * fix cmvn and print prarams * fix add_eos_sos and cmvn * fix cmvn compute * fix logger and cmvn * fix subsampling, label smoothing loss, remove useless * add notebook test * fix log * fix tb logger * multi gpu valid * fix log * fix log * fix config * fix compute cmvn, need paddle 2.1 * add cmvn notebook * fix layer tools * fix compute cmvn * add rtf * fix decoding * fix layer tools * fix log, add avg script * more avg and test info * fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh; * add vimrc * refactor tiny script, add transformer and stream conf * spm demo; librisppech scripts and confs * fix log * add librispeech scripts * refactor data pipe; fix conf; fix u2 default params * fix bugs * refactor aishell scripts * fix test * fix cmvn * fix s0 scripts * fix ds2 scripts and bugs * fix dev & test dataset filter * fix dataset filter * filter dev * fix ckpt path * filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test * add comment * add syllable doc * fix ds2 configs * add doc * add pypinyin tools * fix decoder using blank_id=0 * mmseg with pybind11 * format code
4 years ago
logger = Log(__name__).getlog()
Support paddle 2.x (#538) * 2.x model * model test pass * fix data * fix soundfile with flac support * one thread dataloader test pass * export feasture size add trainer and utils add setup model and dataloader update travis using Bionic dist * add venv; test under venv * fix unittest; train and valid * add train and config * add config and train script * fix ctc cuda memcopy error * fix imports * fix train valid log * fix dataset batch shuffle shift start from 1 fix rank_zero_only decreator error close tensorboard when train over add decoding config and code * test process can run * test with decoding * test and infer with decoding * fix infer * fix ctc loss lr schedule sortagrad logger * aishell egs * refactor train add aishell egs * fix dataset batch shuffle and add batch sampler log print model parameter * fix model and ctc * sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp add grad clip by global norm add model train test notebook * ctc loss remove run prefix using ord value as text id * using unk when training compute_loss need text ids ord id using in test mode, which compute wer/cer * fix tester * add lr_deacy refactor code * fix tools * fix ci add tune fix gru model bugs add dataset and model test * fix decoding * refactor repo fix decoding * fix musan and rir dataset * refactor io, loss, conv, rnn, gradclip, model, utils * fix ci and import * refactor model add export jit model * add deploy bin and test it * rm uselss egs * add layer tools * refactor socket server new model from pretrain * remve useless * fix instability loss and grad nan or inf for librispeech training * fix sampler * fix libri train.sh * fix doc * add license on cpp * fix doc * fix libri script * fix install * clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
4 years ago
__all__ = ["Checkpoint"]
Support paddle 2.x (#538) * 2.x model * model test pass * fix data * fix soundfile with flac support * one thread dataloader test pass * export feasture size add trainer and utils add setup model and dataloader update travis using Bionic dist * add venv; test under venv * fix unittest; train and valid * add train and config * add config and train script * fix ctc cuda memcopy error * fix imports * fix train valid log * fix dataset batch shuffle shift start from 1 fix rank_zero_only decreator error close tensorboard when train over add decoding config and code * test process can run * test with decoding * test and infer with decoding * fix infer * fix ctc loss lr schedule sortagrad logger * aishell egs * refactor train add aishell egs * fix dataset batch shuffle and add batch sampler log print model parameter * fix model and ctc * sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp add grad clip by global norm add model train test notebook * ctc loss remove run prefix using ord value as text id * using unk when training compute_loss need text ids ord id using in test mode, which compute wer/cer * fix tester * add lr_deacy refactor code * fix tools * fix ci add tune fix gru model bugs add dataset and model test * fix decoding * refactor repo fix decoding * fix musan and rir dataset * refactor io, loss, conv, rnn, gradclip, model, utils * fix ci and import * refactor model add export jit model * add deploy bin and test it * rm uselss egs * add layer tools * refactor socket server new model from pretrain * remve useless * fix instability loss and grad nan or inf for librispeech training * fix sampler * fix libri train.sh * fix doc * add license on cpp * fix doc * fix libri script * fix install * clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
4 years ago
4 years ago
class Checkpoint():
4 years ago
def __init__(self, kbest_n: int=5, latest_n: int=1):
self.best_records: Mapping[Path, float] = {}
4 years ago
self.latest_records = []
self.kbest_n = kbest_n
self.latest_n = latest_n
self._save_all = (kbest_n == -1)
4 years ago
def add_checkpoint(self,
checkpoint_dir,
4 years ago
tag_or_iteration: Union[int, Text],
model: paddle.nn.Layer,
optimizer: Optimizer=None,
infos: dict=None,
4 years ago
metric_type="val_loss"):
4 years ago
"""Save checkpoint in best_n and latest_n.
Args:
checkpoint_dir (str): the directory where checkpoint is saved.
tag_or_iteration (int or str): the latest iteration(step or epoch) number or tag.
4 years ago
model (Layer): model to be checkpointed.
4 years ago
optimizer (Optimizer, optional): optimizer to be checkpointed.
infos (dict or None)): any info you want to save.
metric_type (str, optional): metric type. Defaults to "val_loss".
"""
4 years ago
if (metric_type not in infos.keys()):
self._save_parameters(checkpoint_dir, tag_or_iteration, model,
optimizer, infos)
return
#save best
if self._should_save_best(infos[metric_type]):
self._save_best_checkpoint_and_update(
4 years ago
infos[metric_type], checkpoint_dir, tag_or_iteration, model,
optimizer, infos)
4 years ago
#save latest
self._save_latest_checkpoint_and_update(
checkpoint_dir, tag_or_iteration, model, optimizer, infos)
4 years ago
if isinstance(tag_or_iteration, int):
self._save_checkpoint_record(checkpoint_dir, tag_or_iteration)
4 years ago
4 years ago
def load_parameters(self,
4 years ago
model,
optimizer=None,
checkpoint_dir=None,
checkpoint_path=None,
record_file="checkpoint_latest"):
"""Load a last model checkpoint from disk.
4 years ago
Args:
model (Layer): model to load parameters.
optimizer (Optimizer, optional): optimizer to load states if needed.
Defaults to None.
checkpoint_dir (str, optional): the directory where checkpoint is saved.
checkpoint_path (str, optional): if specified, load the checkpoint
4 years ago
stored in the checkpoint_path(prefix) and the argument 'checkpoint_dir' will
be ignored. Defaults to None.
4 years ago
record_file "checkpoint_latest" or "checkpoint_best"
Returns:
configs (dict): epoch or step, lr and other meta info should be saved.
"""
configs = {}
if checkpoint_path is not None:
pass
elif checkpoint_dir is not None and record_file is not None:
# load checkpint from record file
checkpoint_record = os.path.join(checkpoint_dir, record_file)
iteration = self._load_checkpoint_idx(checkpoint_record)
if iteration == -1:
return configs
checkpoint_path = os.path.join(checkpoint_dir,
"{}".format(iteration))
else:
raise ValueError(
"At least one of 'checkpoint_path' or 'checkpoint_dir' should be specified!"
)
rank = dist.get_rank()
params_path = checkpoint_path + ".pdparams"
model_dict = paddle.load(params_path)
model.set_state_dict(model_dict)
logger.info("Rank {}: loaded model from {}".format(rank, params_path))
optimizer_path = checkpoint_path + ".pdopt"
if optimizer and os.path.isfile(optimizer_path):
optimizer_dict = paddle.load(optimizer_path)
optimizer.set_state_dict(optimizer_dict)
logger.info("Rank {}: loaded optimizer state from {}".format(
rank, optimizer_path))
info_path = re.sub('.pdparams$', '.json', params_path)
if os.path.exists(info_path):
with open(info_path, 'r') as fin:
configs = json.load(fin)
return configs
4 years ago
def load_latest_parameters(self,
model,
optimizer=None,
checkpoint_dir=None,
checkpoint_path=None):
4 years ago
"""Load a last model checkpoint from disk.
Args:
model (Layer): model to load parameters.
optimizer (Optimizer, optional): optimizer to load states if needed.
Defaults to None.
checkpoint_dir (str, optional): the directory where checkpoint is saved.
checkpoint_path (str, optional): if specified, load the checkpoint
4 years ago
stored in the checkpoint_path(prefix) and the argument 'checkpoint_dir' will
be ignored. Defaults to None.
Returns:
configs (dict): epoch or step, lr and other meta info should be saved.
"""
4 years ago
return self.load_parameters(model, optimizer, checkpoint_dir,
checkpoint_path, "checkpoint_latest")
def load_best_parameters(self,
model,
optimizer=None,
checkpoint_dir=None,
checkpoint_path=None):
4 years ago
"""Load a last model checkpoint from disk.
Args:
model (Layer): model to load parameters.
optimizer (Optimizer, optional): optimizer to load states if needed.
Defaults to None.
checkpoint_dir (str, optional): the directory where checkpoint is saved.
checkpoint_path (str, optional): if specified, load the checkpoint
4 years ago
stored in the checkpoint_path(prefix) and the argument 'checkpoint_dir' will
be ignored. Defaults to None.
Returns:
configs (dict): epoch or step, lr and other meta info should be saved.
"""
4 years ago
return self.load_parameters(model, optimizer, checkpoint_dir,
checkpoint_path, "checkpoint_best")
def _should_save_best(self, metric: float) -> bool:
if not self._best_full():
return True
# already full
worst_record_path = max(self.best_records, key=self.best_records.get)
# worst_record_path = max(self.best_records.iteritems(), key=operator.itemgetter(1))[0]
worst_metric = self.best_records[worst_record_path]
return metric < worst_metric
def _best_full(self):
return (not self._save_all) and len(self.best_records) == self.kbest_n
def _latest_full(self):
return len(self.latest_records) == self.latest_n
def _save_best_checkpoint_and_update(self, metric, checkpoint_dir,
tag_or_iteration, model, optimizer,
infos):
# remove the worst
if self._best_full():
worst_record_path = max(self.best_records,
key=self.best_records.get)
self.best_records.pop(worst_record_path)
4 years ago
if (worst_record_path not in self.latest_records):
logger.info(
"remove the worst checkpoint: {}".format(worst_record_path))
self._del_checkpoint(checkpoint_dir, worst_record_path)
# add the new one
self._save_parameters(checkpoint_dir, tag_or_iteration, model,
optimizer, infos)
self.best_records[tag_or_iteration] = metric
4 years ago
def _save_latest_checkpoint_and_update(
4 years ago
self, checkpoint_dir, tag_or_iteration, model, optimizer, infos):
# remove the old
if self._latest_full():
4 years ago
to_del_fn = self.latest_records.pop(0)
4 years ago
if (to_del_fn not in self.best_records.keys()):
logger.info(
"remove the latest checkpoint: {}".format(to_del_fn))
self._del_checkpoint(checkpoint_dir, to_del_fn)
4 years ago
self.latest_records.append(tag_or_iteration)
self._save_parameters(checkpoint_dir, tag_or_iteration, model,
optimizer, infos)
def _del_checkpoint(self, checkpoint_dir, tag_or_iteration):
checkpoint_path = os.path.join(checkpoint_dir,
4 years ago
"{}".format(tag_or_iteration))
for filename in glob.glob(checkpoint_path + ".*"):
os.remove(filename)
4 years ago
logger.info("delete file: {}".format(filename))
def _load_checkpoint_idx(self, checkpoint_record: str) -> int:
"""Get the iteration number corresponding to the latest saved checkpoint.
Args:
4 years ago
checkpoint_path (str): the saved path of checkpoint.
Returns:
int: the latest iteration number. -1 for no checkpoint to load.
"""
if not os.path.isfile(checkpoint_record):
return -1
# Fetch the latest checkpoint index.
with open(checkpoint_record, "rt") as handle:
latest_checkpoint = handle.readlines()[-1].strip()
iteration = int(latest_checkpoint.split(":")[-1])
return iteration
def _save_checkpoint_record(self, checkpoint_dir: str, iteration: int):
"""Save the iteration number of the latest model to be checkpoint record.
Args:
checkpoint_dir (str): the directory where checkpoint is saved.
iteration (int): the latest iteration number.
Returns:
None
"""
4 years ago
checkpoint_record_latest = os.path.join(checkpoint_dir,
"checkpoint_latest")
checkpoint_record_best = os.path.join(checkpoint_dir, "checkpoint_best")
4 years ago
with open(checkpoint_record_best, "w") as handle:
for i in self.best_records.keys():
handle.write("model_checkpoint_path:{}\n".format(i))
4 years ago
with open(checkpoint_record_latest, "w") as handle:
for i in self.latest_records:
handle.write("model_checkpoint_path:{}\n".format(i))
@mp_tools.rank_zero_only
def _save_parameters(self,
checkpoint_dir: str,
tag_or_iteration: Union[int, str],
model: paddle.nn.Layer,
optimizer: Optimizer=None,
infos: dict=None):
"""Checkpoint the latest trained model parameters.
Args:
checkpoint_dir (str): the directory where checkpoint is saved.
tag_or_iteration (int or str): the latest iteration(step or epoch) number.
model (Layer): model to be checkpointed.
optimizer (Optimizer, optional): optimizer to be checkpointed.
Defaults to None.
infos (dict or None): any info you want to save.
Returns:
None
"""
checkpoint_path = os.path.join(checkpoint_dir,
4 years ago
"{}".format(tag_or_iteration))
model_dict = model.state_dict()
params_path = checkpoint_path + ".pdparams"
paddle.save(model_dict, params_path)
logger.info("Saved model to {}".format(params_path))
if optimizer:
opt_dict = optimizer.state_dict()
optimizer_path = checkpoint_path + ".pdopt"
paddle.save(opt_dict, optimizer_path)
logger.info("Saved optimzier state to {}".format(optimizer_path))
info_path = re.sub('.pdparams$', '.json', params_path)
infos = {} if infos is None else infos
with open(info_path, 'w') as fout:
data = json.dumps(infos)
fout.write(data)