revise conf/*.yaml

pull/680/head
Haoxin Ma 4 years ago
parent 08b6213bc8
commit c0f7aac8fc

@ -24,7 +24,6 @@ from paddle.optimizer import Optimizer
from deepspeech.utils import mp_tools
from deepspeech.utils.log import Log
# import operator
logger = Log(__name__).getlog()
@ -38,7 +37,7 @@ class Checkpoint(object):
self.kbest_n = kbest_n
self.latest_n = latest_n
self._save_all = (kbest_n == -1)
def add_checkpoint(self,
checkpoint_dir,
tag_or_iteration,
@ -64,10 +63,10 @@ class Checkpoint(object):
self._save_checkpoint_record(checkpoint_dir, tag_or_iteration)
def load_latest_parameters(self,
model,
optimizer=None,
checkpoint_dir=None,
checkpoint_path=None):
model,
optimizer=None,
checkpoint_dir=None,
checkpoint_path=None):
"""Load a last model checkpoint from disk.
Args:
model (Layer): model to load parameters.
@ -80,14 +79,14 @@ class Checkpoint(object):
Returns:
configs (dict): epoch or step, lr and other meta info should be saved.
"""
return self._load_parameters(model, optimizer, checkpoint_dir, checkpoint_path,
"checkpoint_latest")
return self._load_parameters(model, optimizer, checkpoint_dir,
checkpoint_path, "checkpoint_latest")
def load_best_parameters(self,
model,
optimizer=None,
checkpoint_dir=None,
checkpoint_path=None):
model,
optimizer=None,
checkpoint_dir=None,
checkpoint_path=None):
"""Load a last model checkpoint from disk.
Args:
model (Layer): model to load parameters.
@ -100,8 +99,8 @@ class Checkpoint(object):
Returns:
configs (dict): epoch or step, lr and other meta info should be saved.
"""
return self._load_parameters(model, optimizer, checkpoint_dir, checkpoint_path,
"checkpoint_best")
return self._load_parameters(model, optimizer, checkpoint_dir,
checkpoint_path, "checkpoint_best")
def _should_save_best(self, metric: float) -> bool:
if not self._best_full():
@ -248,7 +247,6 @@ class Checkpoint(object):
configs = json.load(fin)
return configs
@mp_tools.rank_zero_only
def _save_parameters(self,
checkpoint_dir: str,

@ -48,6 +48,9 @@ training:
weight_decay: 1e-06
global_grad_clip: 3.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 128

@ -90,6 +90,9 @@ training:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:

@ -88,6 +88,9 @@ training:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:

@ -43,6 +43,9 @@ training:
weight_decay: 1e-06
global_grad_clip: 5.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 128

@ -91,6 +91,9 @@ training:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:

@ -84,6 +84,9 @@ training:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:

@ -87,6 +87,9 @@ training:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:

@ -82,6 +82,9 @@ training:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:

@ -91,6 +91,9 @@ training:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 1
checkpoint:
kbest_n: 10
latest_n: 1
decoding:

@ -84,6 +84,9 @@ training:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 1
checkpoint:
kbest_n: 10
latest_n: 1
decoding:

@ -87,6 +87,9 @@ training:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 1
checkpoint:
kbest_n: 10
latest_n: 1
decoding:

@ -84,6 +84,9 @@ training:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 1
checkpoint:
kbest_n: 10
latest_n: 1
decoding:

Loading…
Cancel
Save