Support paddle 2.x (#538)

* 2.x model

* model test pass

* fix data

* fix soundfile with flac support

* one thread dataloader test pass

* export feasture size
add trainer and utils
add setup model and dataloader
update travis using Bionic dist

* add venv; test under venv

* fix unittest; train and valid

* add train and config

* add config and train script

* fix ctc cuda memcopy error

* fix imports

* fix train valid log

* fix dataset batch shuffle shift start from 1
fix rank_zero_only decreator error
close tensorboard when train over
add decoding config and code

* test process can run

* test with decoding

* test and infer with decoding

* fix infer

* fix ctc loss
lr schedule
sortagrad
logger

* aishell egs

* refactor train
add aishell egs

* fix dataset batch shuffle and add batch sampler log
print model parameter

* fix model and ctc

* sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp
add grad clip by global norm
add model train test notebook

* ctc loss
remove run prefix
using ord value as text id

* using unk when training
compute_loss need text ids
ord id using in test mode, which compute wer/cer

* fix tester

* add lr_deacy
refactor code

* fix tools

* fix ci
add tune
fix gru model bugs
add dataset and model test

* fix decoding

* refactor repo
fix decoding

* fix musan and rir dataset

* refactor io, loss, conv, rnn, gradclip, model, utils

* fix ci and import

* refactor model
add export jit model

* add deploy bin and test it

* rm uselss egs

* add layer tools

* refactor socket server
new model from pretrain

* remve useless

* fix instability loss and grad nan or inf for librispeech training

* fix sampler

* fix libri train.sh

* fix doc

* add license on cpp

* fix doc

* fix libri script

* fix install

* clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
pull/544/head
Hui Zhang 4 years ago committed by GitHub
parent 054d795dc0
commit d7e753546a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

5
.gitignore vendored

@ -1,2 +1,7 @@
.DS_Store
*.pyc
tools/venv
.vscode
*.log
*.pdmodel
*.pdiparams*

@ -0,0 +1,389 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "emerging-meter",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/workspace/DeepSpeech-2.x/tools/venv/lib/python3.7/site-packages/paddle/fluid/layers/utils.py:26: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.\n",
"Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
" def convert_to_list(value, n, name, dtype=np.int):\n",
"/workspace/DeepSpeech-2.x/tools/venv/lib/python3.7/site-packages/scipy/fftpack/__init__.py:103: DeprecationWarning: The module numpy.dual is deprecated. Instead of using dual, use the functions directly from numpy or scipy.\n",
" from numpy.dual import register_func\n",
"/workspace/DeepSpeech-2.x/tools/venv/lib/python3.7/site-packages/scipy/special/orthogonal.py:81: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.\n",
"Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
" from numpy import (exp, inf, pi, sqrt, floor, sin, cos, around, int,\n",
"/workspace/DeepSpeech-2.x/tools/venv/lib/python3.7/site-packages/numba/core/types/__init__.py:108: DeprecationWarning: `np.long` is a deprecated alias for `np.compat.long`. To silence this warning, use `np.compat.long` by itself. In the likely event your code does not need to work on Python 2 you can use the builtin `int` for which `np.compat.long` is itself an alias. Doing this will not modify any behaviour and is safe. When replacing `np.long`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.\n",
"Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
" long_ = _make_signed(np.long)\n",
"/workspace/DeepSpeech-2.x/tools/venv/lib/python3.7/site-packages/numba/core/types/__init__.py:109: DeprecationWarning: `np.long` is a deprecated alias for `np.compat.long`. To silence this warning, use `np.compat.long` by itself. In the likely event your code does not need to work on Python 2 you can use the builtin `int` for which `np.compat.long` is itself an alias. Doing this will not modify any behaviour and is safe. When replacing `np.long`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.\n",
"Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
" ulong = _make_unsigned(np.long)\n"
]
}
],
"source": [
"import math\n",
"import random\n",
"import tarfile\n",
"import logging\n",
"import numpy as np\n",
"from collections import namedtuple\n",
"from functools import partial\n",
"\n",
"import paddle\n",
"from paddle.io import Dataset\n",
"from paddle.io import DataLoader\n",
"from paddle.io import BatchSampler\n",
"from paddle.io import DistributedBatchSampler\n",
"from paddle import distributed as dist\n",
"\n",
"from data_utils.utility import read_manifest\n",
"from data_utils.augmentor.augmentation import AugmentationPipeline\n",
"from data_utils.featurizer.speech_featurizer import SpeechFeaturizer\n",
"from data_utils.speech import SpeechSegment\n",
"from data_utils.normalizer import FeatureNormalizer\n",
"\n",
"\n",
"from data_utils.dataset import (\n",
" DeepSpeech2Dataset,\n",
" DeepSpeech2DistributedBatchSampler,\n",
" DeepSpeech2BatchSampler,\n",
" SpeechCollator,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "excessive-american",
"metadata": {},
"outputs": [],
"source": [
"def create_dataloader(manifest_path,\t\n",
" vocab_filepath,\t\n",
" mean_std_filepath,\t\n",
" augmentation_config='{}',\t\n",
" max_duration=float('inf'),\t\n",
" min_duration=0.0,\t\n",
" stride_ms=10.0,\t\n",
" window_ms=20.0,\t\n",
" max_freq=None,\t\n",
" specgram_type='linear',\t\n",
" use_dB_normalization=True,\t\n",
" random_seed=0,\t\n",
" keep_transcription_text=False,\t\n",
" is_training=False,\t\n",
" batch_size=1,\t\n",
" num_workers=0,\t\n",
" sortagrad=False,\t\n",
" shuffle_method=None,\t\n",
" dist=False):\t\n",
"\n",
" dataset = DeepSpeech2Dataset(\t\n",
" manifest_path,\t\n",
" vocab_filepath,\t\n",
" mean_std_filepath,\t\n",
" augmentation_config=augmentation_config,\t\n",
" max_duration=max_duration,\t\n",
" min_duration=min_duration,\t\n",
" stride_ms=stride_ms,\t\n",
" window_ms=window_ms,\t\n",
" max_freq=max_freq,\t\n",
" specgram_type=specgram_type,\t\n",
" use_dB_normalization=use_dB_normalization,\t\n",
" random_seed=random_seed,\t\n",
" keep_transcription_text=keep_transcription_text)\t\n",
"\n",
" if dist:\t\n",
" batch_sampler = DeepSpeech2DistributedBatchSampler(\t\n",
" dataset,\t\n",
" batch_size,\t\n",
" num_replicas=None,\t\n",
" rank=None,\t\n",
" shuffle=is_training,\t\n",
" drop_last=is_training,\t\n",
" sortagrad=is_training,\t\n",
" shuffle_method=shuffle_method)\t\n",
" else:\t\n",
" batch_sampler = DeepSpeech2BatchSampler(\t\n",
" dataset,\t\n",
" shuffle=is_training,\t\n",
" batch_size=batch_size,\t\n",
" drop_last=is_training,\t\n",
" sortagrad=is_training,\t\n",
" shuffle_method=shuffle_method)\t\n",
"\n",
" def padding_batch(batch, padding_to=-1, flatten=False, is_training=True):\t\n",
" \"\"\"\t\n",
" Padding audio features with zeros to make them have the same shape (or\t\n",
" a user-defined shape) within one bach.\t\n",
"\n",
" If ``padding_to`` is -1, the maximun shape in the batch will be used\t\n",
" as the target shape for padding. Otherwise, `padding_to` will be the\t\n",
" target shape (only refers to the second axis).\t\n",
"\n",
" If `flatten` is True, features will be flatten to 1darray.\t\n",
" \"\"\"\t\n",
" new_batch = []\t\n",
" # get target shape\t\n",
" max_length = max([audio.shape[1] for audio, text in batch])\t\n",
" if padding_to != -1:\t\n",
" if padding_to < max_length:\t\n",
" raise ValueError(\"If padding_to is not -1, it should be larger \"\t\n",
" \"than any instance's shape in the batch\")\t\n",
" max_length = padding_to\t\n",
" max_text_length = max([len(text) for audio, text in batch])\t\n",
" # padding\t\n",
" padded_audios = []\t\n",
" audio_lens = []\t\n",
" texts, text_lens = [], []\t\n",
" for audio, text in batch:\t\n",
" padded_audio = np.zeros([audio.shape[0], max_length])\t\n",
" padded_audio[:, :audio.shape[1]] = audio\t\n",
" if flatten:\t\n",
" padded_audio = padded_audio.flatten()\t\n",
" padded_audios.append(padded_audio)\t\n",
" audio_lens.append(audio.shape[1])\t\n",
"\n",
" padded_text = np.zeros([max_text_length])\n",
" if is_training:\n",
" padded_text[:len(text)] = text\t# ids\n",
" else:\n",
" padded_text[:len(text)] = [ord(t) for t in text] # string\n",
" \n",
" texts.append(padded_text)\t\n",
" text_lens.append(len(text))\t\n",
"\n",
" padded_audios = np.array(padded_audios).astype('float32')\t\n",
" audio_lens = np.array(audio_lens).astype('int64')\t\n",
" texts = np.array(texts).astype('int32')\t\n",
" text_lens = np.array(text_lens).astype('int64')\t\n",
" return padded_audios, texts, audio_lens, text_lens\t\n",
"\n",
" loader = DataLoader(\t\n",
" dataset,\t\n",
" batch_sampler=batch_sampler,\t\n",
" collate_fn=partial(padding_batch, is_training=is_training),\t\n",
" num_workers=num_workers)\t\n",
" return loader"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "naval-brave",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'num_samples': 5, 'beam_size': 500, 'num_proc_bsearch': 8, 'num_conv_layers': 2, 'num_rnn_layers': 3, 'rnn_layer_size': 2048, 'alpha': 2.5, 'beta': 0.3, 'cutoff_prob': 1.0, 'cutoff_top_n': 40, 'use_gru': False, 'use_gpu': True, 'share_rnn_weights': True, 'infer_manifest': 'examples/aishell/data/manifest.dev', 'mean_std_path': 'examples/aishell/data/mean_std.npz', 'vocab_path': 'examples/aishell/data/vocab.txt', 'lang_model_path': 'models/lm/common_crawl_00.prune01111.trie.klm', 'model_path': 'examples/aishell/checkpoints/step_final', 'decoding_method': 'ctc_beam_search', 'error_rate_type': 'wer', 'specgram_type': 'linear'}\n"
]
}
],
"source": [
"import sys\n",
"import argparse\n",
"import functools\n",
"from utils.utility import add_arguments, print_arguments\n",
"parser = argparse.ArgumentParser(description=__doc__)\n",
"add_arg = functools.partial(add_arguments, argparser=parser)\n",
"# yapf: disable\n",
"add_arg('num_samples', int, 5, \"# of samples to infer.\")\n",
"add_arg('beam_size', int, 500, \"Beam search width.\")\n",
"add_arg('num_proc_bsearch', int, 8, \"# of CPUs for beam search.\")\n",
"add_arg('num_conv_layers', int, 2, \"# of convolution layers.\")\n",
"add_arg('num_rnn_layers', int, 3, \"# of recurrent layers.\")\n",
"add_arg('rnn_layer_size', int, 2048, \"# of recurrent cells per layer.\")\n",
"add_arg('alpha', float, 2.5, \"Coef of LM for beam search.\")\n",
"add_arg('beta', float, 0.3, \"Coef of WC for beam search.\")\n",
"add_arg('cutoff_prob', float, 1.0, \"Cutoff probability for pruning.\")\n",
"add_arg('cutoff_top_n', int, 40, \"Cutoff number for pruning.\")\n",
"add_arg('use_gru', bool, False, \"Use GRUs instead of simple RNNs.\")\n",
"add_arg('use_gpu', bool, True, \"Use GPU or not.\")\n",
"add_arg('share_rnn_weights',bool, True, \"Share input-hidden weights across \"\n",
" \"bi-directional RNNs. Not for GRU.\")\n",
"add_arg('infer_manifest', str,\n",
" 'examples/aishell/data/manifest.dev',\n",
" \"Filepath of manifest to infer.\")\n",
"add_arg('mean_std_path', str,\n",
" 'examples/aishell/data/mean_std.npz',\n",
" \"Filepath of normalizer's mean & std.\")\n",
"add_arg('vocab_path', str,\n",
" 'examples/aishell/data/vocab.txt',\n",
" \"Filepath of vocabulary.\")\n",
"add_arg('lang_model_path', str,\n",
" 'models/lm/common_crawl_00.prune01111.trie.klm',\n",
" \"Filepath for language model.\")\n",
"add_arg('model_path', str,\n",
" 'examples/aishell/checkpoints/step_final',\n",
" \"If None, the training starts from scratch, \"\n",
" \"otherwise, it resumes from the pre-trained model.\")\n",
"add_arg('decoding_method', str,\n",
" 'ctc_beam_search',\n",
" \"Decoding method. Options: ctc_beam_search, ctc_greedy\",\n",
" choices = ['ctc_beam_search', 'ctc_greedy'])\n",
"add_arg('error_rate_type', str,\n",
" 'wer',\n",
" \"Error rate type for evaluation.\",\n",
" choices=['wer', 'cer'])\n",
"add_arg('specgram_type', str,\n",
" 'linear',\n",
" \"Audio feature type. Options: linear, mfcc.\",\n",
" choices=['linear', 'mfcc'])\n",
"# yapf: disable\n",
"args = parser.parse_args([])\n",
"print(vars(args))"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "bearing-physics",
"metadata": {},
"outputs": [],
"source": [
"batch_reader = create_dataloader(\n",
" manifest_path=args.infer_manifest,\n",
" vocab_filepath=args.vocab_path,\n",
" mean_std_filepath=args.mean_std_path,\n",
" augmentation_config='{}',\n",
" #max_duration=float('inf'),\n",
" max_duration=27.0,\n",
" min_duration=0.0,\n",
" stride_ms=10.0,\n",
" window_ms=20.0,\n",
" max_freq=None,\n",
" specgram_type=args.specgram_type,\n",
" use_dB_normalization=True,\n",
" random_seed=0,\n",
" keep_transcription_text=True,\n",
" is_training=False,\n",
" batch_size=args.num_samples,\n",
" sortagrad=True,\n",
" shuffle_method=None,\n",
" dist=False)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "classified-melissa",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"test Tensor(shape=[5, 6], dtype=int32, place=CUDAPinnedPlace, stop_gradient=True,\n",
" [[22823, 26102, 20195, 37324, 0 , 0 ],\n",
" [22238, 26469, 23601, 22909, 0 , 0 ],\n",
" [20108, 26376, 22235, 26085, 0 , 0 ],\n",
" [36824, 35201, 20445, 25345, 32654, 24863],\n",
" [29042, 27748, 21463, 23456, 0 , 0 ]])\n",
"test raw 大时代里\n",
"test raw 煲汤受宠\n",
"audio len Tensor(shape=[5], dtype=int64, place=CUDAPinnedPlace, stop_gradient=True,\n",
" [163, 167, 180, 186, 186])\n",
"test len Tensor(shape=[5], dtype=int64, place=CUDAPlace(0), stop_gradient=True,\n",
" [4, 4, 4, 6, 4])\n",
"audio Tensor(shape=[5, 161, 186], dtype=float32, place=CUDAPinnedPlace, stop_gradient=True,\n",
" [[[ 1.11669052, 0.79015088, 0.93658292, ..., 0. , 0. , 0. ],\n",
" [ 0.83549136, 0.72643483, 0.83578080, ..., 0. , 0. , 0. ],\n",
" [-0.89155018, -0.18894747, -0.53357804, ..., 0. , 0. , 0. ],\n",
" ...,\n",
" [ 0.33386710, -0.81240511, 0.12869737, ..., 0. , 0. , 0. ],\n",
" [-0.17537928, 0.58380985, 0.70696265, ..., 0. , 0. , 0. ],\n",
" [-0.84175998, 1.22041416, 0.07929770, ..., 0. , 0. , 0. ]],\n",
"\n",
" [[-0.35964420, 0.77392709, 0.71409988, ..., 0. , 0. , 0. ],\n",
" [-0.15990183, 0.42962283, 0.06222462, ..., 0. , 0. , 0. ],\n",
" [-0.31166190, -0.74864638, -0.52836996, ..., 0. , 0. , 0. ],\n",
" ...,\n",
" [-0.27546275, 0.32889456, 0.12410031, ..., 0. , 0. , 0. ],\n",
" [ 0.16264282, 0.49418071, -0.15960945, ..., 0. , 0. , 0. ],\n",
" [ 0.12476666, 0.00516864, 1.16021466, ..., 0. , 0. , 0. ]],\n",
"\n",
" [[ 0.90202141, 1.48541915, 0.92062062, ..., 0. , 0. , 0. ],\n",
" [ 0.82661545, 1.37171340, 0.86746097, ..., 0. , 0. , 0. ],\n",
" [-0.62287915, -0.48645937, 0.35041964, ..., 0. , 0. , 0. ],\n",
" ...,\n",
" [ 0.07376949, 0.07138316, 0.76355994, ..., 0. , 0. , 0. ],\n",
" [-0.32306790, 0.43247896, 1.27311838, ..., 0. , 0. , 0. ],\n",
" [-0.97667056, 0.60747612, 0.79181534, ..., 0. , 0. , 0. ]],\n",
"\n",
" [[ 0.72022128, 0.95428467, 0.92766261, ..., 0.29105374, -0.45564806, -0.62151009],\n",
" [ 0.42083180, 0.49279949, 0.82724041, ..., -0.17333922, -1.45363355, -0.61673522],\n",
" [-0.76116520, -0.84750438, -0.09512503, ..., -1.01497340, -1.42781055, -0.80859023],\n",
" ...,\n",
" [-0.23009977, 1.06155431, 1.09065628, ..., 0.25581080, 0.53794998, -1.22650719],\n",
" [-1.37693381, 0.30778193, 0.17152318, ..., 0.51650339, 0.25580606, 0.83097816],\n",
" [-1.62180591, 1.30567718, 1.09928656, ..., -0.77590007, 1.27712476, 0.53189957]],\n",
"\n",
" [[ 1.03205252, -0.51535392, 0.21077573, ..., 0.76618457, 1.27425683, 1.52250278],\n",
" [ 0.82059991, 0.43990925, 0.13090958, ..., 0.86662549, 1.01687658, 1.48495352],\n",
" [-0.75489789, -0.01997089, -0.65174174, ..., 0.09061214, -0.55211234, -0.01614586],\n",
" ...,\n",
" [ 0.50985396, 1.84555030, 0.79185146, ..., 1.13666189, 1.19898069, 1.98158395],\n",
" [ 1.98721015, 2.52385354, 1.11714780, ..., 0.19416514, 1.11329341, 0.64460152],\n",
" [ 2.69512844, 1.90993905, 0.50245082, ..., -0.50902629, 0.03333465, -1.24584770]]])\n"
]
}
],
"source": [
"for idx, (audio, text, audio_len, text_len) in enumerate(batch_reader()):\n",
" print('test', text)\n",
" print(\"test raw\", ''.join( chr(i) for i in text[0][:int(text_len[0])] ))\n",
" print(\"test raw\", ''.join( chr(i) for i in text[-1][:int(text_len[-1])] ))\n",
" print('audio len', audio_len)\n",
" print('test len', text_len)\n",
" print('audio', audio)\n",
" break"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "unexpected-skating",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "minus-modern",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because it is too large Load Diff

@ -38,4 +38,4 @@
entry: python .pre-commit-hooks/copyright-check.hook
language: system
files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|proto|py)$
exclude: (?=decoders/swig).*(\.cpp|\.h)$
#exclude: (?=decoders/swig).*(\.cpp|\.h)$

@ -1,7 +1,7 @@
language: cpp
cache: ccache
sudo: required
dist: xenial
dist: Bionic
services:
- docker
os:
@ -26,7 +26,7 @@ script:
- exit_code=0
- .travis/precommit.sh || exit_code=$(( exit_code | $? ))
- docker run -i --rm -v "$PWD:/py_unittest" paddlepaddle/paddle:latest /bin/bash -c
'cd /py_unittest; sh .travis/unittest.sh' || exit_code=$(( exit_code | $? ))
'cd /py_unittest; source env.sh; bash .travis/unittest.sh' || exit_code=$(( exit_code | $? ))
exit $exit_code
notifications:

@ -15,7 +15,7 @@ unittest(){
if [ $? != 0 ]; then
exit 1
fi
find . -name 'tests' -type d -print0 | \
find . -path ./tools/venv -prune -false -o -name 'tests' -type d -print0 | \
xargs -0 -I{} -n1 bash -c \
'python3 -m unittest discover -v -s {}'
cd - > /dev/null
@ -24,6 +24,10 @@ unittest(){
trap 'abort' 0
set -e
cd tools; make; cd -
. tools/venv/bin/activate
pip3 install pytest
unittest .
trap : 0

@ -1,475 +1,37 @@
# DeepSpeech2 on PaddlePaddle
# DeepSpeech on PaddlePaddle
[中文版](README_cn.md)
*DeepSpeech2 on PaddlePaddle* is an open-source implementation of end-to-end Automatic Speech Recognition (ASR) engine, based on [Baidu's Deep Speech 2 paper](http://proceedings.mlr.press/v48/amodei16.pdf), with [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) platform. Our vision is to empower both industrial application and academic research on speech recognition, via an easy-to-use, efficient and scalable implementation, including training, inference & testing module, and demo deployment. Besides, several pre-trained models for both English and Mandarin are also released.
*DeepSpeech on PaddlePaddle* is an open-source implementation of end-to-end Automatic Speech Recognition (ASR) engine, with [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) platform. Our vision is to empower both industrial application and academic research on speech recognition, via an easy-to-use, efficient and scalable implementation, including training, inference & testing module, and demo deployment.
## Table of Contents
- [Installation](#installation)
- [Getting Started](#getting-started)
- [Data Preparation](#data-preparation)
- [Training a Model](#training-a-model)
- [Inference and Evaluation](#inference-and-evaluation)
- [Hyper-parameters Tuning](#hyper-parameters-tuning)
- [Trying Live Demo with Your Own Voice](#trying-live-demo-with-your-own-voice)
- [Experiments and Benchmarks](#experiments-and-benchmarks)
- [Released Models](#released-models)
- [Questions and Help](#questions-and-help)
For more information, please docs under `doc`.
## Models
* [Baidu's Deep Speech2](http://proceedings.mlr.press/v48/amodei16.pdf)
## Installation
To avoid the trouble of environment setup, [running in Docker container](#running-in-docker-container) is highly recommended. Otherwise follow the guidelines below to install the dependencies manually.
### Prerequisites
- Python >= 3.6
- PaddlePaddle 1.8.0 or later (please refer to the [Installation Guide](https://www.paddlepaddle.org.cn/documentation/docs/en/beginners_guide/index_en.html))
### Setup
- Make sure these libraries or tools installed: `pkg-config`, `flac`, `ogg`, `vorbis`, `boost` and `swig`, e.g. installing them via `apt-get`:
```bash
sudo apt-get install -y pkg-config libflac-dev libogg-dev libvorbis-dev libboost-dev swig python3-dev
```
or, installing them via `yum`:
```bash
sudo yum install pkgconfig libogg-devel libvorbis-devel boost-devel python3-devel
wget https://ftp.osuosl.org/pub/xiph/releases/flac/flac-1.3.1.tar.xz
xz -d flac-1.3.1.tar.xz
tar -xvf flac-1.3.1.tar
cd flac-1.3.1
./configure
make
make install
```
## Setup
* python3.7
* paddlepaddle 2.0.0
- Run the setup script for the remaining dependencies
```bash
git clone https://github.com/PaddlePaddle/DeepSpeech.git
cd DeepSpeech
sh setup.sh
pushd tools; make; popd
source tools/venv/bin/activate
bash setup.sh
```
### Running in Docker Container
Docker is an open source tool to build, ship, and run distributed applications in an isolated environment. A Docker image for this project has been provided in [hub.docker.com](https://hub.docker.com) with all the dependencies installed, including the pre-built PaddlePaddle, CTC decoders, and other necessary Python and third-party packages. This Docker image requires the support of NVIDIA GPU, so please make sure its availiability and the [nvidia-docker](https://github.com/NVIDIA/nvidia-docker) has been installed.
Take several steps to launch the Docker image:
- Download the Docker image
- Source venv before do experiment.
```bash
nvidia-docker pull hub.baidubce.com/paddlepaddle/deep_speech_fluid:latest-gpu
```
- Clone this repository
```
git clone https://github.com/PaddlePaddle/DeepSpeech.git
```
- Run the Docker image
```bash
sudo nvidia-docker run -it -v $(pwd)/DeepSpeech:/DeepSpeech hub.baidubce.com/paddlepaddle/deep_speech_fluid:latest-gpu /bin/bash
```
Now go back and start from the [Getting Started](#getting-started) section, you can execute training, inference and hyper-parameters tuning similarly in the Docker container.
- Install PaddlePaddle
For example, for CUDA 10.1, CuDNN7.5:
```bash
python3 -m pip install paddlepaddle-gpu==1.8.0.post107
source tools/venv/bin/activate
```
## Getting Started
Several shell scripts provided in `./examples` will help us to quickly give it a try, for most major modules, including data preparation, model training, case inference and model evaluation, with a few public dataset (e.g. [LibriSpeech](http://www.openslr.org/12/), [Aishell](http://www.openslr.org/33)). Reading these examples will also help you to understand how to make it work with your own data.
Some of the scripts in `./examples` are configured with 8 GPUs. If you don't have 8 GPUs available, please modify `CUDA_VISIBLE_DEVICES`. If you don't have any GPU available, please set `--use_gpu` to False to use CPUs instead. Besides, if out-of-memory problem occurs, just reduce `--batch_size` to fit.
Let's take a tiny sampled subset of [LibriSpeech dataset](http://www.openslr.org/12/) for instance.
- Go to directory
```bash
cd examples/tiny
```
Notice that this is only a toy example with a tiny sampled subset of LibriSpeech. If you would like to try with the complete dataset (would take several days for training), please go to `examples/librispeech` instead.
- Source env
```bash
source path.sh
```
Set `MAIN_ROOT` as project dir.
- Main entrypoint
```bash
bash run.sh
```
More detailed information are provided in the following sections. Wish you a happy journey with the *DeepSpeech2 on PaddlePaddle* ASR engine!
## Data Preparation
### Generate Manifest
*DeepSpeech2 on PaddlePaddle* accepts a textual **manifest** file as its data set interface. A manifest file summarizes a set of speech data, with each line containing some meta data (e.g. filepath, transcription, duration) of one audio clip, in [JSON](http://www.json.org/) format, such as:
```
{"audio_filepath": "/home/work/.cache/paddle/Libri/134686/1089-134686-0001.flac", "duration": 3.275, "text": "stuff it into you his belly counselled him"}
{"audio_filepath": "/home/work/.cache/paddle/Libri/134686/1089-134686-0007.flac", "duration": 4.275, "text": "a cold lucid indifference reigned in his soul"}
```
To use your custom data, you only need to generate such manifest files to summarize the dataset. Given such summarized manifests, training, inference and all other modules can be aware of where to access the audio files, as well as their meta data including the transcription labels.
For how to generate such manifest files, please refer to `examples/librispeech/local/librispeech.py`, which will download data and generate manifest files for LibriSpeech dataset.
### Compute Mean & Stddev for Normalizer
To perform z-score normalization (zero-mean, unit stddev) upon audio features, we have to estimate in advance the mean and standard deviation of the features, with some training samples:
```bash
python3 tools/compute_mean_std.py \
--num_samples 2000 \
--specgram_type linear \
--manifest_path examples/librispeech/data/manifest.train \
--output_path examples/librispeech/data/mean_std.npz
```
It will compute the mean and standard deviatio of power spectrum feature with 2000 random sampled audio clips listed in `examples/librispeech/data/manifest.train` and save the results to `examples/librispeech/data/mean_std.npz` for further usage.
### Build Vocabulary
A vocabulary of possible characters is required to convert the transcription into a list of token indices for training, and in decoding, to convert from a list of indices back to text again. Such a character-based vocabulary can be built with `tools/build_vocab.py`.
```bash
python3 tools/build_vocab.py \
--count_threshold 0 \
--vocab_path examples/librispeech/data/eng_vocab.txt \
--manifest_paths examples/librispeech/data/manifest.train
```
It will write a vocabuary file `examples/librispeech/data/eng_vocab.txt` with all transcription text in `examples/librispeech/data/manifest.train`, without vocabulary truncation (`--count_threshold 0`).
### More Help
For more help on arguments:
```bash
python3 examples/librispeech/local/librispeech.py --help
python3 tools/compute_mean_std.py --help
python3 tools/build_vocab.py --help
```
## Training a model
`train.py` is the main caller of the training module. Examples of usage are shown below.
- Start training from scratch with 8 GPUs:
```
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train.py
```
- Start training from scratch with CPUs:
```
python3 train.py --use_gpu False
```
- Resume training from a checkpoint:
```
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python3 train.py \
--init_from_pretrained_model CHECKPOINT_PATH_TO_RESUME_FROM
```
For more help on arguments:
```bash
python3 train.py --help
```
or refer to `example/librispeech/local/run_train.sh`.
### Data Augmentation Pipeline
Data augmentation has often been a highly effective technique to boost the deep learning performance. We augment our speech data by synthesizing new audios with small random perturbation (label-invariant transformation) added upon raw audios. You don't have to do the syntheses on your own, as it is already embedded into the data provider and is done on the fly, randomly for each epoch during training.
Six optional augmentation components are provided to be selected, configured and inserted into the processing pipeline.
- Volume Perturbation
- Speed Perturbation
- Shifting Perturbation
- Online Bayesian normalization
- Noise Perturbation (need background noise audio files)
- Impulse Response (need impulse audio files)
In order to inform the trainer of what augmentation components are needed and what their processing orders are, it is required to prepare in advance an *augmentation configuration file* in [JSON](http://www.json.org/) format. For example:
```
[{
"type": "speed",
"params": {"min_speed_rate": 0.95,
"max_speed_rate": 1.05},
"prob": 0.6
},
{
"type": "shift",
"params": {"min_shift_ms": -5,
"max_shift_ms": 5},
"prob": 0.8
}]
```
When the `--augment_conf_file` argument of `trainer.py` is set to the path of the above example configuration file, every audio clip in every epoch will be processed: with 60% of chance, it will first be speed perturbed with a uniformly random sampled speed-rate between 0.95 and 1.05, and then with 80% of chance it will be shifted in time with a random sampled offset between -5 ms and 5 ms. Finally this newly synthesized audio clip will be feed into the feature extractor for further training.
For other configuration examples, please refer to `conf/augmenatation.config.example`.
Be careful when utilizing the data augmentation technique, as improper augmentation will do harm to the training, due to the enlarged train-test gap.
### Training for Mandarin Language
The key steps of training for Mandarin language are same to that of English language and we have also provided an example for Mandarin training with Aishell in ```examples/aishell/local```. As mentioned above, please execute ```sh run_data.sh```, ```sh run_train.sh```, ```sh run_test.sh``` and ```sh run_infer.sh``` to do data preparation, training, testing and inference correspondingly. We have also prepared a pre-trained model (downloaded by ./models/aishell/download_model.sh) for users to try with ```sh run_infer_golden.sh``` and ```sh run_test_golden.sh```. Notice that, different from English LM, the Mandarin LM is character-based and please run ```tools/tune.py``` to find an optimal setting.
## Inference and Evaluation
### Prepare Language Model
A language model is required to improve the decoder's performance. We have prepared two language models (with lossy compression) for users to download and try. One is for English and the other is for Mandarin. Users can simply run this to download the preprared language models:
```bash
cd models/lm
bash download_lm_en.sh
bash download_lm_ch.sh
```
If you wish to train your own better language model, please refer to [KenLM](https://github.com/kpu/kenlm) for tutorials. Here we provide some tips to show how we preparing our English and Mandarin language models. You can take it as a reference when you train your own.
#### English LM
The English corpus is from the [Common Crawl Repository](http://commoncrawl.org) and you can download it from [statmt](http://data.statmt.org/ngrams/deduped_en). We use part en.00 to train our English language model. There are some preprocessing steps before training:
* Characters not in \['A-Za-z0-9\s'\] (\s represents whitespace characters) are removed and Arabic numbers are converted to English numbers like 1000 to one thousand.
* Repeated whitespace characters are squeezed to one and the beginning whitespace characters are removed. Notice that all transcriptions are lowercase, so all characters are converted to lowercase.
* Top 400,000 most frequent words are selected to build the vocabulary and the rest are replaced with 'UNKNOWNWORD'.
Now the preprocessing is done and we get a clean corpus to train the language model. Our released language model are trained with agruments '-o 5 --prune 0 1 1 1 1'. '-o 5' means the max order of language model is 5. '--prune 0 1 1 1 1' represents count thresholds for each order and more specifically it will prune singletons for orders two and higher. To save disk storage we convert the arpa file to 'trie' binary file with arguments '-a 22 -q 8 -b 8'. '-a' represents the maximum number of leading bits of pointers in 'trie' to chop. '-q -b' are quantization parameters for probability and backoff.
#### Mandarin LM
Different from the English language model, Mandarin language model is character-based where each token is a Chinese character. We use internal corpus to train the released Mandarin language models. The corpus contain billions of tokens. The preprocessing has tiny difference from English language model and main steps include:
* The beginning and trailing whitespace characters are removed.
* English punctuations and Chinese punctuations are removed.
* A whitespace character between two tokens is inserted.
Please notice that the released language models only contain Chinese simplified characters. After preprocessing done we can begin to train the language model. The key training arguments for small LM is '-o 5 --prune 0 1 2 4 4' and '-o 5' for large LM. Please refer above section for the meaning of each argument. We also convert the arpa file to binary file using default settings.
### Speech-to-text Inference
An inference module caller `infer.py` is provided to infer, decode and visualize speech-to-text results for several given audio clips. It might help to have an intuitive and qualitative evaluation of the ASR model's performance.
- Inference with GPU:
```bash
CUDA_VISIBLE_DEVICES=0 python3 infer.py
```
- Inference with CPUs:
```bash
python3 infer.py --use_gpu False
```
We provide two types of CTC decoders: *CTC greedy decoder* and *CTC beam search decoder*. The *CTC greedy decoder* is an implementation of the simple best-path decoding algorithm, selecting at each timestep the most likely token, thus being greedy and locally optimal. The [*CTC beam search decoder*](https://arxiv.org/abs/1408.2873) otherwise utilizes a heuristic breadth-first graph search for reaching a near global optimality; it also requires a pre-trained KenLM language model for better scoring and ranking. The decoder type can be set with argument `--decoding_method`.
For more help on arguments:
```
python3 infer.py --help
```
or refer to `example/librispeech/local/run_infer.sh`.
### Evaluate a Model
To evaluate a model's performance quantitatively, please run:
- Evaluation with GPUs:
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 test.py
```
- Evaluation with CPUs:
```bash
python3 test.py --use_gpu False
```
The error rate (default: word error rate; can be set with `--error_rate_type`) will be printed.
For more help on arguments:
```bash
python3 test.py --help
```
or refer to `example/librispeech/local/run_test.sh`.
## Hyper-parameters Tuning
The hyper-parameters $\alpha$ (language model weight) and $\beta$ (word insertion weight) for the [*CTC beam search decoder*](https://arxiv.org/abs/1408.2873) often have a significant impact on the decoder's performance. It would be better to re-tune them on the validation set when the acoustic model is renewed.
`tools/tune.py` performs a 2-D grid search over the hyper-parameter $\alpha$ and $\beta$. You must provide the range of $\alpha$ and $\beta$, as well as the number of their attempts.
- Tuning with GPU:
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python3 tools/tune.py \
--alpha_from 1.0 \
--alpha_to 3.2 \
--num_alphas 45 \
--beta_from 0.1 \
--beta_to 0.45 \
--num_betas 8
```
- Tuning with CPU:
```bash
python3 tools/tune.py --use_gpu False
```
The grid search will print the WER (word error rate) or CER (character error rate) at each point in the hyper-parameters space, and draw the error surface optionally. A proper hyper-parameters range should include the global minima of the error surface for WER/CER, as illustrated in the following figure.
<p align="center">
<img src="docs/images/tuning_error_surface.png" width=550>
<br/>An example error surface for tuning on the dev-clean set of LibriSpeech
</p>
Usually, as the figure shows, the variation of language model weight ($\alpha$) significantly affect the performance of CTC beam search decoder. And a better procedure is to first tune on serveral data batches (the number can be specified) to find out the proper range of hyper-parameters, then change to the whole validation set to carray out an accurate tuning.
After tuning, you can reset $\alpha$ and $\beta$ in the inference and evaluation modules to see if they really help improve the ASR performance. For more help
```bash
python3 tune.py --help
```
or refer to `example/librispeech/local/run_tune.sh`.
## Trying Live Demo with Your Own Voice
Until now, an ASR model is trained and tested qualitatively (`infer.py`) and quantitatively (`test.py`) with existing audio files. But it is not yet tested with your own speech. `deploy/demo_english_server.py` and `deploy/demo_client.py` helps quickly build up a real-time demo ASR engine with the trained model, enabling you to test and play around with the demo, with your own voice.
To start the demo's server, please run this in one console:
```bash
CUDA_VISIBLE_DEVICES=0 \
python3 deploy/demo_server.py \
--host_ip localhost \
--host_port 8086
```
For the machine (might not be the same machine) to run the demo's client, please do the following installation before moving on.
For example, on MAC OS X:
```bash
brew install portaudio
pip install pyaudio
pip install keyboard
```
Then to start the client, please run this in another console:
```bash
CUDA_VISIBLE_DEVICES=0 \
python3 -u deploy/demo_client.py \
--host_ip 'localhost' \
--host_port 8086
```
Now, in the client console, press the `whitespace` key, hold, and start speaking. Until finishing your utterance, release the key to let the speech-to-text results shown in the console. To quit the client, just press `ESC` key.
Notice that `deploy/demo_client.py` must be run on a machine with a microphone device, while `deploy/demo_server.py` could be run on one without any audio recording hardware, e.g. any remote server machine. Just be careful to set the `host_ip` and `host_port` argument with the actual accessible IP address and port, if the server and client are running with two separate machines. Nothing should be done if they are running on one single machine.
Please also refer to `examples/deploy_demo/run_english_demo_server.sh`, which will first download a pre-trained English model (trained with 3000 hours of internal speech data) and then start the demo server with the model. With running `examples/deploy_demo/run_demo_client.sh`, you can speak English to test it. If you would like to try some other models, just update `--model_path` argument in the script.  
For more help on arguments:
```bash
python3 deploy/demo_server.py --help
python3 deploy/demo_client.py --help
```
## Experiments and Benchmarks
#### Benchmark Results for English Models (Word Error Rate)
Test Set | LibriSpeech Model | BaiduEN8K Model
:--------------------- | ---------------: | -------------------:
LibriSpeech Test-Clean | 6.85 | 5.41
LibriSpeech Test-Other | 21.18 | 13.85
VoxForge American-Canadian | 12.12 |   7.13
VoxForge Commonwealth | 19.82 | 14.93
VoxForge European | 30.15 | 18.64
VoxForge Indian | 53.73 | 25.51
Baidu Internal Testset  |   40.75 |   8.48
For reproducing benchmark results on VoxForge data, we provide a script to download data and generate VoxForge dialect manifest files. Please go to ```data/voxforge``` and execute ```sh run_data.sh``` to get VoxForge dialect manifest files. Notice that VoxForge data may keep updating and the generated manifest files may have difference from those we evaluated on.
#### Benchmark Results for Mandarin Model (Character Error Rate)
Test Set | BaiduCN1.2k Model
:--------------------- | -------------------:
Baidu Internal Testset | 12.64
#### Acceleration with Multi-GPUs
We compare the training time with 1, 2, 4, 8 Tesla V100 GPUs (with a subset of LibriSpeech samples whose audio durations are between 6.0 and 7.0 seconds). And it shows that a **near-linear** acceleration with multiple GPUs has been achieved. In the following figure, the time (in seconds) cost for training is printed on the blue bars.
<img src="docs/images/multi_gpu_speedup.png" width=450><br/>
| # of GPU | Acceleration Rate |
| -------- | --------------: |
| 1 | 1.00 X |
| 2 | 1.98 X |
| 4 | 3.73 X |
| 8 | 6.95 X |
`tools/profile.sh` provides such a profiling tool.
## Released Models
#### Speech Model Released
Language | Model Name | Training Data | Hours of Speech
:-----------: | :------------: | :----------: | -------:
English | [LibriSpeech Model](https://deepspeech.bj.bcebos.com/eng_models/librispeech_model_fluid.tar.gz) | [LibriSpeech Dataset](http://www.openslr.org/12/) | 960 h
English | [BaiduEN8k Model](https://deepspeech.bj.bcebos.com/demo_models/baidu_en8k_model_fluid.tar.gz) | Baidu Internal English Dataset | 8628 h
Mandarin | [Aishell Model](https://deepspeech.bj.bcebos.com/mandarin_models/aishell_model_fluid.tar.gz) | [Aishell Dataset](http://www.openslr.org/33/) | 151 h
Mandarin | [BaiduCN1.2k Model](https://deepspeech.bj.bcebos.com/demo_models/baidu_cn1.2k_model_fluid.tar.gz) | Baidu Internal Mandarin Dataset | 1204 h
#### Language Model Released
Language Model | Training Data | Token-based | Size | Descriptions
:-------------:| :------------:| :-----: | -----: | :-----------------
[English LM](https://deepspeech.bj.bcebos.com/en_lm/common_crawl_00.prune01111.trie.klm) | [CommonCrawl(en.00)](http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/en/deduped/en.00.deduped.xz) | Word-based | 8.3 GB | Pruned with 0 1 1 1 1; <br/> About 1.85 billion n-grams; <br/> 'trie' binary with '-a 22 -q 8 -b 8'
[Mandarin LM Small](https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm) | Baidu Internal Corpus | Char-based | 2.8 GB | Pruned with 0 1 2 4 4; <br/> About 0.13 billion n-grams; <br/> 'probing' binary with default settings
[Mandarin LM Large](https://deepspeech.bj.bcebos.com/zh_lm/zhidao_giga.klm) | Baidu Internal Corpus | Char-based | 70.4 GB | No Pruning; <br/> About 3.7 billion n-grams; <br/> 'probing' binary with default settings
Please see [Getting Started](docs/geting_started.md) and [tiny egs](examples/tiny/README.md).
## Questions and Help

@ -1,479 +1,37 @@
# 语音识别: DeepSpeech2
# DeepSpeech on PaddlePaddle
[English](README.md)
*DeepSpeech2*是一个采用[PaddlePaddle](https://github.com/PaddlePaddle/Paddle)平台的端到端自动语音识别ASR引擎的开源项目具体原理参考这篇论文[Baidu's Deep Speech 2 paper](http://proceedings.mlr.press/v48/amodei16.pdf)。
*DeepSpeech on PaddlePaddle*是一个采用[PaddlePaddle](https://github.com/PaddlePaddle/Paddle)平台的端到端自动语音识别ASR引擎的开源项目
我们的愿景是为语音识别在工业应用和学术研究上,提供易于使用、高效和可扩展的工具,包括训练,推理,测试模块,以及 demo 部署。同时,我们还将发布一些预训练好的英语和普通话模型。
## 目录
- [安装](#安装)
- [开始](#开始)
- [数据准备](#数据准备)
- [训练模型](#训练模型)
- [推断和评价](#推断和评价)
- [超参数调整](#超参数调整)
- [用自己的声音尝试现场演示](#用自己的声音尝试现场演示)
- [试验和基准](#试验和基准)
- [发布模型](#发布模型)
- [问题和帮助](#问题和帮助)
## 安装
为了避免环境配置问题,强烈建议在[Docker容器上运行](#在Docker容器上运行),否则请按照下面的指南安装依赖项。
### 前提
- Python >= 3.6
- PaddlePaddle 1.8.0 版本及以上(请参考[安装指南](https://www.paddlepaddle.org.cn/install/quick)
### 安装
- 请确保以下库或工具已安装完毕:`pkg-config`, `flac`, `ogg`, `vorbis`, `boost``swig`, 如可以通过`apt-get`安装:
```bash
sudo apt-get install -y pkg-config libflac-dev libogg-dev libvorbis-dev libboost-dev swig python3-dev
```
## 模型
* [Baidu's Deep Speech2](http://proceedings.mlr.press/v48/amodei16.pdf)
或者,也可以通过`yum`安装:
```bash
sudo yum install pkgconfig libogg-devel libvorbis-devel boost-devel python3-devel
wget https://ftp.osuosl.org/pub/xiph/releases/flac/flac-1.3.1.tar.xz
xz -d flac-1.3.1.tar.xz
tar -xvf flac-1.3.1.tar
cd flac-1.3.1
./configure
make
make install
```
## 安装
* python3.7
* paddlepaddle 2.0.0
- 运行脚本安装其余的依赖
- 安装依赖
```bash
git clone https://github.com/PaddlePaddle/DeepSpeech.git
cd DeepSpeech
sh setup.sh
```
### 在Docker容器上运行
Docker 是一个开源工具,用于在孤立的环境中构建、发布和运行分布式应用程序。此项目的 Docker 镜像已在[hub.docker.com](https://hub.docker.com)中提供并安装了所有依赖项其中包括预先构建的PaddlePaddleCTC解码器以及其他必要的 Python 和第三方库。这个 Docker 映像需要NVIDIA GPU的支持所以请确保它的可用性并已完成[nvidia-docker](https://github.com/NVIDIA/nvidia-docker)的安装。
采取以下步骤来启动 Docker 镜像:
- 下载 Docker 镜像
```bash
nvidia-docker pull hub.baidubce.com/paddlepaddle/deep_speech_fluid:latest-gpu
```
- git clone 这个资源库
```
git clone https://github.com/PaddlePaddle/DeepSpeech.git
pushd tools; make; popd
source tools/venv/bin/activate
bash setup.sh
```
- 运行 Docker 镜像
- 开始实验前要source环境.
```bash
sudo nvidia-docker run -it -v $(pwd)/DeepSpeech:/DeepSpeech hub.baidubce.com/paddlepaddle/deep_speech_fluid:latest-gpu /bin/bash
```
现在返回并从[开始](#开始)部分开始您可以在Docker容器中同样执行模型训练推断和超参数调整。
- 安装 PaddlePaddle
例如 CUDA 10.1, CuDNN7.5:
```bash
python3 -m pip install paddlepaddle-gpu==1.8.0.post107
source tools/venv/bin/activate
```
## 开始
`./examples`里的一些 shell 脚本将帮助我们在一些公开数据集(比如:[LibriSpeech](http://www.openslr.org/12/), [Aishell](http://www.openslr.org/33)) 进行快速尝试,包括了数据准备,模型训练,案例推断和模型评价。阅读这些例子将帮助你理解如何使用你的数据集训练模型。
`./examples`目录中的一些脚本配置使用了 8 个 GPU。如果你没有 8 个可用的 GPU请修改环境变量`CUDA_VISIBLE_DEVICES`。如果你没有可用的 GPU请设置`--use_gpu`为 False这样程序会用 CPU 代替 GPU。另外如果发生内存不足的问题减小`--batch_size`即可。
让我们先看看[LibriSpeech dataset](http://www.openslr.org/12/)小样本集的例子。
- 进入目录
```bash
cd examples/tiny
```
注意这仅仅是 LibriSpeech 一个小数据集的例子。如果你想尝试完整的数据集(可能需要花好几天来训练模型),请使用这个路径`examples/librispeech`。
- 设置环境变量
```bash
source path.sh
```
- 入口脚本
```bash
bash run.sh
```
更多细节会在接下来的章节中阐述。祝你在*DeepSpeech2*ASR引擎学习中过得愉快
## 数据准备
### 生成Manifest
*DeepSpeech2*接受文本**manifest**文件作为数据接口。manifest 文件包含了一系列语音数据,其中每一行代表一个[JSON](http://www.json.org/)格式的音频元数据(比如文件路径,描述,时长)。具体格式如下:
```
{"audio_filepath": "/home/work/.cache/paddle/Libri/134686/1089-134686-0001.flac", "duration": 3.275, "text": "stuff it into you his belly counselled him"}
{"audio_filepath": "/home/work/.cache/paddle/Libri/134686/1089-134686-0007.flac", "duration": 4.275, "text": "a cold lucid indifference reigned in his soul"}
```
如果你要使用自定义数据,你只需要按照以上格式生成自己的 manifest 文件即可。给定 manifest 文件,训练、推断以及其它所有模块都能够访问到音频数据以及对应的时长和标签数据。
关于如何生成 manifest 文件,请参考`examples/librispeech/local/librispeech.py`。该脚本将会下载 LibriSpeech 数据集并生成 manifest 文件。
### 计算均值和标准差用于归一化
为了对音频特征进行 z-score 归一化(零均值,单位标准差),我们必须预估训练样本特征的均值和标准差:
```bash
python3 tools/compute_mean_std.py \
--num_samples 2000 \
--specgram_type linear \
--manifest_path examples/librispeech/data/manifest.train \
--output_path examples/librispeech/data/mean_std.npz
```
以上这段代码会计算在`examples/librispeech/data/manifest.train`路径中2000 个随机采样的语音频谱特征的均值和标准差,并将结果保存在`examples/librispeech/data/mean_std.npz`中,方便以后使用。
### 建立词表
我们需要一个包含可能会出现的字符集合的词表来在训练的时候将字符转换成索引,并在解码的时候将索引转换回文本。`tools/build_vocab.py`脚本将生成这种基于字符的词表。
```bash
python3 tools/build_vocab.py \
--count_threshold 0 \
--vocab_path examples/librispeech/data/eng_vocab.txt \
--manifest_paths examples/librispeech/data/manifest.train
```
它将`examples/librispeech/data/manifest.train`目录中的所有录音文本写入词表文件`examples/librispeeech/data/eng_vocab.txt`,并且没有词汇截断(`--count_threshold 0`)。
### 更多帮助
获得更多帮助:
```bash
python3 examples/librispeech/local/librispeech.py --help
python3 tools/compute_mean_std.py --help
python3 tools/build_vocab.py --help
```
## 训练模型
`train.py`是训练模块的主要调用者。使用示例如下。
- 开始使用 8 片 GPU 训练:
```
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train.py
```
- 开始使用 CPU 训练:
```
python3 train.py --use_gpu False
```
- 从检查点恢复训练:
```
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python3 train.py \
--init_from_pretrained_model CHECKPOINT_PATH_TO_RESUME_FROM
```
获得更多帮助:
```bash
python3 train.py --help
```
或参考 `example/librispeech/local/run_train.sh`.
### 数据增强流水线
数据增强是用来提升深度学习性能的非常有效的技术。我们通过在原始音频中添加小的随机扰动标签不变转换获得新音频来增强我们的语音数据。你不必自己合成因为数据增强已经嵌入到数据生成器中并且能够即时完成在训练模型的每个epoch中随机合成音频。
目前提供六个可选的增强组件供选择,配置并插入处理过程。
- 音量扰动
- 速度扰动
- 移动扰动
- 在线贝叶斯归一化
- 噪声干扰(需要背景噪音的音频文件)
- 脉冲响应(需要脉冲音频文件)
为了让训练模块知道需要哪些增强组件以及它们的处理顺序,我们需要事先准备一个[JSON](http://www.json.org/)格式的*扩展配置文件*。例如:
```
[{
"type": "speed",
"params": {"min_speed_rate": 0.95,
"max_speed_rate": 1.05},
"prob": 0.6
},
{
"type": "shift",
"params": {"min_shift_ms": -5,
"max_shift_ms": 5},
"prob": 0.8
}]
```
当`trainer.py`的`--augment_conf_file`参数被设置为上述示例配置文件的路径时,每个 epoch 中的每个音频片段都将被处理。首先均匀随机采样速率会有60的概率在 0.95 和 1.05 之间对音频片段进行速度扰动。然后,音频片段有 80 的概率在时间上被挪移,挪移偏差值是 -5 毫秒和 5 毫秒之间的随机采样。最后,这个新合成的音频片段将被传送给特征提取器,以用于接下来的训练。
有关其他配置实例,请参考`conf/augmenatation.config.example`.
使用数据增强技术时要小心,由于扩大了训练和测试集的差异,不恰当的增强会对训练模型不利,导致训练和预测的差距增大。
### 训练普通话语言
普通话语言训练与英语训练的关键步骤相同,我们提供了一个使用 Aishell 进行普通话训练的例子```examples/aishell```。如上所述,请执行```sh run_data.sh```, ```sh run_train.sh```, ```sh run_test.sh```和```sh run_infer.sh```做相应的数据准备,训练,测试和推断。我们还准备了一个预训练过的模型(执行./models/aishell/download_model.sh下载供用户使用```run_infer_golden.sh```和```run_test_golden.sh```来。请注意,与英语语言模型不同,普通话语言模型是基于汉字的,请运行```tools/tune.py```来查找最佳设置。
## 推断和评价
### 准备语言模型
提升解码器的性能需要准备语言模型。我们准备了两种语言模型(有损压缩)供用户下载和尝试。一个是英语模型,另一个是普通话模型。用户可以执行以下命令来下载已经训练好的语言模型:
```bash
cd models/lm
bash download_lm_en.sh
bash download_lm_ch.sh
```
如果你想训练自己更好的语言模型,请参考[KenLM](https://github.com/kpu/kenlm)获取教程。在这里,我们提供一些技巧来展示我们如何准备我们的英语和普通话模型。当你训练自己的模型的时候,可以参考这些技巧。
#### 英语语言模型
英语语料库来自[Common Crawl Repository](http://commoncrawl.org),你可以从[statmt](http://data.statmt.org/ngrams/deduped_en)下载它。我们使用en.00部分来训练我们的英语语言模型。训练前有如下的一些预处理过程:
* 不在\['A-Za-z0-9\s'\]\s表示空白字符中的字符将被删除阿拉伯数字被转换为英文数字比如“1000”转换为 one thousand。
* 重复的空白字符被压缩为一个,并且开始的空白字符将被删除。请注意,所有的录音都是小写字母,因此所有字符都转换为小写字母。
* 选择前 40 万个最常用的单词来建立词表其余部分将被替换为“UNKNOWNWORD”。
现在预处理完成了,我们得到一个干净的语料库来训练语言模型。我们发布的语言模型版本使用了参数“-o 5 --prune 0 1 1 1 1”来训练。“-o 5”表示语言模型的最大order为 5。“--prune 0 1 1 1 1”表示每个 order 的计数阈值,更具体地说,它将第 2 个以及更高的 order 修剪为单个。为了节省磁盘存储空间,我们将使用参数“-a 22 -q 8 -b 8”将 arpa 文件转换为“trie”二进制文件。“-a”表示在“trie”中用于切分的指针的最高位数。“-q -b”是概率和退避的量化参数。
#### 普通话语言模型
与英语语言模型不同的是,普通话语言模型是基于字符的,其中每一位都是中文汉字。我们使用内部语料库来训练发布的汉语语言模型。该语料库包含数十亿汉字。预处理阶段与英语语言模型有一些小的差别,主要步骤包括:
* 删除开始和结尾的空白字符。
* 删除英文标点和中文标点。
* 在两个字符之间插入空白字符。
请注意,发布的语言模型只包含中文简体字。预处理完成后,我们开始训练语言模型。这个小的语言模型训练关键参数是“-o 5 --prune 0 1 2 4 4”“-o 5”是针对大语言模型。请参考上面的部分了解每个参数的含义。我们还使用默认设置将 arpa 文件转换为二进制文件。
### 语音到文本推断
推断模块使用`infer.py`进行调用可以用来推断解码以及输出一些给定音频片段可视化到文本的结果。这有助于对ASR模型的性能进行直观和定性的评估。
- GPU 版本的推断:
```bash
CUDA_VISIBLE_DEVICES=0 python3 infer.py
```
- CPU 版本的推断:
```bash
python3 infer.py --use_gpu False
```
我们提供两种类型的 CTC 解码器:*CTC贪心解码器*和*CTC波束搜索解码器*。*CTC贪心解码器*是简单的最佳路径解码算法的实现,在每个时间步选择最可能的字符,因此是贪心的并且是局部最优的。[*CTC波束搜索解码器*](https://arxiv.org/abs/1408.2873)另外使用了启发式广度优先图搜索以达到近似全局最优; 它也需要预先训练的KenLM语言模型以获得更好的评分和排名。解码器类型可以用参数`--decoding_method`设置。
获得更多帮助:
```
python3 infer.py --help
```
或参考`example/librispeech/local/run_infer.sh`.
### 评估模型
要定量评估模型的性能,请运行:
- GPU 版本评估
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 test.py
```
- CPU 版本评估
```bash
python3 test.py --use_gpu False
```
错误率(默认:误字率;可以用--error_rate_type设置将被打印出来。
获得更多帮助:
```bash
python3 test.py --help
```
或参考`example/librispeech/local/run_test.sh`.
## 超参数调整
[*CTC波束搜索解码器*](https://arxiv.org/abs/1408.2873)的超参数$\alpha$(语言模型权重)和$\beta$(单词插入权重)对解码器的性能有非常显著的影响。当声学模型更新时,最好在验证集上重新调整它们。
`tools/tune.py`会进行2维网格查找超参数$\alpha$和$\beta$。你必须提供$\alpha$和$\beta$的范围,以及尝试的次数。
- GPU 版的调整:
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python3 tools/tune.py \
--alpha_from 1.0 \
--alpha_to 3.2 \
--num_alphas 45 \
--beta_from 0.1 \
--beta_to 0.45 \
--num_betas 8
```
- CPU 版的调整:
```bash
python3 tools/tune.py --use_gpu False
```
网格搜索将会在超参数空间的每个点处打印出 WER (误字率)或者 CER (字符错误率),并且可绘出误差曲面。一个合适的超参数范围应包括 WER/CER 误差表面的全局最小值,如下图所示。
<p align="center">
<img src="docs/images/tuning_error_surface.png" width=550>
<br/>调整LibriSpeech的dev-clean集合的误差曲面示例
</p>
通常,如图所示,语言模型权重($\alpha$)的变化显著影响 CTC波束搜索解码器的性能。更好的方法是首先调整多批数据可指定数量以找出适当的超参数范围然后更改为完整的验证集以进行精确调整。
调整之后,您可以在推理和评价模块中重置$\alpha$和$\beta$,以检查它们是否真的有助于提高 ASR 性能。更多帮助如下:
```bash
python3 tune.py --help
```
或参考`example/librispeech/local/run_tune.sh`.
## 用自己的声音尝试现场演示
到目前为止,一个 ASR 模型已经训练完毕,并且用现有的音频文件进行了定性测试(`infer.py`)和定量测试(`test.py`)。但目前还没有用你自己的声音进行测试。`deploy/demo_english_server.py`和`deploy/demo_client.py`能够快速构建一个利用已训练好的模型对ASR引擎进行实时演示的系统使你能够用自己的语音测试和演示。
要启动演示服务,请在控制台中运行:
```bash
CUDA_VISIBLE_DEVICES=0 \
python3 deploy/demo_server.py \
--host_ip localhost \
--host_port 8086
```
对于运行 demo 客户端的机器(可能不是同一台机器),请在继续之前执行以下安装。
比如,对于 MAC OS X 机器:
```bash
brew install portaudio
pip install pyaudio
pip install keyboard
```
然后启动客户端,请在另一个控制台中运行:
```bash
CUDA_VISIBLE_DEVICES=0 \
python3 -u deploy/demo_client.py \
--host_ip 'localhost' \
--host_port 8086
```
现在,在客户端控制台中,按下`空格`键,按住并开始讲话。讲话完毕请释放该键以让控制台中显示语音的文本结果。要退出客户端,只需按`ESC`键。
请注意,`deploy/demo_client.py`必须在带麦克风设备的机器上运行,而`deploy/demo_server.py`可以在没有任何录音硬件的情况下运行,例如任何远程服务器机器。如果服务器和客户端使用两台独立的机器运行,只需要注意将`host_ip`和`host_port`参数设置为实际可访问的IP地址和端口。如果它们在单台机器上运行则不用作任何处理。
请参考`examples/deploy_demo/run_english_demo_server.sh`它将首先下载一个预先训练过的英语模型用3000小时的内部语音数据训练然后用模型启动演示服务器。通过运行`examples/deploy_demo/run_demo_client.sh`,你可以说英语来测试它。如果您想尝试其他模型,只需更新脚本中的`--model_path`参数即可。
获得更多帮助:
```bash
python3 deploy/demo_server.py --help
python3 deploy/demo_client.py --help
```
## 实验和baseline
#### 英语模型的baseline测试结果字错误率
测试集 | LibriSpeech Model | BaiduEN8K Model
:--------------------- | ---------------: | -------------------:
LibriSpeech Test-Clean | 6.85 | 5.41
LibriSpeech Test-Other | 21.18 | 13.85
VoxForge American-Canadian | 12.12 |   7.13
VoxForge Commonwealth | 19.82 | 14.93
VoxForge European | 30.15 | 18.64
VoxForge Indian | 53.73 | 25.51
Baidu Internal Testset  |   40.75 |   8.48
为了在VoxForge数据上重现基准测试结果我们提供了一个脚本来下载数据并生成VoxForge方言manifest文件。请到```data/voxforge```执行````run_data.sh```来获取VoxForge方言manifest文件。请注意VoxForge数据可能会持续更新生成的清单文件可能与我们评估的清单文件有所不同。
#### 普通话模型的baseline测试结果字符错误率
测试集 | BaiduCN1.2k Model
:--------------------- | -------------------:
Baidu Internal Testset | 12.64
#### 多GPU加速
我们对1,2,4,8个Tesla V100 GPU的训练时间LibriSpeech样本的子集其音频持续时间介于6.0和7.0秒之间进行比较。它表明已经实现了具有多个GPU的**近线性**加速。在下图中,训练的时间(以秒为单位)显示在蓝色条上。
<img src="docs/images/multi_gpu_speedup.png" width=450><br/>
| # of GPU | 加速比 |
| -------- | --------------: |
| 1 | 1.00 X |
| 2 | 1.98 X |
| 4 | 3.73 X |
| 8 | 6.95 X |
`tools/profile.sh`提供了上述分析工具.
## 发布模型
#### 语音模型发布
语种 | 模型名 | 训练数据 | 语音时长
:-----------: | :------------: | :----------: | -------:
English | [LibriSpeech Model](https://deepspeech.bj.bcebos.com/eng_models/librispeech_model_fluid.tar.gz) | [LibriSpeech Dataset](http://www.openslr.org/12/) | 960 h
English | [BaiduEN8k Model](https://deepspeech.bj.bcebos.com/demo_models/baidu_en8k_model_fluid.tar.gz) | Baidu Internal English Dataset | 8628 h
Mandarin | [Aishell Model](https://deepspeech.bj.bcebos.com/mandarin_models/aishell_model_fluid.tar.gz) | [Aishell Dataset](http://www.openslr.org/33/) | 151 h
Mandarin | [BaiduCN1.2k Model](https://deepspeech.bj.bcebos.com/demo_models/baidu_cn1.2k_model_fluid.tar.gz) | Baidu Internal Mandarin Dataset | 1204 h
#### 语言模型发布
语言模型 | 训练数据 | 基于的字符 | 大小 | 描述
:-------------:| :------------:| :-----: | -----: | :-----------------
[English LM](https://deepspeech.bj.bcebos.com/en_lm/common_crawl_00.prune01111.trie.klm) | [CommonCrawl(en.00)](http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/en/deduped/en.00.deduped.xz) | Word-based | 8.3 GB | Pruned with 0 1 1 1 1; <br/> About 1.85 billion n-grams; <br/> 'trie' binary with '-a 22 -q 8 -b 8'
[Mandarin LM Small](https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm) | Baidu Internal Corpus | Char-based | 2.8 GB | Pruned with 0 1 2 4 4; <br/> About 0.13 billion n-grams; <br/> 'probing' binary with default settings
[Mandarin LM Large](https://deepspeech.bj.bcebos.com/zh_lm/zhidao_giga.klm) | Baidu Internal Corpus | Char-based | 70.4 GB | No Pruning; <br/> About 3.7 billion n-grams; <br/> 'probing' binary with default settings
请查看 [Getting Started](docs/geting_started.md) 和 [tiny egs](examples/tiny/README.md)。
## 问题和帮助

@ -1,381 +0,0 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains data generator for orgnaizing various audio data preprocessing
pipeline and offering data reader interface of PaddlePaddle requirements.
"""
import random
import tarfile
import multiprocessing
import numpy as np
import paddle.fluid as fluid
from threading import local
from data_utils.utility import read_manifest
from data_utils.augmentor.augmentation import AugmentationPipeline
from data_utils.featurizer.speech_featurizer import SpeechFeaturizer
from data_utils.speech import SpeechSegment
from data_utils.normalizer import FeatureNormalizer
class DataGenerator(object):
"""
DataGenerator provides basic audio data preprocessing pipeline, and offers
data reader interfaces of PaddlePaddle requirements.
:param vocab_filepath: Vocabulary filepath for indexing tokenized
transcripts.
:type vocab_filepath: str
:param mean_std_filepath: File containing the pre-computed mean and stddev.
:type mean_std_filepath: None|str
:param augmentation_config: Augmentation configuration in json string.
Details see AugmentationPipeline.__doc__.
:type augmentation_config: str
:param max_duration: Audio with duration (in seconds) greater than
this will be discarded.
:type max_duration: float
:param min_duration: Audio with duration (in seconds) smaller than
this will be discarded.
:type min_duration: float
:param stride_ms: Striding size (in milliseconds) for generating frames.
:type stride_ms: float
:param window_ms: Window size (in milliseconds) for generating frames.
:type window_ms: float
:param max_freq: Used when specgram_type is 'linear', only FFT bins
corresponding to frequencies between [0, max_freq] are
returned.
:types max_freq: None|float
:param specgram_type: Specgram feature type. Options: 'linear'.
:type specgram_type: str
:param use_dB_normalization: Whether to normalize the audio to -20 dB
before extracting the features.
:type use_dB_normalization: bool
:param random_seed: Random seed.
:type random_seed: int
:param keep_transcription_text: If set to True, transcription text will
be passed forward directly without
converting to index sequence.
:type keep_transcription_text: bool
:param place: The place to run the program.
:type place: CPUPlace or CUDAPlace
:param is_training: If set to True, generate text data for training,
otherwise, generate text data for infer.
:type is_training: bool
"""
def __init__(self,
vocab_filepath,
mean_std_filepath,
augmentation_config='{}',
max_duration=float('inf'),
min_duration=0.0,
stride_ms=10.0,
window_ms=20.0,
max_freq=None,
specgram_type='linear',
use_dB_normalization=True,
random_seed=0,
keep_transcription_text=False,
place=fluid.CPUPlace(),
is_training=True):
self._max_duration = max_duration
self._min_duration = min_duration
self._normalizer = FeatureNormalizer(mean_std_filepath)
self._augmentation_pipeline = AugmentationPipeline(
augmentation_config=augmentation_config, random_seed=random_seed)
self._speech_featurizer = SpeechFeaturizer(
vocab_filepath=vocab_filepath,
specgram_type=specgram_type,
stride_ms=stride_ms,
window_ms=window_ms,
max_freq=max_freq,
use_dB_normalization=use_dB_normalization)
self._rng = random.Random(random_seed)
self._keep_transcription_text = keep_transcription_text
self._epoch = 0
self._is_training = is_training
# for caching tar files info
self._local_data = local()
self._local_data.tar2info = {}
self._local_data.tar2object = {}
self._place = place
def process_utterance(self, audio_file, transcript):
"""Load, augment, featurize and normalize for speech data.
:param audio_file: Filepath or file object of audio file.
:type audio_file: str | file
:param transcript: Transcription text.
:type transcript: str
:return: Tuple of audio feature tensor and data of transcription part,
where transcription part could be token ids or text.
:rtype: tuple of (2darray, list)
"""
if isinstance(audio_file, str) and audio_file.startswith('tar:'):
speech_segment = SpeechSegment.from_file(
self._subfile_from_tar(audio_file), transcript)
else:
speech_segment = SpeechSegment.from_file(audio_file, transcript)
self._augmentation_pipeline.transform_audio(speech_segment)
specgram, transcript_part = self._speech_featurizer.featurize(
speech_segment, self._keep_transcription_text)
specgram = self._normalizer.apply(specgram)
return specgram, transcript_part
def batch_reader_creator(self,
manifest_path,
batch_size,
padding_to=-1,
flatten=False,
sortagrad=False,
shuffle_method="batch_shuffle"):
"""
Batch data reader creator for audio data. Return a callable generator
function to produce batches of data.
Audio features within one batch will be padded with zeros to have the
same shape, or a user-defined shape.
:param manifest_path: Filepath of manifest for audio files.
:type manifest_path: str
:param batch_size: Number of instances in a batch.
:type batch_size: int
:param padding_to: If set -1, the maximun shape in the batch
will be used as the target shape for padding.
Otherwise, `padding_to` will be the target shape.
:type padding_to: int
:param flatten: If set True, audio features will be flatten to 1darray.
:type flatten: bool
:param sortagrad: If set True, sort the instances by audio duration
in the first epoch for speed up training.
:type sortagrad: bool
:param shuffle_method: Shuffle method. Options:
'' or None: no shuffle.
'instance_shuffle': instance-wise shuffle.
'batch_shuffle': similarly-sized instances are
put into batches, and then
batch-wise shuffle the batches.
For more details, please see
``_batch_shuffle.__doc__``.
'batch_shuffle_clipped': 'batch_shuffle' with
head shift and tail
clipping. For more
details, please see
``_batch_shuffle``.
If sortagrad is True, shuffle is disabled
for the first epoch.
:type shuffle_method: None|str
:return: Batch reader function, producing batches of data when called.
:rtype: callable
"""
def batch_reader():
# read manifest
manifest = read_manifest(
manifest_path=manifest_path,
max_duration=self._max_duration,
min_duration=self._min_duration)
# sort (by duration) or batch-wise shuffle the manifest
if self._epoch == 0 and sortagrad:
manifest.sort(key=lambda x: x["duration"])
else:
if shuffle_method == "batch_shuffle":
manifest = self._batch_shuffle(
manifest, batch_size, clipped=False)
elif shuffle_method == "batch_shuffle_clipped":
manifest = self._batch_shuffle(
manifest, batch_size, clipped=True)
elif shuffle_method == "instance_shuffle":
self._rng.shuffle(manifest)
elif shuffle_method == None:
pass
else:
raise ValueError("Unknown shuffle method %s." %
shuffle_method)
# prepare batches
batch = []
instance_reader = self._instance_reader_creator(manifest)
for instance in instance_reader():
batch.append(instance)
if len(batch) == batch_size:
yield self._padding_batch(batch, padding_to, flatten)
batch = []
if len(batch) >= 1:
yield self._padding_batch(batch, padding_to, flatten)
self._epoch += 1
return batch_reader
@property
def feeding(self):
"""Returns data reader's feeding dict.
:return: Data feeding dict.
:rtype: dict
"""
feeding_dict = {"audio_spectrogram": 0, "transcript_text": 1}
return feeding_dict
@property
def vocab_size(self):
"""Return the vocabulary size.
:return: Vocabulary size.
:rtype: int
"""
return self._speech_featurizer.vocab_size
@property
def vocab_list(self):
"""Return the vocabulary in list.
:return: Vocabulary in list.
:rtype: list
"""
return self._speech_featurizer.vocab_list
def _parse_tar(self, file):
"""Parse a tar file to get a tarfile object
and a map containing tarinfoes
"""
result = {}
f = tarfile.open(file)
for tarinfo in f.getmembers():
result[tarinfo.name] = tarinfo
return f, result
def _subfile_from_tar(self, file):
"""Get subfile object from tar.
It will return a subfile object from tar file
and cached tar file info for next reading request.
"""
tarpath, filename = file.split(':', 1)[1].split('#', 1)
if 'tar2info' not in self._local_data.__dict__:
self._local_data.tar2info = {}
if 'tar2object' not in self._local_data.__dict__:
self._local_data.tar2object = {}
if tarpath not in self._local_data.tar2info:
object, infoes = self._parse_tar(tarpath)
self._local_data.tar2info[tarpath] = infoes
self._local_data.tar2object[tarpath] = object
return self._local_data.tar2object[tarpath].extractfile(
self._local_data.tar2info[tarpath][filename])
def _instance_reader_creator(self, manifest):
"""
Instance reader creator. Create a callable function to produce
instances of data.
Instance: a tuple of ndarray of audio spectrogram and a list of
token indices for transcript.
"""
def reader():
for instance in manifest:
inst = self.process_utterance(instance["audio_filepath"],
instance["text"])
yield inst
return reader
def _padding_batch(self, batch, padding_to=-1, flatten=False):
"""
Padding audio features with zeros to make them have the same shape (or
a user-defined shape) within one bach.
If ``padding_to`` is -1, the maximun shape in the batch will be used
as the target shape for padding. Otherwise, `padding_to` will be the
target shape (only refers to the second axis).
If `flatten` is True, features will be flatten to 1darray.
"""
new_batch = []
# get target shape
max_length = max([audio.shape[1] for audio, text in batch])
if padding_to != -1:
if padding_to < max_length:
raise ValueError("If padding_to is not -1, it should be larger "
"than any instance's shape in the batch")
max_length = padding_to
# padding
padded_audios = []
texts, text_lens = [], []
audio_lens = []
masks = []
for audio, text in batch:
padded_audio = np.zeros([audio.shape[0], max_length])
padded_audio[:, :audio.shape[1]] = audio
if flatten:
padded_audio = padded_audio.flatten()
padded_audios.append(padded_audio)
if self._is_training:
texts += text
else:
texts.append(text)
text_lens.append(len(text))
audio_lens.append(audio.shape[1])
mask_shape0 = (audio.shape[0] - 1) // 2 + 1
mask_shape1 = (audio.shape[1] - 1) // 3 + 1
mask_max_len = (max_length - 1) // 3 + 1
mask_ones = np.ones((mask_shape0, mask_shape1))
mask_zeros = np.zeros((mask_shape0, mask_max_len - mask_shape1))
mask = np.repeat(
np.reshape(
np.concatenate((mask_ones, mask_zeros), axis=1),
(1, mask_shape0, mask_max_len)),
32,
axis=0)
masks.append(mask)
padded_audios = np.array(padded_audios).astype('float32')
if self._is_training:
texts = np.expand_dims(np.array(texts).astype('int32'), axis=-1)
texts = fluid.create_lod_tensor(
texts, recursive_seq_lens=[text_lens], place=self._place)
audio_lens = np.array(audio_lens).astype('int64').reshape([-1, 1])
masks = np.array(masks).astype('float32')
return padded_audios, texts, audio_lens, masks
def _batch_shuffle(self, manifest, batch_size, clipped=False):
"""Put similarly-sized instances into minibatches for better efficiency
and make a batch-wise shuffle.
1. Sort the audio clips by duration.
2. Generate a random number `k`, k in [0, batch_size).
3. Randomly shift `k` instances in order to create different batches
for different epochs. Create minibatches.
4. Shuffle the minibatches.
:param manifest: Manifest contents. List of dict.
:type manifest: list
:param batch_size: Batch size. This size is also used for generate
a random number for batch shuffle.
:type batch_size: int
:param clipped: Whether to clip the heading (small shift) and trailing
(incomplete batch) instances.
:type clipped: bool
:return: Batch shuffled mainifest.
:rtype: list
"""
manifest.sort(key=lambda x: x["duration"])
shift_len = self._rng.randint(0, batch_size - 1)
batch_manifest = list(zip(*[iter(manifest[shift_len:])] * batch_size))
self._rng.shuffle(batch_manifest)
batch_manifest = [item for batch in batch_manifest for item in batch]
if not clipped:
res_len = len(manifest) - shift_len - len(batch_manifest)
batch_manifest.extend(manifest[-res_len:])
batch_manifest.extend(manifest[0:shift_len])
return batch_manifest

@ -1,20 +0,0 @@
#ifndef CTC_GREEDY_DECODER_H
#define CTC_GREEDY_DECODER_H
#include <string>
#include <vector>
/* CTC Greedy (Best Path) Decoder
*
* Parameters:
* probs_seq: 2-D vector that each element is a vector of probabilities
* over vocabulary of one time step.
* vocabulary: A vector of vocabulary.
* Return:
* The decoding result in string
*/
std::string ctc_greedy_decoder(
const std::vector<std::vector<double>>& probs_seq,
const std::vector<std::string>& vocabulary);
#endif // CTC_GREEDY_DECODER_H

@ -0,0 +1,9 @@
ThreadPool/
build/
dist/
kenlm/
openfst-1.6.3/
openfst-1.6.3.tar.gz
swig_decoders.egg-info/
decoders_wrap.cxx
swig_decoders.py

@ -1,3 +1,17 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ctc_beam_search_decoder.h"
#include <algorithm>

@ -1,3 +1,17 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef CTC_BEAM_SEARCH_DECODER_H_
#define CTC_BEAM_SEARCH_DECODER_H_

@ -1,3 +1,17 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ctc_greedy_decoder.h"
#include "decoder_utils.h"

@ -0,0 +1,34 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef CTC_GREEDY_DECODER_H
#define CTC_GREEDY_DECODER_H
#include <string>
#include <vector>
/* CTC Greedy (Best Path) Decoder
*
* Parameters:
* probs_seq: 2-D vector that each element is a vector of probabilities
* over vocabulary of one time step.
* vocabulary: A vector of vocabulary.
* Return:
* The decoding result in string
*/
std::string ctc_greedy_decoder(
const std::vector<std::vector<double>>& probs_seq,
const std::vector<std::string>& vocabulary);
#endif // CTC_GREEDY_DECODER_H

@ -1,3 +1,17 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "decoder_utils.h"
#include <algorithm>

@ -1,3 +1,17 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef DECODER_UTILS_H_
#define DECODER_UTILS_H_

@ -1,3 +1,17 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "path_trie.h"
#include <algorithm>

@ -1,3 +1,17 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef PATH_TRIE_H
#define PATH_TRIE_H

@ -1,3 +1,17 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "scorer.h"
#include <unistd.h>

@ -1,3 +1,17 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SCORER_H_
#define SCORER_H_

@ -81,9 +81,8 @@ FILES = glob.glob('kenlm/util/*.cc') \
FILES += glob.glob('openfst-1.6.3/src/lib/*.cc')
FILES = [
fn for fn in FILES
if not (fn.endswith('main.cc') or fn.endswith('test.cc') or fn.endswith(
'unittest.cc'))
fn for fn in FILES if not (fn.endswith('main.cc') or fn.endswith('test.cc')
or fn.endswith('unittest.cc'))
]
LIBS = ['stdc++']

@ -46,7 +46,7 @@ def ctc_greedy_decoder(probs_seq, vocabulary):
:rtype: str
"""
result = swig_decoders.ctc_greedy_decoder(probs_seq.tolist(), vocabulary)
return result.decode('utf-8')
return result
def ctc_beam_search_decoder(probs_seq,

@ -14,7 +14,7 @@
"""Test decoders."""
import unittest
from decoders import decoders_deprecated as decoder
from deepspeech.decoders import decoders_deprecated as decoder
class TestDecoders(unittest.TestCase):

@ -19,6 +19,8 @@ import sys
import argparse
import pyaudio
from deepspeech.utils.socket_server import socket_send
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--host_ip",
@ -61,16 +63,7 @@ def callback(in_data, frame_count, time_info, status):
data_list.append(in_data)
enable_trigger_record = False
elif len(data_list) > 0:
# Connect to server and send data
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect((args.host_ip, args.host_port))
sent = ''.join(data_list)
sock.sendall(struct.pack('>i', len(sent)) + sent)
print('Speech[length=%d] Sent.' % len(sent))
# Receive data from the server and shut down
received = sock.recv(1024)
print("Recognition Results: {}".format(received))
sock.close()
socket_send(args.host_ip, args.host_port, ''.join(data_list))
data_list = []
enable_trigger_record = True
return (in_data, pyaudio.paContinue)
@ -80,7 +73,7 @@ def main():
# prepare audio recorder
p = pyaudio.PyAudio()
stream = p.open(
format=pyaudio.paInt32,
format=pyaudio.paInt16,
channels=1,
rate=16000,
input=True,

@ -0,0 +1,54 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Record wav from Microphone"""
# http://people.csail.mit.edu/hubert/pyaudio/
import pyaudio
import wave
CHUNK = 1024
FORMAT = pyaudio.paInt16
CHANNELS = 1
RATE = 16000
RECORD_SECONDS = 5
WAVE_OUTPUT_FILENAME = "output.wav"
p = pyaudio.PyAudio()
stream = p.open(
format=FORMAT,
channels=CHANNELS,
rate=RATE,
input=True,
frames_per_buffer=CHUNK)
print("* recording")
frames = []
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
data = stream.read(CHUNK)
frames.append(data)
print("* done recording")
stream.stop_stream()
stream.close()
p.terminate()
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
wf.setnchannels(CHANNELS)
wf.setsampwidth(p.get_sample_size(FORMAT))
wf.setframerate(RATE)
wf.writeframes(b''.join(frames))
wf.close()

@ -0,0 +1,207 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Server-end for the ASR demo."""
import os
import time
import argparse
import functools
import paddle
import numpy as np
from deepspeech.utils.socket_server import warm_up_test
from deepspeech.utils.socket_server import AsrTCPServer
from deepspeech.utils.socket_server import AsrRequestHandler
from deepspeech.training.cli import default_argument_parser
from deepspeech.exps.deepspeech2.config import get_cfg_defaults
from deepspeech.frontend.utility import read_manifest
from deepspeech.utils.utility import add_arguments, print_arguments
from deepspeech.models.deepspeech2 import DeepSpeech2Model
from deepspeech.io.dataset import ManifestDataset
from paddle.inference import Config
from paddle.inference import create_predictor
def init_predictor(args):
if args.model_dir is not None:
config = Config(args.model_dir)
else:
config = Config(args.model_file, args.params_file)
config.enable_memory_optim()
if args.use_gpu:
config.enable_use_gpu(memory_pool_init_size_mb=1000, device_id=0)
else:
# If not specific mkldnn, you can set the blas thread.
# The thread num should not be greater than the number of cores in the CPU.
config.set_cpu_math_library_num_threads(4)
config.enable_mkldnn()
predictor = create_predictor(config)
return predictor
def run(predictor, img):
# copy img data to input tensor
input_names = predictor.get_input_names()
for i, name in enumerate(input_names):
input_tensor = predictor.get_input_handle(name)
#input_tensor.reshape(img[i].shape)
#input_tensor.copy_from_cpu(img[i].copy())
# do the inference
predictor.run()
results = []
# get out data from output tensor
output_names = predictor.get_output_names()
for i, name in enumerate(output_names):
output_tensor = predictor.get_output_handle(name)
output_data = output_tensor.copy_to_cpu()
results.append(output_data)
return results
def inference(config, args):
predictor = init_predictor(args)
def start_server(config, args):
"""Start the ASR server"""
dataset = ManifestDataset(
config.data.test_manifest,
config.data.vocab_filepath,
config.data.mean_std_filepath,
augmentation_config="{}",
max_duration=config.data.max_duration,
min_duration=config.data.min_duration,
stride_ms=config.data.stride_ms,
window_ms=config.data.window_ms,
n_fft=config.data.n_fft,
max_freq=config.data.max_freq,
target_sample_rate=config.data.target_sample_rate,
specgram_type=config.data.specgram_type,
use_dB_normalization=config.data.use_dB_normalization,
target_dB=config.data.target_dB,
random_seed=config.data.random_seed,
keep_transcription_text=True)
model = DeepSpeech2Model.from_pretrained(dataset, config,
args.checkpoint_path)
model.eval()
# prepare ASR inference handler
def file_to_transcript(filename):
feature = dataset.process_utterance(filename, "")
audio = np.array([feature[0]]).astype('float32') #[1, D, T]
audio_len = feature[0].shape[1]
audio_len = np.array([audio_len]).astype('int64') # [1]
result_transcript = model.decode(
paddle.to_tensor(audio),
paddle.to_tensor(audio_len),
vocab_list=dataset.vocab_list,
decoding_method=config.decoding.decoding_method,
lang_model_path=config.decoding.lang_model_path,
beam_alpha=config.decoding.alpha,
beam_beta=config.decoding.beta,
beam_size=config.decoding.beam_size,
cutoff_prob=config.decoding.cutoff_prob,
cutoff_top_n=config.decoding.cutoff_top_n,
num_processes=config.decoding.num_proc_bsearch)
return result_transcript[0]
# warming up with utterrances sampled from Librispeech
print('-----------------------------------------------------------')
print('Warming up ...')
warm_up_test(
audio_process_handler=file_to_transcript,
manifest_path=args.warmup_manifest,
num_test_cases=3)
print('-----------------------------------------------------------')
# start the server
server = AsrTCPServer(
server_address=(args.host_ip, args.host_port),
RequestHandlerClass=AsrRequestHandler,
speech_save_dir=args.speech_save_dir,
audio_process_handler=file_to_transcript)
print("ASR Server Started.")
server.serve_forever()
def main(config, args):
start_server(config, args)
if __name__ == "__main__":
parser = default_argument_parser()
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('host_ip', str,
'localhost',
"Server's IP address.")
add_arg('host_port', int, 8086, "Server's IP port.")
add_arg('speech_save_dir', str,
'demo_cache',
"Directory to save demo audios.")
add_arg('warmup_manifest', str, None, "Filepath of manifest to warm up.")
add_arg(
"--model_file",
type=str,
default="",
help="Model filename, Specify this when your model is a combined model."
)
add_arg(
"--params_file",
type=str,
default="",
help=
"Parameter filename, Specify this when your model is a combined model."
)
add_arg(
"--model_dir",
type=str,
default=None,
help=
"Model dir, If you load a non-combined model, specify the directory of the model."
)
add_arg("--use_gpu",
type=bool,
default=False,
help="Whether use gpu.")
args = parser.parse_args()
print_arguments(args)
# https://yaml.org/type/float.html
config = get_cfg_defaults()
if args.config:
config.merge_from_file(args.config)
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
print(config)
args.warmup_manifest = config.data.test_manifest
print_arguments(args)
if args.dump_config:
with open(args.dump_config, 'w') as f:
print(config, file=f)
main(config, args)

@ -0,0 +1,52 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Socket client to send wav to ASR server."""
import struct
import socket
import argparse
import wave
from deepspeech.utils.socket_server import socket_send
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--host_ip",
default="localhost",
type=str,
help="Server IP address. (default: %(default)s)")
parser.add_argument(
"--host_port",
default=8086,
type=int,
help="Server Port. (default: %(default)s)")
args = parser.parse_args()
WAVE_OUTPUT_FILENAME = "output.wav"
def main():
wf = wave.open(WAVE_OUTPUT_FILENAME, 'rb')
nframe = wf.getnframes()
data = wf.readframes(nframe)
print(f"Wave: {WAVE_OUTPUT_FILENAME}")
print(f"Wave samples: {nframe}")
print(f"Wave channels: {wf.getnchannels()}")
print(f"Wave sample rate: {wf.getframerate()}")
print(f"Wave sample width: {wf.getsampwidth()}")
assert isinstance(data, bytes)
socket_send(args.host_ip, args.host_port, data)
if __name__ == "__main__":
main()

@ -0,0 +1,134 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Server-end for the ASR demo."""
import os
import time
import argparse
import functools
import paddle
import numpy as np
from deepspeech.utils.socket_server import warm_up_test
from deepspeech.utils.socket_server import AsrTCPServer
from deepspeech.utils.socket_server import AsrRequestHandler
from deepspeech.training.cli import default_argument_parser
from deepspeech.exps.deepspeech2.config import get_cfg_defaults
from deepspeech.frontend.utility import read_manifest
from deepspeech.utils.utility import add_arguments, print_arguments
from deepspeech.models.deepspeech2 import DeepSpeech2Model
from deepspeech.io.dataset import ManifestDataset
def start_server(config, args):
"""Start the ASR server"""
dataset = ManifestDataset(
config.data.test_manifest,
config.data.vocab_filepath,
config.data.mean_std_filepath,
augmentation_config="{}",
max_duration=config.data.max_duration,
min_duration=config.data.min_duration,
stride_ms=config.data.stride_ms,
window_ms=config.data.window_ms,
n_fft=config.data.n_fft,
max_freq=config.data.max_freq,
target_sample_rate=config.data.target_sample_rate,
specgram_type=config.data.specgram_type,
use_dB_normalization=config.data.use_dB_normalization,
target_dB=config.data.target_dB,
random_seed=config.data.random_seed,
keep_transcription_text=True)
model = DeepSpeech2Model.from_pretrained(dataset, config,
args.checkpoint_path)
model.eval()
# prepare ASR inference handler
def file_to_transcript(filename):
feature = dataset.process_utterance(filename, "")
audio = np.array([feature[0]]).astype('float32') #[1, D, T]
audio_len = feature[0].shape[1]
audio_len = np.array([audio_len]).astype('int64') # [1]
result_transcript = model.decode(
paddle.to_tensor(audio),
paddle.to_tensor(audio_len),
vocab_list=dataset.vocab_list,
decoding_method=config.decoding.decoding_method,
lang_model_path=config.decoding.lang_model_path,
beam_alpha=config.decoding.alpha,
beam_beta=config.decoding.beta,
beam_size=config.decoding.beam_size,
cutoff_prob=config.decoding.cutoff_prob,
cutoff_top_n=config.decoding.cutoff_top_n,
num_processes=config.decoding.num_proc_bsearch)
return result_transcript[0]
# warming up with utterrances sampled from Librispeech
print('-----------------------------------------------------------')
print('Warming up ...')
warm_up_test(
audio_process_handler=file_to_transcript,
manifest_path=args.warmup_manifest,
num_test_cases=3)
print('-----------------------------------------------------------')
# start the server
server = AsrTCPServer(
server_address=(args.host_ip, args.host_port),
RequestHandlerClass=AsrRequestHandler,
speech_save_dir=args.speech_save_dir,
audio_process_handler=file_to_transcript)
print("ASR Server Started.")
server.serve_forever()
def main(config, args):
start_server(config, args)
if __name__ == "__main__":
parser = default_argument_parser()
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('host_ip', str,
'localhost',
"Server's IP address.")
add_arg('host_port', int, 8086, "Server's IP port.")
add_arg('speech_save_dir', str,
'demo_cache',
"Directory to save demo audios.")
add_arg('warmup_manifest', str, None, "Filepath of manifest to warm up.")
args = parser.parse_args()
print_arguments(args)
# https://yaml.org/type/float.html
config = get_cfg_defaults()
if args.config:
config.merge_from_file(args.config)
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
print(config)
args.warmup_manifest = config.data.test_manifest
print_arguments(args)
if args.dump_config:
with open(args.dump_config, 'w') as f:
print(config, file=f)
main(config, args)

@ -0,0 +1,58 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Export for DeepSpeech2 model."""
import io
import logging
import argparse
import functools
from paddle import distributed as dist
from deepspeech.training.cli import default_argument_parser
from deepspeech.utils.utility import print_arguments
from deepspeech.utils.error_rate import char_errors, word_errors
from deepspeech.exps.deepspeech2.config import get_cfg_defaults
from deepspeech.exps.deepspeech2.model import DeepSpeech2Tester as Tester
def main_sp(config, args):
exp = Tester(config, args)
exp.setup()
exp.run_export()
def main(config, args):
main_sp(config, args)
if __name__ == "__main__":
parser = default_argument_parser()
args = parser.parse_args()
print_arguments(args)
# https://yaml.org/type/float.html
config = get_cfg_defaults()
if args.config:
config.merge_from_file(args.config)
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
print(config)
if args.dump_config:
with open(args.dump_config, 'w') as f:
print(config, file=f)
main(config, args)

@ -0,0 +1,59 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inferer for DeepSpeech2 model."""
import io
import logging
import argparse
import functools
from paddle import distributed as dist
from deepspeech.training.cli import default_argument_parser
from deepspeech.utils.utility import print_arguments
from deepspeech.utils.error_rate import char_errors, word_errors
# TODO(hui zhang): dynamic load
from deepspeech.exps.deepspeech2.config import get_cfg_defaults
from deepspeech.exps.deepspeech2.model import DeepSpeech2Tester as Tester
def main_sp(config, args):
exp = Tester(config, args)
exp.setup()
exp.run_test()
def main(config, args):
main_sp(config, args)
if __name__ == "__main__":
parser = default_argument_parser()
args = parser.parse_args()
print_arguments(args)
# https://yaml.org/type/float.html
config = get_cfg_defaults()
if args.config:
config.merge_from_file(args.config)
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
print(config)
if args.dump_config:
with open(args.dump_config, 'w') as f:
print(config, file=f)
main(config, args)

@ -0,0 +1,58 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluation for DeepSpeech2 model."""
import io
import logging
import argparse
import functools
from paddle import distributed as dist
from deepspeech.training.cli import default_argument_parser
from deepspeech.utils.utility import print_arguments
from deepspeech.utils.error_rate import char_errors, word_errors
from deepspeech.exps.deepspeech2.config import get_cfg_defaults
from deepspeech.exps.deepspeech2.model import DeepSpeech2Tester as Tester
def main_sp(config, args):
exp = Tester(config, args)
exp.setup()
exp.run_test()
def main(config, args):
main_sp(config, args)
if __name__ == "__main__":
parser = default_argument_parser()
args = parser.parse_args()
print_arguments(args)
# https://yaml.org/type/float.html
config = get_cfg_defaults()
if args.config:
config.merge_from_file(args.config)
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
print(config)
if args.dump_config:
with open(args.dump_config, 'w') as f:
print(config, file=f)
main(config, args)

@ -0,0 +1,60 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Trainer for DeepSpeech2 model."""
import io
import logging
import argparse
import functools
from paddle import distributed as dist
from deepspeech.utils.utility import print_arguments
from deepspeech.training.cli import default_argument_parser
from deepspeech.exps.deepspeech2.config import get_cfg_defaults
from deepspeech.exps.deepspeech2.model import DeepSpeech2Trainer as Trainer
def main_sp(config, args):
exp = Trainer(config, args)
exp.setup()
exp.run()
def main(config, args):
if args.device == "gpu" and args.nprocs > 1:
dist.spawn(main_sp, args=(config, args), nprocs=args.nprocs)
else:
main_sp(config, args)
if __name__ == "__main__":
parser = default_argument_parser()
args = parser.parse_args()
print_arguments(args)
# https://yaml.org/type/float.html
config = get_cfg_defaults()
if args.config:
config.merge_from_file(args.config)
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
print(config)
if args.dump_config:
with open(args.dump_config, 'w') as f:
print(config, file=f)
main(config, args)

@ -0,0 +1,210 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Beam search parameters tuning for DeepSpeech2 model."""
import sys
import os
import numpy as np
import argparse
import functools
import gzip
import logging
from paddle.io import DataLoader
from deepspeech.utils import error_rate
from deepspeech.utils.utility import add_arguments, print_arguments
from deepspeech.models.deepspeech2 import DeepSpeech2Model
from deepspeech.io.collator import SpeechCollator
from deepspeech.io.dataset import ManifestDataset
from deepspeech.training.cli import default_argument_parser
from deepspeech.exps.deepspeech2.config import get_cfg_defaults
def tune(config, args):
"""Tune parameters alpha and beta incrementally."""
if not args.num_alphas >= 0:
raise ValueError("num_alphas must be non-negative!")
if not args.num_betas >= 0:
raise ValueError("num_betas must be non-negative!")
dev_dataset = ManifestDataset(
config.data.dev_manifest,
config.data.vocab_filepath,
config.data.mean_std_filepath,
augmentation_config="{}",
max_duration=config.data.max_duration,
min_duration=config.data.min_duration,
stride_ms=config.data.stride_ms,
window_ms=config.data.window_ms,
n_fft=config.data.n_fft,
max_freq=config.data.max_freq,
target_sample_rate=config.data.target_sample_rate,
specgram_type=config.data.specgram_type,
use_dB_normalization=config.data.use_dB_normalization,
target_dB=config.data.target_dB,
random_seed=config.data.random_seed,
keep_transcription_text=True)
valid_loader = DataLoader(
dev_dataset,
batch_size=config.data.batch_size,
shuffle=False,
drop_last=False,
collate_fn=SpeechCollator(is_training=False))
model = DeepSpeech2Model.from_pretrained(dev_dataset, config,
args.checkpoint_path)
model.eval()
# decoders only accept string encoded in utf-8
vocab_list = valid_loader.dataset.vocab_list
errors_func = error_rate.char_errors if config.decoding.error_rate_type == 'cer' else error_rate.word_errors
# create grid for search
cand_alphas = np.linspace(args.alpha_from, args.alpha_to, args.num_alphas)
cand_betas = np.linspace(args.beta_from, args.beta_to, args.num_betas)
params_grid = [(alpha, beta) for alpha in cand_alphas
for beta in cand_betas]
err_sum = [0.0 for i in range(len(params_grid))]
err_ave = [0.0 for i in range(len(params_grid))]
num_ins, len_refs, cur_batch = 0, 0, 0
# initialize external scorer
model.decoder.init_decode(args.alpha_from, args.beta_from,
config.decoding.lang_model_path, vocab_list,
config.decoding.decoding_method)
## incremental tuning parameters over multiple batches
print("start tuning ...")
for infer_data in valid_loader():
if (args.num_batches >= 0) and (cur_batch >= args.num_batches):
break
def ordid2token(texts, texts_len):
""" ord() id to chr() chr """
trans = []
for text, n in zip(texts, texts_len):
n = n.numpy().item()
ids = text[:n]
trans.append(''.join([chr(i) for i in ids]))
return trans
audio, text, audio_len, text_len = infer_data
target_transcripts = ordid2token(text, text_len)
num_ins += audio.shape[0]
# model infer
eouts, eouts_len = model.encoder(audio, audio_len)
probs = model.decoder.probs(eouts)
# grid search
for index, (alpha, beta) in enumerate(params_grid):
print(f"tuneing: alpha={alpha} beta={beta}")
result_transcripts = model.decoder.decode_probs(
probs.numpy(), eouts_len, vocab_list,
config.decoding.decoding_method,
config.decoding.lang_model_path, alpha, beta,
config.decoding.beam_size, config.decoding.cutoff_prob,
config.decoding.cutoff_top_n, config.decoding.num_proc_bsearch)
for target, result in zip(target_transcripts, result_transcripts):
errors, len_ref = errors_func(target, result)
err_sum[index] += errors
# accumulate the length of references of every batchπ
# in the first iteration
if args.alpha_from == alpha and args.beta_from == beta:
len_refs += len_ref
err_ave[index] = err_sum[index] / len_refs
if index % 2 == 0:
sys.stdout.write('.')
sys.stdout.flush()
print(f"tuneing: one grid done!")
# output on-line tuning result at the end of current batch
err_ave_min = min(err_ave)
min_index = err_ave.index(err_ave_min)
print("\nBatch %d [%d/?], current opt (alpha, beta) = (%s, %s), "
" min [%s] = %f" %
(cur_batch, num_ins, "%.3f" % params_grid[min_index][0],
"%.3f" % params_grid[min_index][1],
config.decoding.error_rate_type, err_ave_min))
cur_batch += 1
# output WER/CER at every (alpha, beta)
print("\nFinal %s:\n" % config.decoding.error_rate_type)
for index in range(len(params_grid)):
print("(alpha, beta) = (%s, %s), [%s] = %f" %
("%.3f" % params_grid[index][0], "%.3f" % params_grid[index][1],
config.decoding.error_rate_type, err_ave[index]))
err_ave_min = min(err_ave)
min_index = err_ave.index(err_ave_min)
print("\nFinish tuning on %d batches, final opt (alpha, beta) = (%s, %s)" %
(cur_batch, "%.3f" % params_grid[min_index][0],
"%.3f" % params_grid[min_index][1]))
print("finish tuning")
def main(config, args):
tune(config, args)
if __name__ == "__main__":
parser = default_argument_parser()
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg('num_batches', int, -1, "# of batches tuning on. "
"Default -1, on whole dev set.")
add_arg('num_alphas', int, 45, "# of alpha candidates for tuning.")
add_arg('num_betas', int, 8, "# of beta candidates for tuning.")
add_arg('alpha_from', float, 1.0, "Where alpha starts tuning from.")
add_arg('alpha_to', float, 3.2, "Where alpha ends tuning with.")
add_arg('beta_from', float, 0.1, "Where beta starts tuning from.")
add_arg('beta_to', float, 0.45, "Where beta ends tuning with.")
add_arg('batch_size', int, 256, "# of samples per batch.")
add_arg('beam_size', int, 500, "Beam search width.")
add_arg('num_proc_bsearch', int, 8, "# of CPUs for beam search.")
add_arg('cutoff_prob', float, 1.0, "Cutoff probability for pruning.")
add_arg('cutoff_top_n', int, 40, "Cutoff number for pruning.")
args = parser.parse_args()
print_arguments(args)
# https://yaml.org/type/float.html
config = get_cfg_defaults()
if args.config:
config.merge_from_file(args.config)
if args.opts:
config.merge_from_list(args.opts)
config.data.batch_size = args.batch_size
config.decoding.beam_size = args.beam_size
config.decoding.num_proc_bsearch = args.num_proc_bsearch
config.decoding.cutoff_prob = args.cutoff_prob
config.decoding.cutoff_top_n = args.cutoff_top_n
config.freeze()
print(config)
if args.dump_config:
with open(args.dump_config, 'w') as f:
print(config, file=f)
main(config, args)

@ -0,0 +1,84 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from yacs.config import CfgNode as CN
from deepspeech.models.deepspeech2 import DeepSpeech2Model
_C = CN()
_C.data = CN(
dict(
train_manifest="",
dev_manifest="",
test_manifest="",
vocab_filepath="",
mean_std_filepath="",
augmentation_config="",
max_duration=float('inf'),
min_duration=0.0,
stride_ms=10.0, # ms
window_ms=20.0, # ms
n_fft=None, # fft points
max_freq=None, # None for samplerate/2
specgram_type='linear', # 'linear', 'mfcc'
target_sample_rate=16000, # sample rate
use_dB_normalization=True,
target_dB=-20,
random_seed=0,
keep_transcription_text=False,
batch_size=32, # batch size
num_workers=0, # data loader workers
sortagrad=False, # sorted in first epoch when True
shuffle_method="batch_shuffle", # 'batch_shuffle', 'instance_shuffle'
))
_C.model = CN(
dict(
num_conv_layers=2, #Number of stacking convolution layers.
num_rnn_layers=3, #Number of stacking RNN layers.
rnn_layer_size=1024, #RNN layer size (number of RNN cells).
use_gru=True, #Use gru if set True. Use simple rnn if set False.
share_rnn_weights=True #Whether to share input-hidden weights between forward and backward directional RNNs.Notice that for GRU, weight sharing is not supported.
))
DeepSpeech2Model.params(_C.model)
_C.training = CN(
dict(
lr=5e-4, # learning rate
lr_decay=1.0, # learning rate decay
weight_decay=1e-6, # the coeff of weight decay
global_grad_clip=5.0, # the global norm clip
n_epoch=50, # train epochs
))
_C.decoding = CN(
dict(
alpha=2.5, # Coef of LM for beam search.
beta=0.3, # Coef of WC for beam search.
cutoff_prob=1.0, # Cutoff probability for pruning.
cutoff_top_n=40, # Cutoff number for pruning.
lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm', # Filepath for language model.
decoding_method='ctc_beam_search', # Decoding method. Options: ctc_beam_search, ctc_greedy
error_rate_type='wer', # Error rate type for evaluation. Options `wer`, 'cer'
num_proc_bsearch=8, # # of CPUs for beam search.
beam_size=500, # Beam search width.
batch_size=128, # decoding batch size
))
def get_cfg_defaults():
"""Get a yacs CfgNode object with default values for my_project."""
# Return a clone so that the defaults will not be altered
# This is for the "local variable" use pattern
return _C.clone()

@ -0,0 +1,424 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains DeepSpeech2 model."""
import io
import sys
import os
import time
import logging
import numpy as np
from collections import defaultdict
from functools import partial
from pathlib import Path
import paddle
from paddle import distributed as dist
from paddle.io import DataLoader
from deepspeech.training import Trainer
from deepspeech.training.gradclip import MyClipGradByGlobalNorm
from deepspeech.utils import mp_tools
from deepspeech.utils import layer_tools
from deepspeech.utils import error_rate
from deepspeech.io.collator import SpeechCollator
from deepspeech.io.sampler import SortagradDistributedBatchSampler
from deepspeech.io.sampler import SortagradBatchSampler
from deepspeech.io.dataset import ManifestDataset
from deepspeech.modules.loss import CTCLoss
from deepspeech.models.deepspeech2 import DeepSpeech2Model
from deepspeech.models.deepspeech2 import DeepSpeech2InferModel
logger = logging.getLogger(__name__)
class DeepSpeech2Trainer(Trainer):
def __init__(self, config, args):
super().__init__(config, args)
def train_batch(self, batch_data):
start = time.time()
self.model.train()
loss = self.model(*batch_data)
loss.backward()
layer_tools.print_grads(self.model, print_func=None)
self.optimizer.step()
self.optimizer.clear_grad()
iteration_time = time.time() - start
losses_np = {
'train_loss': float(loss),
'train_loss_div_batchsize':
float(loss) / self.config.data.batch_size
}
msg = "Train: Rank: {}, ".format(dist.get_rank())
msg += "epoch: {}, ".format(self.epoch)
msg += "step: {}, ".format(self.iteration)
msg += "time: {:>.3f}s, ".format(iteration_time)
msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in losses_np.items())
self.logger.info(msg)
if dist.get_rank() == 0 and self.visualizer:
for k, v in losses_np.items():
self.visualizer.add_scalar("train/{}".format(k), v,
self.iteration)
@mp_tools.rank_zero_only
@paddle.no_grad()
def valid(self):
self.logger.info(
f"Valid Total Examples: {len(self.valid_loader.dataset)}")
self.model.eval()
valid_losses = defaultdict(list)
for i, batch in enumerate(self.valid_loader):
loss = self.model(*batch)
valid_losses['val_loss'].append(float(loss))
valid_losses['val_loss_div_batchsize'].append(
float(loss) / self.config.data.batch_size)
# write visual log
valid_losses = {k: np.mean(v) for k, v in valid_losses.items()}
# logging
msg = f"Valid: Rank: {dist.get_rank()}, "
msg += "epoch: {}, ".format(self.epoch)
msg += "step: {}, ".format(self.iteration)
msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in valid_losses.items())
self.logger.info(msg)
if self.visualizer:
for k, v in valid_losses.items():
self.visualizer.add_scalar("valid/{}".format(k), v,
self.iteration)
def setup_model(self):
config = self.config
model = DeepSpeech2Model(
feat_size=self.train_loader.dataset.feature_size,
dict_size=self.train_loader.dataset.vocab_size,
num_conv_layers=config.model.num_conv_layers,
num_rnn_layers=config.model.num_rnn_layers,
rnn_size=config.model.rnn_layer_size,
use_gru=config.model.use_gru,
share_rnn_weights=config.model.share_rnn_weights)
if self.parallel:
model = paddle.DataParallel(model)
layer_tools.print_params(model, self.logger.info)
grad_clip = MyClipGradByGlobalNorm(config.training.global_grad_clip)
lr_scheduler = paddle.optimizer.lr.ExponentialDecay(
learning_rate=config.training.lr,
gamma=config.training.lr_decay,
verbose=True)
optimizer = paddle.optimizer.Adam(
learning_rate=lr_scheduler,
parameters=model.parameters(),
weight_decay=paddle.regularizer.L2Decay(
config.training.weight_decay),
grad_clip=grad_clip)
self.model = model
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
self.logger.info("Setup model/optimizer/lr_scheduler!")
def setup_dataloader(self):
config = self.config
train_dataset = ManifestDataset(
config.data.train_manifest,
config.data.vocab_filepath,
config.data.mean_std_filepath,
augmentation_config=io.open(
config.data.augmentation_config, mode='r',
encoding='utf8').read(),
max_duration=config.data.max_duration,
min_duration=config.data.min_duration,
stride_ms=config.data.stride_ms,
window_ms=config.data.window_ms,
n_fft=config.data.n_fft,
max_freq=config.data.max_freq,
target_sample_rate=config.data.target_sample_rate,
specgram_type=config.data.specgram_type,
use_dB_normalization=config.data.use_dB_normalization,
target_dB=config.data.target_dB,
random_seed=config.data.random_seed,
keep_transcription_text=False)
dev_dataset = ManifestDataset(
config.data.dev_manifest,
config.data.vocab_filepath,
config.data.mean_std_filepath,
augmentation_config="{}",
max_duration=config.data.max_duration,
min_duration=config.data.min_duration,
stride_ms=config.data.stride_ms,
window_ms=config.data.window_ms,
n_fft=config.data.n_fft,
max_freq=config.data.max_freq,
target_sample_rate=config.data.target_sample_rate,
specgram_type=config.data.specgram_type,
use_dB_normalization=config.data.use_dB_normalization,
target_dB=config.data.target_dB,
random_seed=config.data.random_seed,
keep_transcription_text=False)
if self.parallel:
batch_sampler = SortagradDistributedBatchSampler(
train_dataset,
batch_size=config.data.batch_size,
num_replicas=None,
rank=None,
shuffle=True,
drop_last=True,
sortagrad=config.data.sortagrad,
shuffle_method=config.data.shuffle_method)
else:
batch_sampler = SortagradBatchSampler(
train_dataset,
shuffle=True,
batch_size=config.data.batch_size,
drop_last=True,
sortagrad=config.data.sortagrad,
shuffle_method=config.data.shuffle_method)
collate_fn = SpeechCollator(is_training=True)
self.train_loader = DataLoader(
train_dataset,
batch_sampler=batch_sampler,
collate_fn=collate_fn,
num_workers=config.data.num_workers, )
self.valid_loader = DataLoader(
dev_dataset,
batch_size=config.data.batch_size,
shuffle=False,
drop_last=False,
collate_fn=collate_fn)
self.logger.info("Setup train/valid Dataloader!")
class DeepSpeech2Tester(DeepSpeech2Trainer):
def __init__(self, config, args):
super().__init__(config, args)
def ordid2token(self, texts, texts_len):
""" ord() id to chr() chr """
trans = []
for text, n in zip(texts, texts_len):
n = n.numpy().item()
ids = text[:n]
trans.append(''.join([chr(i) for i in ids]))
return trans
def compute_metrics(self, audio, texts, audio_len, texts_len):
cfg = self.config.decoding
errors_sum, len_refs, num_ins = 0.0, 0, 0
errors_func = error_rate.char_errors if cfg.error_rate_type == 'cer' else error_rate.word_errors
error_rate_func = error_rate.cer if cfg.error_rate_type == 'cer' else error_rate.wer
vocab_list = self.test_loader.dataset.vocab_list
target_transcripts = self.ordid2token(texts, texts_len)
result_transcripts = self.model.decode(
audio,
audio_len,
vocab_list,
decoding_method=cfg.decoding_method,
lang_model_path=cfg.lang_model_path,
beam_alpha=cfg.alpha,
beam_beta=cfg.beta,
beam_size=cfg.beam_size,
cutoff_prob=cfg.cutoff_prob,
cutoff_top_n=cfg.cutoff_top_n,
num_processes=cfg.num_proc_bsearch)
for target, result in zip(target_transcripts, result_transcripts):
errors, len_ref = errors_func(target, result)
errors_sum += errors
len_refs += len_ref
num_ins += 1
self.logger.info(
"\nTarget Transcription: %s\nOutput Transcription: %s" %
(target, result))
self.logger.info("Current error rate [%s] = %f" % (
cfg.error_rate_type, error_rate_func(target, result)))
return dict(
errors_sum=errors_sum,
len_refs=len_refs,
num_ins=num_ins,
error_rate=errors_sum / len_refs,
error_rate_type=cfg.error_rate_type)
@mp_tools.rank_zero_only
@paddle.no_grad()
def test(self):
self.logger.info(
f"Test Total Examples: {len(self.test_loader.dataset)}")
self.model.eval()
cfg = self.config
error_rate_type = None
errors_sum, len_refs, num_ins = 0.0, 0, 0
for i, batch in enumerate(self.test_loader):
metrics = self.compute_metrics(*batch)
errors_sum += metrics['errors_sum']
len_refs += metrics['len_refs']
num_ins += metrics['num_ins']
error_rate_type = metrics['error_rate_type']
self.logger.info("Error rate [%s] (%d/?) = %f" %
(error_rate_type, num_ins, errors_sum / len_refs))
# logging
msg = "Test: "
msg += "epoch: {}, ".format(self.epoch)
msg += "step: {}, ".format(self.iteration)
msg += ", Final error rate [%s] (%d/%d) = %f" % (
error_rate_type, num_ins, num_ins, errors_sum / len_refs)
self.logger.info(msg)
def run_test(self):
self.resume_or_load()
try:
self.test()
except KeyboardInterrupt:
exit(-1)
def export(self):
self.infer_model.eval()
feat_dim = self.test_loader.dataset.feature_size
paddle.jit.save(
self.infer_model,
self.args.export_path,
input_spec=[
paddle.static.InputSpec(
shape=[None, feat_dim, None],
dtype='float32'), # audio, [B,D,T]
paddle.static.InputSpec(shape=[None],
dtype='int64'), # audio_length, [B]
])
def run_export(self):
try:
self.export()
except KeyboardInterrupt:
exit(-1)
def setup(self):
"""Setup the experiment.
"""
paddle.set_device(self.args.device)
self.setup_output_dir()
self.setup_checkpointer()
self.setup_logger()
self.setup_dataloader()
self.setup_model()
self.iteration = 0
self.epoch = 0
def setup_model(self):
config = self.config
model = DeepSpeech2Model(
feat_size=self.test_loader.dataset.feature_size,
dict_size=self.test_loader.dataset.vocab_size,
num_conv_layers=config.model.num_conv_layers,
num_rnn_layers=config.model.num_rnn_layers,
rnn_size=config.model.rnn_layer_size,
use_gru=config.model.use_gru,
share_rnn_weights=config.model.share_rnn_weights)
infer_model = DeepSpeech2InferModel.from_pretrained(
self.test_loader.dataset, config, self.args.checkpoint_path)
self.model = model
self.infer_model = infer_model
self.logger.info("Setup model!")
def setup_dataloader(self):
config = self.config
# return raw text
test_dataset = ManifestDataset(
config.data.test_manifest,
config.data.vocab_filepath,
config.data.mean_std_filepath,
augmentation_config="{}",
max_duration=config.data.max_duration,
min_duration=config.data.min_duration,
stride_ms=config.data.stride_ms,
window_ms=config.data.window_ms,
n_fft=config.data.n_fft,
max_freq=config.data.max_freq,
target_sample_rate=config.data.target_sample_rate,
specgram_type=config.data.specgram_type,
use_dB_normalization=config.data.use_dB_normalization,
target_dB=config.data.target_dB,
random_seed=config.data.random_seed,
keep_transcription_text=True)
# return text ord id
self.test_loader = DataLoader(
test_dataset,
batch_size=config.decoding.batch_size,
shuffle=False,
drop_last=False,
collate_fn=SpeechCollator(is_training=False))
self.logger.info("Setup test Dataloader!")
def setup_output_dir(self):
"""Create a directory used for output.
"""
# output dir
if self.args.output:
output_dir = Path(self.args.output).expanduser()
output_dir.mkdir(parents=True, exist_ok=True)
else:
output_dir = Path(
self.args.checkpoint_path).expanduser().parent.parent
output_dir.mkdir(parents=True, exist_ok=True)
self.output_dir = output_dir
def setup_logger(self):
"""Initialize a text logger to log the experiment.
Each process has its own text logger. The logging message is write to
the standard output and a text file named ``worker_n.log`` in the
output directory, where ``n`` means the rank of the process.
"""
format = '[%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s'
formatter = logging.Formatter(fmt=format, datefmt='%Y/%m/%d %H:%M:%S')
logger.setLevel("INFO")
# global logger
stdout = True
save_path = ""
logging.basicConfig(
level=logging.DEBUG if stdout else logging.INFO,
format=format,
datefmt='%Y/%m/%d %H:%M:%S',
filename=save_path if not stdout else None)
self.logger = logger

@ -15,17 +15,17 @@
import json
import random
from data_utils.augmentor.volume_perturb import VolumePerturbAugmentor
from data_utils.augmentor.shift_perturb import ShiftPerturbAugmentor
from data_utils.augmentor.speed_perturb import SpeedPerturbAugmentor
from data_utils.augmentor.noise_perturb import NoisePerturbAugmentor
from data_utils.augmentor.impulse_response import ImpulseResponseAugmentor
from data_utils.augmentor.resample import ResampleAugmentor
from data_utils.augmentor.online_bayesian_normalization import \
from deepspeech.frontend.augmentor.volume_perturb import VolumePerturbAugmentor
from deepspeech.frontend.augmentor.shift_perturb import ShiftPerturbAugmentor
from deepspeech.frontend.augmentor.speed_perturb import SpeedPerturbAugmentor
from deepspeech.frontend.augmentor.noise_perturb import NoisePerturbAugmentor
from deepspeech.frontend.augmentor.impulse_response import ImpulseResponseAugmentor
from deepspeech.frontend.augmentor.resample import ResampleAugmentor
from deepspeech.frontend.augmentor.online_bayesian_normalization import \
OnlineBayesianNormalizationAugmentor
class AugmentationPipeline(object):
class AugmentationPipeline():
"""Build a pre-processing pipeline with various augmentation models.Such a
data augmentation pipeline is oftern leveraged to augment the training
samples to make the model invariant to certain types of perturbations in the

@ -16,7 +16,7 @@
from abc import ABCMeta, abstractmethod
class AugmentorBase(object):
class AugmentorBase():
"""Abstract base class for augmentation model (augmentor) class.
All augmentor classes should inherit from this class, and implement the
following abstract methods.

@ -13,9 +13,9 @@
# limitations under the License.
"""Contains the impulse response augmentation model."""
from data_utils.augmentor.base import AugmentorBase
from data_utils.utility import read_manifest
from data_utils.audio import AudioSegment
from deepspeech.frontend.augmentor.base import AugmentorBase
from deepspeech.frontend.utility import read_manifest
from deepspeech.frontend.audio import AudioSegment
class ImpulseResponseAugmentor(AugmentorBase):

@ -13,9 +13,9 @@
# limitations under the License.
"""Contains the noise perturb augmentation model."""
from data_utils.augmentor.base import AugmentorBase
from data_utils.utility import read_manifest
from data_utils.audio import AudioSegment
from deepspeech.frontend.augmentor.base import AugmentorBase
from deepspeech.frontend.utility import read_manifest
from deepspeech.frontend.audio import AudioSegment
class NoisePerturbAugmentor(AugmentorBase):

@ -13,7 +13,7 @@
# limitations under the License.
"""Contain the online bayesian normalization augmentation model."""
from data_utils.augmentor.base import AugmentorBase
from deepspeech.frontend.augmentor.base import AugmentorBase
class OnlineBayesianNormalizationAugmentor(AugmentorBase):

@ -13,7 +13,7 @@
# limitations under the License.
"""Contain the resample augmentation model."""
from data_utils.augmentor.base import AugmentorBase
from deepspeech.frontend.augmentor.base import AugmentorBase
class ResampleAugmentor(AugmentorBase):

@ -13,7 +13,7 @@
# limitations under the License.
"""Contains the volume perturb augmentation model."""
from data_utils.augmentor.base import AugmentorBase
from deepspeech.frontend.augmentor.base import AugmentorBase
class ShiftPerturbAugmentor(AugmentorBase):

@ -13,7 +13,7 @@
# limitations under the License.
"""Contain the speech perturbation augmentation model."""
from data_utils.augmentor.base import AugmentorBase
from deepspeech.frontend.augmentor.base import AugmentorBase
class SpeedPerturbAugmentor(AugmentorBase):

@ -13,7 +13,7 @@
# limitations under the License.
"""Contains the volume perturb augmentation model."""
from data_utils.augmentor.base import AugmentorBase
from deepspeech.frontend.augmentor.base import AugmentorBase
class VolumePerturbAugmentor(AugmentorBase):

@ -11,19 +11,3 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Set up paths for DS2"""
import os.path
import sys
def add_path(path):
if path not in sys.path:
sys.path.insert(0, path)
this_dir = os.path.dirname(__file__)
# Add project path to PYTHONPATH
proj_path = os.path.join(this_dir, '..')
add_path(proj_path)

@ -14,8 +14,8 @@
"""Contains the audio featurizer class."""
import numpy as np
from data_utils.utility import read_manifest
from data_utils.audio import AudioSegment
from deepspeech.frontend.utility import read_manifest
from deepspeech.frontend.audio import AudioSegment
from python_speech_features import mfcc
from python_speech_features import delta
@ -52,6 +52,7 @@ class AudioFeaturizer(object):
specgram_type='linear',
stride_ms=10.0,
window_ms=20.0,
n_fft=None,
max_freq=None,
target_sample_rate=16000,
use_dB_normalization=True,
@ -63,6 +64,7 @@ class AudioFeaturizer(object):
self._target_sample_rate = target_sample_rate
self._use_dB_normalization = use_dB_normalization
self._target_dB = target_dB
self._fft_point = n_fft
def featurize(self,
audio_segment,
@ -98,6 +100,22 @@ class AudioFeaturizer(object):
return self._compute_specgram(audio_segment.samples,
audio_segment.sample_rate)
@property
def feature_size(self):
"""audio feature size"""
feat_dim = 0
if self._specgram_type == 'linear':
fft_point = self._window_ms if self._fft_point is None else self._fft_point
feat_dim = int(fft_point * (self._target_sample_rate / 1000) / 2 +
1)
elif self._specgram_type == 'mfcc':
# mfcc,delta, delta-delta
feat_dim = int(13 * 3)
else:
raise ValueError("Unknown specgram_type %s. "
"Supported values: linear." % self._specgram_type)
return feat_dim
def _compute_specgram(self, samples, sample_rate):
"""Extract various audio features."""
if self._specgram_type == 'linear':
@ -150,7 +168,8 @@ class AudioFeaturizer(object):
windows[:, 1] == samples[stride_size:(stride_size + window_size)])
# window weighting, squared Fast Fourier Transform (fft), scaling
weighting = np.hanning(window_size)[:, None]
fft = np.fft.rfft(windows * weighting, axis=0)
# https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft.html
fft = np.fft.rfft(windows * weighting, n=None, axis=0)
fft = np.absolute(fft)
fft = fft**2
scale = np.sum(weighting**2) * sample_rate

@ -13,8 +13,8 @@
# limitations under the License.
"""Contains the speech featurizer class."""
from data_utils.featurizer.audio_featurizer import AudioFeaturizer
from data_utils.featurizer.text_featurizer import TextFeaturizer
from deepspeech.frontend.featurizer.audio_featurizer import AudioFeaturizer
from deepspeech.frontend.featurizer.text_featurizer import TextFeaturizer
class SpeechFeaturizer(object):
@ -56,6 +56,7 @@ class SpeechFeaturizer(object):
specgram_type='linear',
stride_ms=10.0,
window_ms=20.0,
n_fft=None,
max_freq=None,
target_sample_rate=16000,
use_dB_normalization=True,
@ -64,6 +65,7 @@ class SpeechFeaturizer(object):
specgram_type=specgram_type,
stride_ms=stride_ms,
window_ms=window_ms,
n_fft=n_fft,
max_freq=max_freq,
target_sample_rate=target_sample_rate,
use_dB_normalization=use_dB_normalization,
@ -106,3 +108,12 @@ class SpeechFeaturizer(object):
:rtype: list
"""
return self._text_featurizer.vocab_list
@property
def feature_size(self):
"""Return the audio feature size.
:return: audio feature size.
:rtype: int
"""
return self._audio_featurizer.feature_size

@ -30,6 +30,7 @@ class TextFeaturizer(object):
"""
def __init__(self, vocab_filepath):
self.unk = '<unk>'
self._vocab_dict, self._vocab_list = self._load_vocabulary_from_file(
vocab_filepath)
@ -43,7 +44,11 @@ class TextFeaturizer(object):
:rtype: list
"""
tokens = self._char_tokenize(text)
return [self._vocab_dict[token] for token in tokens]
ids = []
for token in tokens:
token = token if token in self._vocab_dict else self.unk
ids.append(self._vocab_dict[token])
return ids
@property
def vocab_size(self):

@ -15,8 +15,8 @@
import numpy as np
import random
from data_utils.utility import read_manifest
from data_utils.audio import AudioSegment
from deepspeech.frontend.utility import read_manifest
from deepspeech.frontend.audio import AudioSegment
class FeatureNormalizer(object):

@ -14,28 +14,33 @@
"""Contains the speech segment class."""
import numpy as np
from data_utils.audio import AudioSegment
from deepspeech.frontend.audio import AudioSegment
class SpeechSegment(AudioSegment):
"""Speech segment abstraction, a subclass of AudioSegment,
with an additional transcript.
:param samples: Audio samples [num_samples x num_channels].
:type samples: ndarray.float32
:param sample_rate: Audio sample rate.
:type sample_rate: int
:param transcript: Transcript text for the speech.
:type transript: str
:raises TypeError: If the sample data type is not float or int.
"""Speech Segment with Text
Args:
AudioSegment (AudioSegment): Audio Segment
"""
def __init__(self, samples, sample_rate, transcript):
"""Speech segment abstraction, a subclass of AudioSegment,
with an additional transcript.
Args:
samples (ndarray.float32): Audio samples [num_samples x num_channels].
sample_rate (int): Audio sample rate.
transcript (str): Transcript text for the speech.
"""
AudioSegment.__init__(self, samples, sample_rate)
self._transcript = transcript
def __eq__(self, other):
"""Return whether two objects are equal.
Returns:
bool: True, when equal to other
"""
if not AudioSegment.__eq__(self, other):
return False

@ -20,6 +20,7 @@ import tarfile
import time
from threading import Thread
from multiprocessing import Process, Manager, Value
from paddle.dataset.common import md5file
@ -49,51 +50,3 @@ def read_manifest(manifest_path, max_duration=float('inf'), min_duration=0.0):
json_data["duration"] >= min_duration):
manifest.append(json_data)
return manifest
def getfile_insensitive(path):
"""Get the actual file path when given insensitive filename."""
directory, filename = os.path.split(path)
directory, filename = (directory or '.'), filename.lower()
for f in os.listdir(directory):
newpath = os.path.join(directory, f)
if os.path.isfile(newpath) and f.lower() == filename:
return newpath
def download_multi(url, target_dir, extra_args):
"""Download multiple files from url to target_dir."""
if not os.path.exists(target_dir): os.makedirs(target_dir)
print("Downloading %s ..." % url)
ret_code = os.system("wget -c " + url + ' ' + extra_args + " -P " +
target_dir)
return ret_code
def download(url, md5sum, target_dir):
"""Download file from url to target_dir, and check md5sum."""
if not os.path.exists(target_dir): os.makedirs(target_dir)
filepath = os.path.join(target_dir, url.split("/")[-1])
if not (os.path.exists(filepath) and md5file(filepath) == md5sum):
print("Downloading %s ..." % url)
os.system("wget -c " + url + " -P " + target_dir)
print("\nMD5 Chesksum %s ..." % filepath)
if not md5file(filepath) == md5sum:
raise RuntimeError("MD5 checksum failed.")
else:
print("File exists, skip downloading. (%s)" % filepath)
return filepath
def unpack(filepath, target_dir, rm_tar=False):
"""Unpack the file to the target_dir."""
print("Unpacking %s ..." % filepath)
tar = tarfile.open(filepath)
tar.extractall(target_dir)
tar.close()
if rm_tar == True:
os.remove(filepath)
class XmapEndSignal():
pass

@ -0,0 +1,128 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.io import DataLoader
from deepspeech.io.collator import SpeechCollator
from deepspeech.io.sampler import SortagradDistributedBatchSampler
from deepspeech.io.sampler import SortagradBatchSampler
from deepspeech.io.dataset import ManifestDataset
def create_dataloader(manifest_path,
vocab_filepath,
mean_std_filepath,
augmentation_config='{}',
max_duration=float('inf'),
min_duration=0.0,
stride_ms=10.0,
window_ms=20.0,
max_freq=None,
specgram_type='linear',
use_dB_normalization=True,
random_seed=0,
keep_transcription_text=False,
is_training=False,
batch_size=1,
num_workers=0,
sortagrad=False,
shuffle_method=None,
dist=False):
dataset = ManifestDataset(
manifest_path,
vocab_filepath,
mean_std_filepath,
augmentation_config=augmentation_config,
max_duration=max_duration,
min_duration=min_duration,
stride_ms=stride_ms,
window_ms=window_ms,
max_freq=max_freq,
specgram_type=specgram_type,
use_dB_normalization=use_dB_normalization,
random_seed=random_seed,
keep_transcription_text=keep_transcription_text)
if dist:
batch_sampler = SortagradDistributedBatchSampler(
dataset,
batch_size,
num_replicas=None,
rank=None,
shuffle=is_training,
drop_last=is_training,
sortagrad=is_training,
shuffle_method=shuffle_method)
else:
batch_sampler = SortagradBatchSampler(
dataset,
shuffle=is_training,
batch_size=batch_size,
drop_last=is_training,
sortagrad=is_training,
shuffle_method=shuffle_method)
def padding_batch(batch, padding_to=-1, flatten=False, is_training=True):
"""
Padding audio features with zeros to make them have the same shape (or
a user-defined shape) within one bach.
If ``padding_to`` is -1, the maximun shape in the batch will be used
as the target shape for padding. Otherwise, `padding_to` will be the
target shape (only refers to the second axis).
If `flatten` is True, features will be flatten to 1darray.
"""
new_batch = []
# get target shape
max_length = max([audio.shape[1] for audio, text in batch])
if padding_to != -1:
if padding_to < max_length:
raise ValueError("If padding_to is not -1, it should be larger "
"than any instance's shape in the batch")
max_length = padding_to
max_text_length = max([len(text) for audio, text in batch])
# padding
padded_audios = []
audio_lens = []
texts, text_lens = [], []
for audio, text in batch:
padded_audio = np.zeros([audio.shape[0], max_length])
padded_audio[:, :audio.shape[1]] = audio
if flatten:
padded_audio = padded_audio.flatten()
padded_audios.append(padded_audio)
audio_lens.append(audio.shape[1])
padded_text = np.zeros([max_text_length])
if is_training:
padded_text[:len(text)] = text #ids
else:
padded_text[:len(text)] = [ord(t) for t in text] # string
texts.append(padded_text)
text_lens.append(len(text))
padded_audios = np.array(padded_audios).astype('float32')
audio_lens = np.array(audio_lens).astype('int64')
texts = np.array(texts).astype('int32')
text_lens = np.array(text_lens).astype('int64')
return padded_audios, texts, audio_lens, text_lens
loader = DataLoader(
dataset,
batch_sampler=batch_sampler,
collate_fn=partial(padding_batch, is_training=is_training),
num_workers=num_workers)
return loader

@ -0,0 +1,73 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import numpy as np
from collections import namedtuple
logger = logging.getLogger(__name__)
__all__ = [
"SpeechCollator",
]
class SpeechCollator():
def __init__(self, padding_to=-1, is_training=True):
"""
Padding audio features with zeros to make them have the same shape (or
a user-defined shape) within one bach.
If ``padding_to`` is -1, the maximun shape in the batch will be used
as the target shape for padding. Otherwise, `padding_to` will be the
target shape (only refers to the second axis).
"""
self._padding_to = padding_to
self._is_training = is_training
def __call__(self, batch):
new_batch = []
# get target shape
max_length = max([audio.shape[1] for audio, _ in batch])
if self._padding_to != -1:
if self._padding_to < max_length:
raise ValueError("If padding_to is not -1, it should be larger "
"than any instance's shape in the batch")
max_length = self._padding_to
max_text_length = max([len(text) for _, text in batch])
# padding
padded_audios = []
audio_lens = []
texts, text_lens = [], []
for audio, text in batch:
# audio
padded_audio = np.zeros([audio.shape[0], max_length])
padded_audio[:, :audio.shape[1]] = audio
padded_audios.append(padded_audio)
audio_lens.append(audio.shape[1])
# text
padded_text = np.zeros([max_text_length])
if self._is_training:
padded_text[:len(text)] = text # token ids
else:
padded_text[:len(text)] = [ord(t)
for t in text] # string, unicode ord
texts.append(padded_text)
text_lens.append(len(text))
padded_audios = np.array(padded_audios).astype('float32')
audio_lens = np.array(audio_lens).astype('int64')
texts = np.array(texts).astype('int32')
text_lens = np.array(text_lens).astype('int64')
return padded_audios, texts, audio_lens, text_lens

@ -0,0 +1,206 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import random
import tarfile
import logging
import numpy as np
from collections import namedtuple
from functools import partial
from paddle.io import Dataset
from deepspeech.frontend.utility import read_manifest
from deepspeech.frontend.augmentor.augmentation import AugmentationPipeline
from deepspeech.frontend.featurizer.speech_featurizer import SpeechFeaturizer
from deepspeech.frontend.speech import SpeechSegment
from deepspeech.frontend.normalizer import FeatureNormalizer
logger = logging.getLogger(__name__)
__all__ = [
"ManifestDataset",
]
class ManifestDataset(Dataset):
def __init__(self,
manifest_path,
vocab_filepath,
mean_std_filepath,
augmentation_config='{}',
max_duration=float('inf'),
min_duration=0.0,
stride_ms=10.0,
window_ms=20.0,
n_fft=None,
max_freq=None,
target_sample_rate=16000,
specgram_type='linear',
use_dB_normalization=True,
target_dB=-20,
random_seed=0,
keep_transcription_text=False):
"""Manifest Dataset
Args:
manifest_path (str): manifest josn file path
vocab_filepath (str): vocab file path
mean_std_filepath (str): mean and std file path, which suffix is *.npy
augmentation_config (str, optional): augmentation json str. Defaults to '{}'.
max_duration (float, optional): audio length in seconds must less than this. Defaults to float('inf').
min_duration (float, optional): audio length is seconds must greater than this. Defaults to 0.0.
stride_ms (float, optional): stride size in ms. Defaults to 10.0.
window_ms (float, optional): window size in ms. Defaults to 20.0.
n_fft (int, optional): fft points for rfft. Defaults to None.
max_freq (int, optional): max cut freq. Defaults to None.
target_sample_rate (int, optional): target sample rate which used for training. Defaults to 16000.
specgram_type (str, optional): 'linear' or 'mfcc'. Defaults to 'linear'.
use_dB_normalization (bool, optional): do dB normalization. Defaults to True.
target_dB (int, optional): target dB. Defaults to -20.
random_seed (int, optional): for random generator. Defaults to 0.
keep_transcription_text (bool, optional): True, when not in training mode, will not do tokenizer; Defaults to False.
"""
super().__init__()
self._max_duration = max_duration
self._min_duration = min_duration
self._normalizer = FeatureNormalizer(mean_std_filepath)
self._augmentation_pipeline = AugmentationPipeline(
augmentation_config=augmentation_config, random_seed=random_seed)
self._speech_featurizer = SpeechFeaturizer(
vocab_filepath=vocab_filepath,
specgram_type=specgram_type,
stride_ms=stride_ms,
window_ms=window_ms,
n_fft=n_fft,
max_freq=max_freq,
target_sample_rate=target_sample_rate,
use_dB_normalization=use_dB_normalization,
target_dB=target_dB)
self._rng = random.Random(random_seed)
self._keep_transcription_text = keep_transcription_text
# for caching tar files info
self._local_data = namedtuple('local_data', ['tar2info', 'tar2object'])
self._local_data.tar2info = {}
self._local_data.tar2object = {}
# read manifest
self._manifest = read_manifest(
manifest_path=manifest_path,
max_duration=self._max_duration,
min_duration=self._min_duration)
self._manifest.sort(key=lambda x: x["duration"])
@property
def manifest(self):
return self._manifest
@property
def vocab_size(self):
"""Return the vocabulary size.
:return: Vocabulary size.
:rtype: int
"""
return self._speech_featurizer.vocab_size
@property
def vocab_list(self):
"""Return the vocabulary in list.
:return: Vocabulary in list.
:rtype: list
"""
return self._speech_featurizer.vocab_list
@property
def feature_size(self):
return self._speech_featurizer.feature_size
def _parse_tar(self, file):
"""Parse a tar file to get a tarfile object
and a map containing tarinfoes
"""
result = {}
f = tarfile.open(file)
for tarinfo in f.getmembers():
result[tarinfo.name] = tarinfo
return f, result
def _subfile_from_tar(self, file):
"""Get subfile object from tar.
It will return a subfile object from tar file
and cached tar file info for next reading request.
"""
tarpath, filename = file.split(':', 1)[1].split('#', 1)
if 'tar2info' not in self._local_data.__dict__:
self._local_data.tar2info = {}
if 'tar2object' not in self._local_data.__dict__:
self._local_data.tar2object = {}
if tarpath not in self._local_data.tar2info:
object, infoes = self._parse_tar(tarpath)
self._local_data.tar2info[tarpath] = infoes
self._local_data.tar2object[tarpath] = object
return self._local_data.tar2object[tarpath].extractfile(
self._local_data.tar2info[tarpath][filename])
def process_utterance(self, audio_file, transcript):
"""Load, augment, featurize and normalize for speech data.
:param audio_file: Filepath or file object of audio file.
:type audio_file: str | file
:param transcript: Transcription text.
:type transcript: str
:return: Tuple of audio feature tensor and data of transcription part,
where transcription part could be token ids or text.
:rtype: tuple of (2darray, list)
"""
if isinstance(audio_file, str) and audio_file.startswith('tar:'):
speech_segment = SpeechSegment.from_file(
self._subfile_from_tar(audio_file), transcript)
else:
speech_segment = SpeechSegment.from_file(audio_file, transcript)
self._augmentation_pipeline.transform_audio(speech_segment)
specgram, transcript_part = self._speech_featurizer.featurize(
speech_segment, self._keep_transcription_text)
specgram = self._normalizer.apply(specgram)
return specgram, transcript_part
def _instance_reader_creator(self, manifest):
"""
Instance reader creator. Create a callable function to produce
instances of data.
Instance: a tuple of ndarray of audio spectrogram and a list of
token indices for transcript.
"""
def reader():
for instance in manifest:
inst = self.process_utterance(instance["audio_filepath"],
instance["text"])
yield inst
return reader
def __len__(self):
return len(self._manifest)
def __getitem__(self, idx):
instance = self._manifest[idx]
return self.process_utterance(instance["audio_filepath"],
instance["text"])

@ -0,0 +1,256 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import random
import tarfile
import logging
import numpy as np
from collections import namedtuple
from functools import partial
import paddle
from paddle.io import BatchSampler
from paddle.io import DistributedBatchSampler
from paddle import distributed as dist
logger = logging.getLogger(__name__)
__all__ = [
"SortagradDistributedBatchSampler",
"SortagradBatchSampler",
]
def _batch_shuffle(indices, batch_size, epoch, clipped=False):
"""Put similarly-sized instances into minibatches for better efficiency
and make a batch-wise shuffle.
1. Sort the audio clips by duration.
2. Generate a random number `k`, k in [0, batch_size).
3. Randomly shift `k` instances in order to create different batches
for different epochs. Create minibatches.
4. Shuffle the minibatches.
:param indices: indexes. List of int.
:type indices: list
:param batch_size: Batch size. This size is also used for generate
a random number for batch shuffle.
:type batch_size: int
:param clipped: Whether to clip the heading (small shift) and trailing
(incomplete batch) instances.
:type clipped: bool
:return: Batch shuffled mainifest.
:rtype: list
"""
rng = np.random.RandomState(epoch)
shift_len = rng.randint(0, batch_size - 1)
batch_indices = list(zip(* [iter(indices[shift_len:])] * batch_size))
rng.shuffle(batch_indices)
batch_indices = [item for batch in batch_indices for item in batch]
assert (clipped == False)
if not clipped:
res_len = len(indices) - shift_len - len(batch_indices)
# when res_len is 0, will return whole list, len(List[-0:]) = len(List[:])
if res_len != 0:
batch_indices.extend(indices[-res_len:])
batch_indices.extend(indices[0:shift_len])
assert len(indices) == len(
batch_indices
), f"_batch_shuffle: {len(indices)} : {len(batch_indices)} : {res_len} - {shift_len}"
return batch_indices
class SortagradDistributedBatchSampler(DistributedBatchSampler):
def __init__(self,
dataset,
batch_size,
num_replicas=None,
rank=None,
shuffle=False,
drop_last=False,
sortagrad=False,
shuffle_method="batch_shuffle"):
"""Sortagrad Sampler for multi gpus.
Args:
dataset (paddle.io.Dataset):
batch_size (int): batch size for one gpu
num_replicas (int, optional): world size or numbers of gpus. Defaults to None.
rank (int, optional): rank id. Defaults to None.
shuffle (bool, optional): True for do shuffle, or else. Defaults to False.
drop_last (bool, optional): whether drop last batch which is less than batch size. Defaults to False.
sortagrad (bool, optional): True, do sortgrad in first epoch, then shuffle as usual; or else. Defaults to False.
shuffle_method (str, optional): shuffle method, "instance_shuffle" or "batch_shuffle". Defaults to "batch_shuffle".
"""
super().__init__(dataset, batch_size, num_replicas, rank, shuffle,
drop_last)
self._sortagrad = sortagrad
self._shuffle_method = shuffle_method
def __iter__(self):
num_samples = len(self.dataset)
indices = np.arange(num_samples).tolist()
indices += indices[:(self.total_size - len(indices))]
assert len(indices) == self.total_size
# sort (by duration) or batch-wise shuffle the manifest
if self.shuffle:
if self.epoch == 0 and self._sortagrad:
logger.info(
f'rank: {dist.get_rank()} dataset sortagrad! epoch {self.epoch}'
)
else:
logger.info(
f'rank: {dist.get_rank()} dataset shuffle! epoch {self.epoch}'
)
if self._shuffle_method == "batch_shuffle":
# using `batch_size * nrank`, or will cause instability loss and nan or inf grad,
# since diff batch examlpe length in batches case instability loss in diff rank,
# e.g. rank0 maxlength 20, rank3 maxlength 1000
indices = _batch_shuffle(
indices,
self.batch_size * self.nranks,
self.epoch,
clipped=False)
elif self._shuffle_method == "instance_shuffle":
np.random.RandomState(self.epoch).shuffle(indices)
else:
raise ValueError("Unknown shuffle method %s." %
self._shuffle_method)
assert len(
indices
) == self.total_size, f"batch shuffle examples error: {len(indices)} : {self.total_size}"
# slice `self.batch_size` examples by rank id
def _get_indices_by_batch_size(indices):
subsampled_indices = []
last_batch_size = self.total_size % (self.batch_size * self.nranks)
assert last_batch_size % self.nranks == 0
last_local_batch_size = last_batch_size // self.nranks
for i in range(self.local_rank * self.batch_size,
len(indices) - last_batch_size,
self.batch_size * self.nranks):
subsampled_indices.extend(indices[i:i + self.batch_size])
indices = indices[len(indices) - last_batch_size:]
subsampled_indices.extend(
indices[self.local_rank * last_local_batch_size:(
self.local_rank + 1) * last_local_batch_size])
return subsampled_indices
if self.nranks > 1:
indices = _get_indices_by_batch_size(indices)
assert len(indices) == self.num_samples
_sample_iter = iter(indices)
batch_indices = []
for idx in _sample_iter:
batch_indices.append(idx)
if len(batch_indices) == self.batch_size:
logger.info(
f"rank: {dist.get_rank()} batch index: {batch_indices} ")
yield batch_indices
batch_indices = []
if not self.drop_last and len(batch_indices) > 0:
yield batch_indices
def __len__(self):
num_samples = self.num_samples
num_samples += int(not self.drop_last) * (self.batch_size - 1)
return num_samples // self.batch_size
class SortagradBatchSampler(BatchSampler):
def __init__(self,
dataset,
batch_size,
shuffle=False,
drop_last=False,
sortagrad=False,
shuffle_method="batch_shuffle"):
"""Sortagrad Sampler for one gpu.
Args:
dataset (paddle.io.Dataset):
batch_size (int): batch size for one gpu
shuffle (bool, optional): True for do shuffle, or else. Defaults to False.
drop_last (bool, optional): whether drop last batch which is less than batch size. Defaults to False.
sortagrad (bool, optional): True, do sortgrad in first epoch, then shuffle as usual; or else. Defaults to False.
shuffle_method (str, optional): shuffle method, "instance_shuffle" or "batch_shuffle". Defaults to "batch_shuffle".
"""
self.dataset = dataset
assert isinstance(batch_size, int) and batch_size > 0, \
"batch_size should be a positive integer"
self.batch_size = batch_size
assert isinstance(shuffle, bool), \
"shuffle should be a boolean value"
self.shuffle = shuffle
assert isinstance(drop_last, bool), \
"drop_last should be a boolean number"
self.drop_last = drop_last
self.epoch = 0
self.num_samples = int(math.ceil(len(self.dataset) * 1.0))
self.total_size = self.num_samples
self._sortagrad = sortagrad
self._shuffle_method = shuffle_method
def __iter__(self):
num_samples = len(self.dataset)
indices = np.arange(num_samples).tolist()
indices += indices[:(self.total_size - len(indices))]
assert len(indices) == self.total_size
# sort (by duration) or batch-wise shuffle the manifest
if self.shuffle:
if self.epoch == 0 and self._sortagrad:
logger.info(f'dataset sortagrad! epoch {self.epoch}')
else:
logger.info(f'dataset shuffle! epoch {self.epoch}')
if self._shuffle_method == "batch_shuffle":
indices = _batch_shuffle(
indices, self.batch_size, self.epoch, clipped=False)
elif self._shuffle_method == "instance_shuffle":
np.random.RandomState(self.epoch).shuffle(indices)
else:
raise ValueError("Unknown shuffle method %s." %
self._shuffle_method)
assert len(
indices
) == self.total_size, f"batch shuffle examples error: {len(indices)} : {self.total_size}"
assert len(indices) == self.num_samples
_sample_iter = iter(indices)
batch_indices = []
for idx in _sample_iter:
batch_indices.append(idx)
if len(batch_indices) == self.batch_size:
logger.info(
f"rank: {dist.get_rank()} batch index: {batch_indices} ")
yield batch_indices
batch_indices = []
if not self.drop_last and len(batch_indices) > 0:
yield batch_indices
self.epoch += 1
def __len__(self):
num_samples = self.num_samples
num_samples += int(not self.drop_last) * (self.batch_size - 1)
return num_samples // self.batch_size

@ -11,19 +11,3 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Set up paths for DS2"""
import os.path
import sys
def add_path(path):
if path not in sys.path:
sys.path.insert(0, path)
this_dir = os.path.dirname(__file__)
# Add project path to PYTHONPATH
proj_path = os.path.join(this_dir, '..')
add_path(proj_path)

@ -0,0 +1,442 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import collections
import numpy as np
import logging
from typing import Optional
from yacs.config import CfgNode
import paddle
from paddle import nn
from paddle.nn import functional as F
from paddle.nn import initializer as I
from deepspeech.modules.conv import ConvStack
from deepspeech.modules.rnn import RNNStack
from deepspeech.modules.mask import sequence_mask
from deepspeech.modules.activation import brelu
from deepspeech.utils import checkpoint
from deepspeech.utils import layer_tools
from deepspeech.decoders.swig_wrapper import Scorer
from deepspeech.decoders.swig_wrapper import ctc_greedy_decoder
from deepspeech.decoders.swig_wrapper import ctc_beam_search_decoder_batch
from deepspeech.modules.loss import CTCLoss
logger = logging.getLogger(__name__)
__all__ = ['DeepSpeech2Model']
class CRNNEncoder(nn.Layer):
def __init__(self,
feat_size,
dict_size,
num_conv_layers=2,
num_rnn_layers=3,
rnn_size=1024,
use_gru=False,
share_rnn_weights=True):
super().__init__()
self.rnn_size = rnn_size
self.feat_size = feat_size # 161 for linear
self.dict_size = dict_size
self.conv = ConvStack(feat_size, num_conv_layers)
i_size = self.conv.output_height # H after conv stack
self.rnn = RNNStack(
i_size=i_size,
h_size=rnn_size,
num_stacks=num_rnn_layers,
use_gru=use_gru,
share_rnn_weights=share_rnn_weights)
@property
def output_size(self):
return self.rnn_size * 2
def forward(self, audio, audio_len):
"""
audio: shape [B, D, T]
text: shape [B, T]
audio_len: shape [B]
text_len: shape [B]
"""
"""Compute Encoder outputs
Args:
audio (Tensor): [B, D, T]
text (Tensor): [B, T]
audio_len (Tensor): [B]
text_len (Tensor): [B]
Returns:
x (Tensor): encoder outputs, [B, T, D]
x_lens (Tensor): encoder length, [B]
"""
# [B, D, T] -> [B, C=1, D, T]
x = audio.unsqueeze(1)
x_lens = audio_len
# convolution group
x, x_lens = self.conv(x, x_lens)
# convert data from convolution feature map to sequence of vectors
#B, C, D, T = paddle.shape(x) # not work under jit
x = x.transpose([0, 3, 1, 2]) #[B, T, C, D]
#x = x.reshape([B, T, C * D]) #[B, T, C*D] # not work under jit
x = x.reshape([0, 0, -1]) #[B, T, C*D]
# remove padding part
x, x_lens = self.rnn(x, x_lens) #[B, T, D]
return x, x_lens
class CTCDecoder(nn.Layer):
def __init__(self, enc_n_units, vocab_size):
super().__init__()
self.blank_id = vocab_size
self.output = nn.Linear(enc_n_units,
vocab_size + 1) # blank id is last id
self.criterion = CTCLoss(self.blank_id)
self._ext_scorer = None
def forward(self, eout, eout_lens, texts, texts_len):
"""Compute CTC Loss
Args:
eout (Tensor):
eout_lens (Tensor):
texts (Tenosr):
texts_len (Tensor):
Returns:
loss (Tenosr): [1]
"""
logits = self.output(eout)
loss = self.criterion(logits, texts, eout_lens, texts_len)
return loss
def probs(self, eouts, temperature=1.):
"""Get CTC probabilities.
Args:
eouts (FloatTensor): `[B, T, enc_units]`
Returns:
probs (FloatTensor): `[B, T, vocab]`
"""
return F.softmax(self.output(eouts) / temperature, axis=-1)
def scores(self, eouts, temperature=1.):
"""Get log-scale CTC probabilities.
Args:
eouts (FloatTensor): `[B, T, enc_units]`
Returns:
log_probs (FloatTensor): `[B, T, vocab]`
"""
return F.log_softmax(self.output(eouts) / temperature, axis=-1)
def _decode_batch_greedy(self, probs_split, vocab_list):
"""Decode by best path for a batch of probs matrix input.
:param probs_split: List of 2-D probability matrix, and each consists
of prob vectors for one speech utterancce.
:param probs_split: List of matrix
:param vocab_list: List of tokens in the vocabulary, for decoding.
:type vocab_list: list
:return: List of transcription texts.
:rtype: List of str
"""
results = []
for i, probs in enumerate(probs_split):
output_transcription = ctc_greedy_decoder(
probs_seq=probs, vocabulary=vocab_list)
results.append(output_transcription)
return results
def _init_ext_scorer(self, beam_alpha, beam_beta, language_model_path,
vocab_list):
"""Initialize the external scorer.
:param beam_alpha: Parameter associated with language model.
:type beam_alpha: float
:param beam_beta: Parameter associated with word count.
:type beam_beta: float
:param language_model_path: Filepath for language model. If it is
empty, the external scorer will be set to
None, and the decoding method will be pure
beam search without scorer.
:type language_model_path: str|None
:param vocab_list: List of tokens in the vocabulary, for decoding.
:type vocab_list: list
"""
# init once
if self._ext_scorer != None:
return
if language_model_path != '':
logger.info("begin to initialize the external scorer "
"for decoding")
self._ext_scorer = Scorer(beam_alpha, beam_beta,
language_model_path, vocab_list)
lm_char_based = self._ext_scorer.is_character_based()
lm_max_order = self._ext_scorer.get_max_order()
lm_dict_size = self._ext_scorer.get_dict_size()
logger.info("language model: "
"is_character_based = %d," % lm_char_based +
" max_order = %d," % lm_max_order + " dict_size = %d" %
lm_dict_size)
logger.info("end initializing scorer")
else:
self._ext_scorer = None
logger.info("no language model provided, "
"decoding by pure beam search without scorer.")
def _decode_batch_beam_search(self, probs_split, beam_alpha, beam_beta,
beam_size, cutoff_prob, cutoff_top_n,
vocab_list, num_processes):
"""Decode by beam search for a batch of probs matrix input.
:param probs_split: List of 2-D probability matrix, and each consists
of prob vectors for one speech utterancce.
:param probs_split: List of matrix
:param beam_alpha: Parameter associated with language model.
:type beam_alpha: float
:param beam_beta: Parameter associated with word count.
:type beam_beta: float
:param beam_size: Width for Beam search.
:type beam_size: int
:param cutoff_prob: Cutoff probability in pruning,
default 1.0, no pruning.
:type cutoff_prob: float
:param cutoff_top_n: Cutoff number in pruning, only top cutoff_top_n
characters with highest probs in vocabulary will be
used in beam search, default 40.
:type cutoff_top_n: int
:param vocab_list: List of tokens in the vocabulary, for decoding.
:type vocab_list: list
:param num_processes: Number of processes (CPU) for decoder.
:type num_processes: int
:return: List of transcription texts.
:rtype: List of str
"""
if self._ext_scorer != None:
self._ext_scorer.reset_params(beam_alpha, beam_beta)
# beam search decode
num_processes = min(num_processes, len(probs_split))
beam_search_results = ctc_beam_search_decoder_batch(
probs_split=probs_split,
vocabulary=vocab_list,
beam_size=beam_size,
num_processes=num_processes,
ext_scoring_func=self._ext_scorer,
cutoff_prob=cutoff_prob,
cutoff_top_n=cutoff_top_n)
results = [result[0][1] for result in beam_search_results]
return results
def init_decode(self, beam_alpha, beam_beta, lang_model_path, vocab_list,
decoding_method):
if decoding_method == "ctc_beam_search":
self._init_ext_scorer(beam_alpha, beam_beta, lang_model_path,
vocab_list)
def decode_probs(self, probs, logits_lens, vocab_list, decoding_method,
lang_model_path, beam_alpha, beam_beta, beam_size,
cutoff_prob, cutoff_top_n, num_processes):
""" probs: activation after softmax
logits_len: audio output lens
"""
probs_split = [probs[i, :l, :] for i, l in enumerate(logits_lens)]
if decoding_method == "ctc_greedy":
result_transcripts = self._decode_batch_greedy(
probs_split=probs_split, vocab_list=vocab_list)
elif decoding_method == "ctc_beam_search":
result_transcripts = self._decode_batch_beam_search(
probs_split=probs_split,
beam_alpha=beam_alpha,
beam_beta=beam_beta,
beam_size=beam_size,
cutoff_prob=cutoff_prob,
cutoff_top_n=cutoff_top_n,
vocab_list=vocab_list,
num_processes=num_processes)
else:
raise ValueError(f"Not support: {decoding_method}")
return result_transcripts
class DeepSpeech2Model(nn.Layer):
"""The DeepSpeech2 network structure.
:param audio_data: Audio spectrogram data layer.
:type audio_data: Variable
:param text_data: Transcription text data layer.
:type text_data: Variable
:param audio_len: Valid sequence length data layer.
:type audio_len: Variable
:param masks: Masks data layer to reset padding.
:type masks: Variable
:param dict_size: Dictionary size for tokenized transcription.
:type dict_size: int
:param num_conv_layers: Number of stacking convolution layers.
:type num_conv_layers: int
:param num_rnn_layers: Number of stacking RNN layers.
:type num_rnn_layers: int
:param rnn_size: RNN layer size (dimension of RNN cells).
:type rnn_size: int
:param use_gru: Use gru if set True. Use simple rnn if set False.
:type use_gru: bool
:param share_rnn_weights: Whether to share input-hidden weights between
forward and backward direction RNNs.
It is only available when use_gru=False.
:type share_weights: bool
:return: A tuple of an output unnormalized log probability layer (
before softmax) and a ctc cost layer.
:rtype: tuple of LayerOutput
"""
@classmethod
def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
default = CfgNode(
dict(
num_conv_layers=2, #Number of stacking convolution layers.
num_rnn_layers=3, #Number of stacking RNN layers.
rnn_layer_size=1024, #RNN layer size (number of RNN cells).
use_gru=True, #Use gru if set True. Use simple rnn if set False.
share_rnn_weights=True #Whether to share input-hidden weights between forward and backward directional RNNs.Notice that for GRU, weight sharing is not supported.
))
if config is not None:
config.merge_from_other_cfg(default)
return default
def __init__(self,
feat_size,
dict_size,
num_conv_layers=2,
num_rnn_layers=3,
rnn_size=1024,
use_gru=False,
share_rnn_weights=True):
super().__init__()
self.encoder = CRNNEncoder(
feat_size=feat_size,
dict_size=dict_size,
num_conv_layers=num_conv_layers,
num_rnn_layers=num_rnn_layers,
rnn_size=rnn_size,
use_gru=use_gru,
share_rnn_weights=share_rnn_weights)
assert (self.encoder.output_size == rnn_size * 2)
self.decoder = CTCDecoder(
enc_n_units=self.encoder.output_size, vocab_size=dict_size)
def forward(self, audio, text, audio_len, text_len):
"""Compute Model loss
Args:
audio (Tenosr): [B, D, T]
text (Tensor): [B, T]
audio_len (Tensor): [B]
text_len (Tensor): [B]
Returns:
loss (Tenosr): [1]
"""
eouts, eouts_len = self.encoder(audio, audio_len)
loss = self.decoder(eouts, eouts_len, text, text_len)
return loss
@paddle.no_grad()
def decode(self, audio, audio_len, vocab_list, decoding_method,
lang_model_path, beam_alpha, beam_beta, beam_size, cutoff_prob,
cutoff_top_n, num_processes):
# init once
# decoders only accept string encoded in utf-8
self.decoder.init_decode(
beam_alpha=beam_alpha,
beam_beta=beam_beta,
lang_model_path=lang_model_path,
vocab_list=vocab_list,
decoding_method=decoding_method)
eouts, eouts_len = self.encoder(audio, audio_len)
probs = self.decoder.probs(eouts)
return self.decoder.decode_probs(
probs.numpy(), eouts_len, vocab_list, decoding_method,
lang_model_path, beam_alpha, beam_beta, beam_size, cutoff_prob,
cutoff_top_n, num_processes)
@classmethod
def from_pretrained(cls, dataset, config, checkpoint_path):
"""Build a DeepSpeech2Model model from a pretrained model.
Parameters
----------
dataset: paddle.io.Dataset
config: yacs.config.CfgNode
model configs
checkpoint_path: Path or str
the path of pretrained model checkpoint, without extension name
Returns
-------
DeepSpeech2Model
The model built from pretrained result.
"""
model = cls(feat_size=dataset.feature_size,
dict_size=dataset.vocab_size,
num_conv_layers=config.model.num_conv_layers,
num_rnn_layers=config.model.num_rnn_layers,
rnn_size=config.model.rnn_layer_size,
use_gru=config.model.use_gru,
share_rnn_weights=config.model.share_rnn_weights)
checkpoint.load_parameters(model, checkpoint_path=checkpoint_path)
layer_tools.summary(model)
return model
class DeepSpeech2InferModel(DeepSpeech2Model):
def __init__(self,
feat_size,
dict_size,
num_conv_layers=2,
num_rnn_layers=3,
rnn_size=1024,
use_gru=False,
share_rnn_weights=True):
super().__init__(
feat_size=feat_size,
dict_size=dict_size,
num_conv_layers=num_conv_layers,
num_rnn_layers=num_rnn_layers,
rnn_size=rnn_size,
use_gru=use_gru,
share_rnn_weights=share_rnn_weights)
def forward(self, audio, audio_len):
"""export model function
Args:
audio (Tensor): [B, D, T]
audio_len (Tensor): [B]
Returns:
probs: probs after softmax
"""
eouts, eouts_len = self.encoder(audio, audio_len)
probs = self.decoder.probs(eouts)
return probs

@ -0,0 +1,13 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

@ -0,0 +1,32 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import numpy as np
import paddle
from paddle import nn
from paddle.nn import functional as F
from paddle.nn import initializer as I
logger = logging.getLogger(__name__)
__all__ = ['brelu']
def brelu(x, t_min=0.0, t_max=24.0, name=None):
# paddle.to_tensor is dygraph_only can not work under JIT
t_min = paddle.full(shape=[1], fill_value=t_min, dtype='float32')
t_max = paddle.full(shape=[1], fill_value=t_max, dtype='float32')
return x.maximum(t_min).minimum(t_max)

@ -0,0 +1,147 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import paddle
from paddle import nn
from paddle.nn import functional as F
from paddle.nn import initializer as I
from deepspeech.modules.mask import sequence_mask
from deepspeech.modules.activation import brelu
logger = logging.getLogger(__name__)
__all__ = ['ConvStack']
class ConvBn(nn.Layer):
"""Convolution layer with batch normalization.
:param kernel_size: The x dimension of a filter kernel. Or input a tuple for
two image dimension.
:type kernel_size: int|tuple|list
:param num_channels_in: Number of input channels.
:type num_channels_in: int
:param num_channels_out: Number of output channels.
:type num_channels_out: int
:param stride: The x dimension of the stride. Or input a tuple for two
image dimension.
:type stride: int|tuple|list
:param padding: The x dimension of the padding. Or input a tuple for two
image dimension.
:type padding: int|tuple|list
:param act: Activation type, relu|brelu
:type act: string
:return: Batch norm layer after convolution layer.
:rtype: Variable
"""
def __init__(self, num_channels_in, num_channels_out, kernel_size, stride,
padding, act):
super().__init__()
assert len(kernel_size) == 2
assert len(stride) == 2
assert len(padding) == 2
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.conv = nn.Conv2D(
num_channels_in,
num_channels_out,
kernel_size=kernel_size,
stride=stride,
padding=padding,
weight_attr=None,
bias_attr=False,
data_format='NCHW')
self.bn = nn.BatchNorm2D(
num_channels_out,
weight_attr=None,
bias_attr=None,
data_format='NCHW')
self.act = F.relu if act == 'relu' else brelu
def forward(self, x, x_len):
"""
x(Tensor): audio, shape [B, C, D, T]
"""
x = self.conv(x)
x = self.bn(x)
x = self.act(x)
x_len = (x_len - self.kernel_size[1] + 2 * self.padding[1]
) // self.stride[1] + 1
# reset padding part to 0
masks = sequence_mask(x_len) #[B, T]
masks = masks.unsqueeze(1).unsqueeze(1) # [B, 1, 1, T]
x = x.multiply(masks)
return x, x_len
class ConvStack(nn.Layer):
"""Convolution group with stacked convolution layers.
:param feat_size: audio feature dim.
:type feat_size: int
:param num_stacks: Number of stacked convolution layers.
:type num_stacks: int
"""
def __init__(self, feat_size, num_stacks):
super().__init__()
self.feat_size = feat_size # D
self.num_stacks = num_stacks
self.conv_in = ConvBn(
num_channels_in=1,
num_channels_out=32,
kernel_size=(41, 11), #[D, T]
stride=(2, 3),
padding=(20, 5),
act='brelu')
out_channel = 32
self.conv_stack = nn.LayerList([
ConvBn(
num_channels_in=32,
num_channels_out=out_channel,
kernel_size=(21, 11),
stride=(2, 1),
padding=(10, 5),
act='brelu') for i in range(num_stacks - 1)
])
# conv output feat_dim
output_height = (feat_size - 1) // 2 + 1
for i in range(self.num_stacks - 1):
output_height = (output_height - 1) // 2 + 1
self.output_height = out_channel * output_height
def forward(self, x, x_len):
"""
x: shape [B, C, D, T]
x_len : shape [B]
"""
x, x_len = self.conv_in(x, x_len)
for i, conv in enumerate(self.conv_stack):
x, x_len = conv(x, x_len)
return x, x_len

@ -0,0 +1,65 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import paddle
from paddle import nn
from paddle.nn import functional as F
from paddle.nn import initializer as I
logger = logging.getLogger(__name__)
__all__ = ['CTCLoss']
def ctc_loss(logits,
labels,
input_lengths,
label_lengths,
blank=0,
reduction='mean',
norm_by_times=True):
#logger.info("my ctc loss with norm by times")
## https://github.com/PaddlePaddle/Paddle/blob/f5ca2db2cc/paddle/fluid/operators/warpctc_op.h#L403
loss_out = paddle.fluid.layers.warpctc(logits, labels, blank, norm_by_times,
input_lengths, label_lengths)
loss_out = paddle.fluid.layers.squeeze(loss_out, [-1])
logger.info(f"warpctc loss: {loss_out}/{loss_out.shape} ")
assert reduction in ['mean', 'sum', 'none']
if reduction == 'mean':
loss_out = paddle.mean(loss_out / label_lengths)
elif reduction == 'sum':
loss_out = paddle.sum(loss_out)
logger.info(f"ctc loss: {loss_out}")
return loss_out
F.ctc_loss = ctc_loss
class CTCLoss(nn.Layer):
def __init__(self, blank_id):
super().__init__()
# last token id as blank id
self.loss = nn.CTCLoss(blank=blank_id, reduction='sum')
def forward(self, logits, text, logits_len, text_len):
# warp-ctc do softmax on activations
# warp-ctc need activation with shape [T, B, V + 1]
logits = logits.transpose([1, 0, 2])
ctc_loss = self.loss(logits, text, logits_len, text_len)
return ctc_loss

@ -0,0 +1,34 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import paddle
from paddle import nn
from paddle.nn import functional as F
from paddle.nn import initializer as I
logger = logging.getLogger(__name__)
__all__ = ['sequence_mask']
def sequence_mask(x_len, max_len=None, dtype='float32'):
max_len = max_len or x_len.max()
x_len = paddle.unsqueeze(x_len, -1)
row_vector = paddle.arange(max_len)
#mask = row_vector < x_len
mask = row_vector > x_len # a bug, broadcast 的时候出错了
mask = paddle.cast(mask, dtype)
return mask

@ -0,0 +1,310 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import logging
import paddle
from paddle import nn
from paddle.nn import functional as F
from paddle.nn import initializer as I
from deepspeech.modules.mask import sequence_mask
from deepspeech.modules.activation import brelu
logger = logging.getLogger(__name__)
__all__ = ['RNNStack']
class RNNCell(nn.RNNCellBase):
r"""
Elman RNN (SimpleRNN) cell. Given the inputs and previous states, it
computes the outputs and updates states.
The formula used is as follows:
.. math::
h_{t} & = act(x_{t} + b_{ih} + W_{hh}h_{t-1} + b_{hh})
y_{t} & = h_{t}
where :math:`act` is for :attr:`activation`.
"""
def __init__(self,
hidden_size,
activation="tanh",
weight_ih_attr=None,
weight_hh_attr=None,
bias_ih_attr=None,
bias_hh_attr=None,
name=None):
super().__init__()
std = 1.0 / math.sqrt(hidden_size)
self.weight_hh = self.create_parameter(
(hidden_size, hidden_size),
weight_hh_attr,
default_initializer=I.Uniform(-std, std))
self.bias_ih = None
self.bias_hh = self.create_parameter(
(hidden_size, ),
bias_hh_attr,
is_bias=True,
default_initializer=I.Uniform(-std, std))
self.hidden_size = hidden_size
if activation not in ["tanh", "relu", "brelu"]:
raise ValueError(
"activation for SimpleRNNCell should be tanh or relu, "
"but get {}".format(activation))
self.activation = activation
self._activation_fn = paddle.tanh \
if activation == "tanh" \
else F.relu
if activation == 'brelu':
self._activation_fn = brelu
def forward(self, inputs, states=None):
if states is None:
states = self.get_initial_states(inputs, self.state_shape)
pre_h = states
i2h = inputs
if self.bias_ih is not None:
i2h += self.bias_ih
h2h = paddle.matmul(pre_h, self.weight_hh, transpose_y=True)
if self.bias_hh is not None:
h2h += self.bias_hh
h = self._activation_fn(i2h + h2h)
return h, h
@property
def state_shape(self):
return (self.hidden_size, )
class GRUCell(nn.RNNCellBase):
r"""
Gated Recurrent Unit (GRU) RNN cell. Given the inputs and previous states,
it computes the outputs and updates states.
The formula for GRU used is as follows:
.. math::
r_{t} & = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}h_{t-1} + b_{hr})
z_{t} & = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}h_{t-1} + b_{hz})
\widetilde{h}_{t} & = \tanh(W_{ic}x_{t} + b_{ic} + r_{t} * (W_{hc}h_{t-1} + b_{hc}))
h_{t} & = z_{t} * h_{t-1} + (1 - z_{t}) * \widetilde{h}_{t}
y_{t} & = h_{t}
where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
multiplication operator.
"""
def __init__(self,
input_size,
hidden_size,
weight_ih_attr=None,
weight_hh_attr=None,
bias_ih_attr=None,
bias_hh_attr=None,
name=None):
super().__init__()
std = 1.0 / math.sqrt(hidden_size)
self.weight_hh = self.create_parameter(
(3 * hidden_size, hidden_size),
weight_hh_attr,
default_initializer=I.Uniform(-std, std))
self.bias_ih = None
self.bias_hh = self.create_parameter(
(3 * hidden_size, ),
bias_hh_attr,
is_bias=True,
default_initializer=I.Uniform(-std, std))
self.hidden_size = hidden_size
self.input_size = input_size
self._gate_activation = F.sigmoid
self._activation = paddle.tanh
#self._activation = F.relu
def forward(self, inputs, states=None):
if states is None:
states = self.get_initial_states(inputs, self.state_shape)
pre_hidden = states
x_gates = inputs
if self.bias_ih is not None:
x_gates = x_gates + self.bias_ih
h_gates = paddle.matmul(pre_hidden, self.weight_hh, transpose_y=True)
if self.bias_hh is not None:
h_gates = h_gates + self.bias_hh
x_r, x_z, x_c = paddle.split(x_gates, num_or_sections=3, axis=1)
h_r, h_z, h_c = paddle.split(h_gates, num_or_sections=3, axis=1)
r = self._gate_activation(x_r + h_r)
z = self._gate_activation(x_z + h_z)
c = self._activation(x_c + r * h_c) # apply reset gate after mm
h = (pre_hidden - c) * z + c
# https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/fluid/layers/dynamic_gru_cn.html#dynamic-gru
return h, h
@property
def state_shape(self):
r"""
The `state_shape` of GRUCell is a shape `[hidden_size]` (-1 for batch
size would be automatically inserted into shape). The shape corresponds
to the shape of :math:`h_{t-1}`.
"""
return (self.hidden_size, )
class BiRNNWithBN(nn.Layer):
"""Bidirectonal simple rnn layer with sequence-wise batch normalization.
The batch normalization is only performed on input-state weights.
:param name: Name of the layer parameters.
:type name: string
:param size: Dimension of RNN cells.
:type size: int
:param share_weights: Whether to share input-hidden weights between
forward and backward directional RNNs.
:type share_weights: bool
:return: Bidirectional simple rnn layer.
:rtype: Variable
"""
def __init__(self, i_size, h_size, share_weights):
super().__init__()
self.share_weights = share_weights
if self.share_weights:
#input-hidden weights shared between bi-directional rnn.
self.fw_fc = nn.Linear(i_size, h_size, bias_attr=False)
# batch norm is only performed on input-state projection
self.fw_bn = nn.BatchNorm1D(
h_size, bias_attr=None, data_format='NLC')
self.bw_fc = self.fw_fc
self.bw_bn = self.fw_bn
else:
self.fw_fc = nn.Linear(i_size, h_size, bias_attr=False)
self.fw_bn = nn.BatchNorm1D(
h_size, bias_attr=None, data_format='NLC')
self.bw_fc = nn.Linear(i_size, h_size, bias_attr=False)
self.bw_bn = nn.BatchNorm1D(
h_size, bias_attr=None, data_format='NLC')
self.fw_cell = RNNCell(hidden_size=h_size, activation='brelu')
self.bw_cell = RNNCell(hidden_size=h_size, activation='brelu')
self.fw_rnn = nn.RNN(
self.fw_cell, is_reverse=False, time_major=False) #[B, T, D]
self.bw_rnn = nn.RNN(
self.fw_cell, is_reverse=True, time_major=False) #[B, T, D]
def forward(self, x, x_len):
# x, shape [B, T, D]
fw_x = self.fw_bn(self.fw_fc(x))
bw_x = self.bw_bn(self.bw_fc(x))
fw_x, _ = self.fw_rnn(inputs=fw_x, sequence_length=x_len)
bw_x, _ = self.bw_rnn(inputs=bw_x, sequence_length=x_len)
x = paddle.concat([fw_x, bw_x], axis=-1)
return x, x_len
class BiGRUWithBN(nn.Layer):
"""Bidirectonal gru layer with sequence-wise batch normalization.
The batch normalization is only performed on input-state weights.
:param name: Name of the layer.
:type name: string
:param input: Input layer.
:type input: Variable
:param size: Dimension of GRU cells.
:type size: int
:param act: Activation type.
:type act: string
:return: Bidirectional GRU layer.
:rtype: Variable
"""
def __init__(self, i_size, h_size, act):
super().__init__()
hidden_size = h_size * 3
self.fw_fc = nn.Linear(i_size, hidden_size, bias_attr=False)
self.fw_bn = nn.BatchNorm1D(
hidden_size, bias_attr=None, data_format='NLC')
self.bw_fc = nn.Linear(i_size, hidden_size, bias_attr=False)
self.bw_bn = nn.BatchNorm1D(
hidden_size, bias_attr=None, data_format='NLC')
self.fw_cell = GRUCell(input_size=hidden_size, hidden_size=h_size)
self.bw_cell = GRUCell(input_size=hidden_size, hidden_size=h_size)
self.fw_rnn = nn.RNN(
self.fw_cell, is_reverse=False, time_major=False) #[B, T, D]
self.bw_rnn = nn.RNN(
self.fw_cell, is_reverse=True, time_major=False) #[B, T, D]
def forward(self, x, x_len):
# x, shape [B, T, D]
fw_x = self.fw_bn(self.fw_fc(x))
bw_x = self.bw_bn(self.bw_fc(x))
fw_x, _ = self.fw_rnn(inputs=fw_x, sequence_length=x_len)
bw_x, _ = self.bw_rnn(inputs=bw_x, sequence_length=x_len)
x = paddle.concat([fw_x, bw_x], axis=-1)
return x, x_len
class RNNStack(nn.Layer):
"""RNN group with stacked bidirectional simple RNN or GRU layers.
:param input: Input layer.
:type input: Variable
:param size: Dimension of RNN cells in each layer.
:type size: int
:param num_stacks: Number of stacked rnn layers.
:type num_stacks: int
:param use_gru: Use gru if set True. Use simple rnn if set False.
:type use_gru: bool
:param share_rnn_weights: Whether to share input-hidden weights between
forward and backward directional RNNs.
It is only available when use_gru=False.
:type share_weights: bool
:return: Output layer of the RNN group.
:rtype: Variable
"""
def __init__(self, i_size, h_size, num_stacks, use_gru, share_rnn_weights):
super().__init__()
self.rnn_stacks = nn.LayerList()
for i in range(num_stacks):
if use_gru:
#default:GRU using tanh
self.rnn_stacks.append(
BiGRUWithBN(i_size=i_size, h_size=h_size, act="relu"))
else:
self.rnn_stacks.append(
BiRNNWithBN(
i_size=i_size,
h_size=h_size,
share_weights=share_rnn_weights))
i_size = h_size * 2
def forward(self, x, x_len):
"""
x: shape [B, T, D]
x_len: shpae [B]
"""
for i, rnn in enumerate(self.rnn_stacks):
x, x_len = rnn(x, x_len)
masks = sequence_mask(x_len) #[B, T]
masks = masks.unsqueeze(-1) # [B, T, 1]
x = x.multiply(masks)
return x, x_len

@ -11,19 +11,5 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Set up paths for DS2"""
import os.path
import sys
def add_path(path):
if path not in sys.path:
sys.path.insert(0, path)
this_dir = os.path.dirname(__file__)
# Add project path to PYTHONPATH
proj_path = os.path.join(this_dir, '..')
add_path(proj_path)
from deepspeech.training.trainer import *

@ -0,0 +1,69 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
def default_argument_parser():
r"""A simple yet genral argument parser for experiments with parakeet.
This is used in examples with parakeet. And it is intended to be used by
other experiments with parakeet. It requires a minimal set of command line
arguments to start a training script.
The ``--config`` and ``--opts`` are used for overwrite the deault
configuration.
The ``--data`` and ``--output`` specifies the data path and output path.
Resuming training from existing progress at the output directory is the
intended default behavior.
The ``--checkpoint_path`` specifies the checkpoint to load from.
The ``--device`` and ``--nprocs`` specifies how to run the training.
See Also
--------
parakeet.training.experiment
Returns
-------
argparse.ArgumentParser
the parser
"""
parser = argparse.ArgumentParser()
# yapf: disable
# data and output
parser.add_argument("--config", metavar="FILE", help="path of the config file to overwrite to default config with.")
parser.add_argument("--dump-config", metavar="FILE", help="dump config to yaml file.")
# parser.add_argument("--data", metavar="DATA_DIR", help="path to the datatset.")
parser.add_argument("--output", metavar="OUTPUT_DIR", help="path to save checkpoint and logs.")
# load from saved checkpoint
parser.add_argument("--checkpoint_path", type=str, help="path of the checkpoint to load")
# save jit model to
parser.add_argument("--export_path", type=str, help="path of the jit model to save")
# running
parser.add_argument("--device", type=str, default='gpu', choices=["cpu", "gpu"], help="device type to use, cpu and gpu are supported.")
parser.add_argument("--nprocs", type=int, default=1, help="number of parallel processes to use.")
# overwrite extra config and default config
#parser.add_argument("--opts", nargs=argparse.REMAINDER, help="options to overwrite --config file and the default config, passing in KEY VALUE pairs")
parser.add_argument("--opts", type=str, default=[], nargs='+', help="options to overwrite --config file and the default config, passing in KEY VALUE pairs")
# yapd: enable
return parser

@ -0,0 +1,74 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import paddle
from paddle.fluid.dygraph import base as imperative_base
from paddle.fluid import layers
from paddle.fluid import core
logger = logging.getLogger(__name__)
class MyClipGradByGlobalNorm(paddle.nn.ClipGradByGlobalNorm):
def __init__(self, clip_norm):
super().__init__(clip_norm)
@imperative_base.no_grad
def _dygraph_clip(self, params_grads):
params_and_grads = []
sum_square_list = []
for p, g in params_grads:
if g is None:
continue
if getattr(p, 'need_clip', True) is False:
continue
merge_grad = g
if g.type == core.VarDesc.VarType.SELECTED_ROWS:
merge_grad = layers.merge_selected_rows(g)
merge_grad = layers.get_tensor_from_selected_rows(merge_grad)
square = layers.square(merge_grad)
sum_square = layers.reduce_sum(square)
logger.info(
f"Grad Before Clip: {p.name}: {float(layers.sqrt(layers.reduce_sum(layers.square(merge_grad))) ) }"
)
sum_square_list.append(sum_square)
# all parameters have been filterd out
if len(sum_square_list) == 0:
return params_grads
global_norm_var = layers.concat(sum_square_list)
global_norm_var = layers.reduce_sum(global_norm_var)
global_norm_var = layers.sqrt(global_norm_var)
logger.info(f"Grad Global Norm: {float(global_norm_var)}!!!!")
max_global_norm = layers.fill_constant(
shape=[1], dtype=global_norm_var.dtype, value=self.clip_norm)
clip_var = layers.elementwise_div(
x=max_global_norm,
y=layers.elementwise_max(x=global_norm_var, y=max_global_norm))
for p, g in params_grads:
if g is None:
continue
if getattr(p, 'need_clip', True) is False:
params_and_grads.append((p, g))
continue
new_grad = layers.elementwise_mul(x=g, y=clip_var)
logger.info(
f"Grad After Clip: {p.name}: {float(layers.sqrt(layers.reduce_sum(layers.square(merge_grad))) ) }"
)
params_and_grads.append((p, new_grad))
return params_and_grads

@ -0,0 +1,327 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import logging
import logging.handlers
from pathlib import Path
import numpy as np
from collections import defaultdict
import paddle
from paddle import distributed as dist
from paddle.distributed.utils import get_gpus
from tensorboardX import SummaryWriter
from deepspeech.utils import checkpoint
from deepspeech.utils import mp_tools
__all__ = ["Trainer"]
class Trainer():
"""
An experiment template in order to structure the training code and take
care of saving, loading, logging, visualization stuffs. It's intended to
be flexible and simple.
So it only handles output directory (create directory for the output,
create a checkpoint directory, dump the config in use and create
visualizer and logger) in a standard way without enforcing any
input-output protocols to the model and dataloader. It leaves the main
part for the user to implement their own (setup the model, criterion,
optimizer, define a training step, define a validation function and
customize all the text and visual logs).
It does not save too much boilerplate code. The users still have to write
the forward/backward/update mannually, but they are free to add
non-standard behaviors if needed.
We have some conventions to follow.
1. Experiment should have ``model``, ``optimizer``, ``train_loader`` and
``valid_loader``, ``config`` and ``args`` attributes.
2. The config should have a ``training`` field, which has
``valid_interval``, ``save_interval`` and ``max_iteration`` keys. It is
used as the trigger to invoke validation, checkpointing and stop of the
experiment.
3. There are four methods, namely ``train_batch``, ``valid``,
``setup_model`` and ``setup_dataloader`` that should be implemented.
Feel free to add/overwrite other methods and standalone functions if you
need.
Parameters
----------
config: yacs.config.CfgNode
The configuration used for the experiment.
args: argparse.Namespace
The parsed command line arguments.
Examples
--------
>>> def main_sp(config, args):
>>> exp = Trainer(config, args)
>>> exp.setup()
>>> exp.run()
>>>
>>> config = get_cfg_defaults()
>>> parser = default_argument_parser()
>>> args = parser.parse_args()
>>> if args.config:
>>> config.merge_from_file(args.config)
>>> if args.opts:
>>> config.merge_from_list(args.opts)
>>> config.freeze()
>>>
>>> if args.nprocs > 1 and args.device == "gpu":
>>> dist.spawn(main_sp, args=(config, args), nprocs=args.nprocs)
>>> else:
>>> main_sp(config, args)
"""
def __init__(self, config, args):
self.config = config
self.args = args
self.optimizer = None
self.visualizer = None
self.output_dir = None
self.checkpoint_dir = None
self.logger = None
def setup(self):
"""Setup the experiment.
"""
paddle.set_device(self.args.device)
if self.parallel:
self.init_parallel()
self.setup_output_dir()
self.dump_config()
self.setup_visualizer()
self.setup_logger()
self.setup_checkpointer()
self.setup_dataloader()
self.setup_model()
self.iteration = 0
self.epoch = 0
@property
def parallel(self):
"""A flag indicating whether the experiment should run with
multiprocessing.
"""
return self.args.device == "gpu" and self.args.nprocs > 1
def init_parallel(self):
"""Init environment for multiprocess training.
"""
dist.init_parallel_env()
@mp_tools.rank_zero_only
def save(self):
"""Save checkpoint (model parameters and optimizer states).
"""
checkpoint.save_parameters(self.checkpoint_dir, self.iteration,
self.model, self.optimizer)
def resume_or_load(self):
"""Resume from latest checkpoint at checkpoints in the output
directory or load a specified checkpoint.
If ``args.checkpoint_path`` is not None, load the checkpoint, else
resume training.
"""
iteration = checkpoint.load_parameters(
self.model,
self.optimizer,
checkpoint_dir=self.checkpoint_dir,
checkpoint_path=self.args.checkpoint_path)
self.iteration = iteration
def new_epoch(self):
"""Reset the train loader and increment ``epoch``.
"""
if self.parallel:
# batch sampler epoch start from 0
self.train_loader.batch_sampler.set_epoch(self.epoch)
self.epoch += 1
def train(self):
"""The training process.
It includes forward/backward/update and periodical validation and
saving.
"""
self.logger.info(
f"Train Total Examples: {len(self.train_loader.dataset)}")
self.new_epoch()
while self.epoch <= self.config.training.n_epoch:
try:
for batch in self.train_loader:
self.iteration += 1
self.train_batch(batch)
except Exception as e:
self.logger.error(e)
pass
self.valid()
self.save()
self.lr_scheduler.step()
self.new_epoch()
def run(self):
"""The routine of the experiment after setup. This method is intended
to be used by the user.
"""
self.resume_or_load()
try:
self.train()
except KeyboardInterrupt:
self.save()
exit(-1)
finally:
self.destory()
def setup_output_dir(self):
"""Create a directory used for output.
"""
# output dir
output_dir = Path(self.args.output).expanduser()
output_dir.mkdir(parents=True, exist_ok=True)
self.output_dir = output_dir
def setup_checkpointer(self):
"""Create a directory used to save checkpoints into.
It is "checkpoints" inside the output directory.
"""
# checkpoint dir
checkpoint_dir = self.output_dir / "checkpoints"
checkpoint_dir.mkdir(exist_ok=True)
self.checkpoint_dir = checkpoint_dir
@mp_tools.rank_zero_only
def destory(self):
# https://github.com/pytorch/fairseq/issues/2357
if self.visualizer:
self.visualizer.close()
@mp_tools.rank_zero_only
def setup_visualizer(self):
"""Initialize a visualizer to log the experiment.
The visual log is saved in the output directory.
Notes
------
Only the main process has a visualizer with it. Use multiple
visualizers in multiprocess to write to a same log file may cause
unexpected behaviors.
"""
# visualizer
visualizer = SummaryWriter(logdir=str(self.output_dir))
self.visualizer = visualizer
def setup_logger(self):
"""Initialize a text logger to log the experiment.
Each process has its own text logger. The logging message is write to
the standard output and a text file named ``worker_n.log`` in the
output directory, where ``n`` means the rank of the process.
when - how to split the log file by time interval
'S' : Seconds
'M' : Minutes
'H' : Hours
'D' : Days
'W' : Week day
default value: 'D'
format - format of the log
default format:
%(levelname)s: %(asctime)s: %(filename)s:%(lineno)d * %(thread)d %(message)s
INFO: 12-09 18:02:42: log.py:40 * 139814749787872 HELLO WORLD
backup - how many backup file to keep
default value: 7
"""
when = 'D'
backup = 7
format = '[%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s'
formatter = logging.Formatter(fmt=format, datefmt='%Y/%m/%d %H:%M:%S')
logger = logging.getLogger(__name__)
logger.setLevel("INFO")
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(formatter)
logger.addHandler(stream_handler)
log_file = self.output_dir / 'worker_{}.log'.format(dist.get_rank())
# file_handler = logging.FileHandler(str(log_file))
# file_handler.setFormatter(formatter)
# logger.addHandler(file_handler)
# handler = logging.handlers.TimedRotatingFileHandler(
# str(self.output_dir / "warning.log"), when=when, backupCount=backup)
# handler.setLevel(logging.WARNING)
# handler.setFormatter(formatter)
# logger.addHandler(handler)
# stop propagate for propagating may print
# log multiple times
logger.propagate = False
# global logger
stdout = False
save_path = log_file
logging.basicConfig(
level=logging.DEBUG if stdout else logging.INFO,
format=format,
datefmt='%Y/%m/%d %H:%M:%S',
filename=save_path if not stdout else None)
self.logger = logger
@mp_tools.rank_zero_only
def dump_config(self):
"""Save the configuration used for this experiment.
It is saved in to ``config.yaml`` in the output directory at the
beginning of the experiment.
"""
with open(self.output_dir / "config.yaml", 'wt') as f:
print(self.config, file=f)
def train_batch(self):
"""The training loop. A subclass should implement this method.
"""
raise NotImplementedError("train_batch should be implemented.")
@mp_tools.rank_zero_only
@paddle.no_grad()
def valid(self):
"""The validation. A subclass should implement this method.
"""
raise NotImplementedError("valid should be implemented.")
def setup_model(self):
"""Setup model, criterion and optimizer, etc. A subclass should
implement this method.
"""
raise NotImplementedError("setup_model should be implemented.")
def setup_dataloader(self):
"""Setup training dataloader and validation dataloader. A subclass
should implement this method.
"""
raise NotImplementedError("setup_dataloader should be implemented.")

@ -0,0 +1,13 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

@ -0,0 +1,140 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import logging
import numpy as np
import paddle
from paddle import distributed as dist
from paddle.nn import Layer
from paddle.optimizer import Optimizer
from deepspeech.utils import mp_tools
logger = logging.getLogger(__name__)
__all__ = ["load_parameters", "save_parameters"]
def _load_latest_checkpoint(checkpoint_dir: str) -> int:
"""Get the iteration number corresponding to the latest saved checkpoint.
Args:
checkpoint_dir (str): the directory where checkpoint is saved.
Returns:
int: the latest iteration number.
"""
checkpoint_record = os.path.join(checkpoint_dir, "checkpoint")
if (not os.path.isfile(checkpoint_record)):
return 0
# Fetch the latest checkpoint index.
with open(checkpoint_record, "rt") as handle:
latest_checkpoint = handle.readlines()[-1].strip()
step = latest_checkpoint.split(":")[-1]
iteration = int(step.split("-")[-1])
return iteration
def _save_checkpoint(checkpoint_dir: str, iteration: int):
"""Save the iteration number of the latest model to be checkpointed.
Args:
checkpoint_dir (str): the directory where checkpoint is saved.
iteration (int): the latest iteration number.
Returns:
None
"""
checkpoint_record = os.path.join(checkpoint_dir, "checkpoint")
# Update the latest checkpoint index.
with open(checkpoint_record, "a+") as handle:
handle.write("model_checkpoint_path:step-{}\n".format(iteration))
def load_parameters(model,
optimizer=None,
checkpoint_dir=None,
checkpoint_path=None):
"""Load a specific model checkpoint from disk.
Args:
model (Layer): model to load parameters.
optimizer (Optimizer, optional): optimizer to load states if needed.
Defaults to None.
checkpoint_dir (str, optional): the directory where checkpoint is saved.
checkpoint_path (str, optional): if specified, load the checkpoint
stored in the checkpoint_path and the argument 'checkpoint_dir' will
be ignored. Defaults to None.
Returns:
iteration (int): number of iterations that the loaded checkpoint has
been trained.
"""
if checkpoint_path is not None:
iteration = int(os.path.basename(checkpoint_path).split("-")[-1])
elif checkpoint_dir is not None:
iteration = _load_latest_checkpoint(checkpoint_dir)
if iteration == 0:
return iteration
checkpoint_path = os.path.join(checkpoint_dir,
"step-{}".format(iteration))
else:
raise ValueError(
"At least one of 'checkpoint_dir' and 'checkpoint_path' should be specified!"
)
rank = dist.get_rank()
params_path = checkpoint_path + ".pdparams"
model_dict = paddle.load(params_path)
model.set_state_dict(model_dict)
logger.info(
"[checkpoint] Rank {}: loaded model from {}".format(rank, params_path))
optimizer_path = checkpoint_path + ".pdopt"
if optimizer and os.path.isfile(optimizer_path):
optimizer_dict = paddle.load(optimizer_path)
optimizer.set_state_dict(optimizer_dict)
logger.info("[checkpoint] Rank {}: loaded optimizer state from {}".
format(rank, optimizer_path))
return iteration
@mp_tools.rank_zero_only
def save_parameters(checkpoint_dir, iteration, model, optimizer=None):
"""Checkpoint the latest trained model parameters.
Args:
checkpoint_dir (str): the directory where checkpoint is saved.
iteration (int): the latest iteration number.
model (Layer): model to be checkpointed.
optimizer (Optimizer, optional): optimizer to be checkpointed.
Defaults to None.
Returns:
None
"""
checkpoint_path = os.path.join(checkpoint_dir, "step-{}".format(iteration))
model_dict = model.state_dict()
params_path = checkpoint_path + ".pdparams"
paddle.save(model_dict, params_path)
logger.info("[checkpoint] Saved model to {}".format(params_path))
if optimizer:
opt_dict = optimizer.state_dict()
optimizer_path = checkpoint_path + ".pdopt"
paddle.save(opt_dict, optimizer_path)
logger.info(
"[checkpoint] Saved optimzier state to {}".format(optimizer_path))
_save_checkpoint(checkpoint_dir, iteration)

@ -14,9 +14,10 @@
"""This module provides functions to calculate error rate in different level.
e.g. wer for word-level, cer for char-level.
"""
import numpy as np
__all__ = ['word_errors', 'char_errors', 'wer', 'cer']
def _levenshtein_distance(ref, hyp):
"""Levenshtein distance is a string metric for measuring the difference

@ -0,0 +1,78 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from paddle import nn
__all__ = [
"summary", "gradient_norm", "freeze", "unfreeze", "print_grads",
"print_params"
]
def summary(layer: nn.Layer, print_func=print):
num_params = num_elements = 0
print_func("layer summary:")
for name, param in layer.state_dict().items():
print_func("{}|{}|{}".format(name, param.shape, np.prod(param.shape)))
num_elements += np.prod(param.shape)
num_params += 1
print_func("layer has {} parameters, {} elements.".format(num_params,
num_elements))
def gradient_norm(layer: nn.Layer):
grad_norm_dict = {}
for name, param in layer.state_dict().items():
if param.trainable:
grad = param.gradient()
grad_norm_dict[name] = np.linalg.norm(grad) / grad.size
return grad_norm_dict
def recursively_remove_weight_norm(layer: nn.Layer):
for layer in layer.sublayers():
try:
nn.utils.remove_weight_norm(layer)
except:
# ther is not weight norm hoom in this layer
pass
def freeze(layer: nn.Layer):
for param in layer.parameters():
param.trainable = False
def unfreeze(layer: nn.Layer):
for param in layer.parameters():
param.trainable = True
def print_grads(model, print_func=print):
for n, p in model.named_parameters():
msg = f"param grad: {n}: shape: {p.shape} grad: {p.grad}"
if print_func:
print_func(msg)
def print_params(model, print_func=print):
total = 0.0
for n, p in model.named_parameters():
msg = f"param: {n}: shape: {p.shape} stop_grad: {p.stop_gradient}"
total += np.prod(p.shape)
if print_func:
print_func(msg)
if print_func:
print_func(f"Total parameters: {total}!")

@ -0,0 +1,31 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle import distributed as dist
from functools import wraps
__all__ = ["rank_zero_only"]
def rank_zero_only(func):
@wraps(func)
def wrapper(*args, **kwargs):
rank = dist.get_rank()
if rank != 0:
return
result = func(*args, **kwargs)
return result
return wrapper

@ -0,0 +1,111 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
import time
from time import gmtime, strftime
import socketserver
import struct
import wave
from deepspeech.frontend.utility import read_manifest
__all__ = ["socket_send", "warm_up_test", "AsrTCPServer", "AsrRequestHandler"]
def socket_send(server_ip: str, server_port: str, data: bytes):
# Connect to server and send data
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect((server_ip, server_port))
sent = data
sock.sendall(struct.pack('>i', len(sent)) + sent)
print('Speech[length=%d] Sent.' % len(sent))
# Receive data from the server and shut down
received = sock.recv(1024)
print("Recognition Results: {}".format(received.decode('utf8')))
sock.close()
def warm_up_test(audio_process_handler,
manifest_path,
num_test_cases,
random_seed=0):
"""Warming-up test."""
manifest = read_manifest(manifest_path)
rng = random.Random(random_seed)
samples = rng.sample(manifest, num_test_cases)
for idx, sample in enumerate(samples):
print("Warm-up Test Case %d: %s", idx, sample['audio_filepath'])
start_time = time.time()
transcript = audio_process_handler(sample['audio_filepath'])
finish_time = time.time()
print("Response Time: %f, Transcript: %s" %
(finish_time - start_time, transcript))
class AsrTCPServer(socketserver.TCPServer):
"""The ASR TCP Server."""
def __init__(self,
server_address,
RequestHandlerClass,
speech_save_dir,
audio_process_handler,
bind_and_activate=True):
self.speech_save_dir = speech_save_dir
self.audio_process_handler = audio_process_handler
socketserver.TCPServer.__init__(
self, server_address, RequestHandlerClass, bind_and_activate=True)
class AsrRequestHandler(socketserver.BaseRequestHandler):
"""The ASR request handler."""
def handle(self):
# receive data through TCP socket
chunk = self.request.recv(1024)
target_len = struct.unpack('>i', chunk[:4])[0]
data = chunk[4:]
while len(data) < target_len:
chunk = self.request.recv(1024)
data += chunk
# write to file
filename = self._write_to_file(data)
print("Received utterance[length=%d] from %s, saved to %s." %
(len(data), self.client_address[0], filename))
start_time = time.time()
transcript = self.server.audio_process_handler(filename)
finish_time = time.time()
print("Response Time: %f, Transcript: %s" %
(finish_time - start_time, transcript))
self.request.sendall(transcript.encode('utf-8'))
def _write_to_file(self, data):
# prepare save dir and filename
if not os.path.exists(self.server.speech_save_dir):
os.mkdir(self.server.speech_save_dir)
timestamp = strftime("%Y%m%d%H%M%S", gmtime())
out_filename = os.path.join(
self.server.speech_save_dir,
timestamp + "_" + self.client_address[0] + ".wav")
# write to wav file
file = wave.open(out_filename, 'wb')
file.setnchannels(1)
file.setsampwidth(2)
file.setframerate(16000)
file.writeframes(data)
file.close()
return out_filename

@ -0,0 +1,60 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains common utility functions."""
import numpy as np
import distutils.util
__all__ = ['print_arguments', 'add_arguments']
def print_arguments(args):
"""Print argparse's arguments.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
parser.add_argument("name", default="Jonh", type=str, help="User name.")
args = parser.parse_args()
print_arguments(args)
:param args: Input argparse.Namespace for printing.
:type args: argparse.Namespace
"""
print("----------- Configuration Arguments -----------")
for arg, value in sorted(vars(args).items()):
print("%s: %s" % (arg, value))
print("------------------------------------------------")
def add_arguments(argname, type, default, help, argparser, **kwargs):
"""Add argparse's argument.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
add_argument("name", str, "Jonh", "User name.", parser)
args = parser.parse_args()
"""
type = distutils.util.strtobool if type == bool else type
argparser.add_argument(
"--" + argname,
default=default,
type=type,
help=help + ' Default: %(default)s.',
**kwargs)

@ -1,251 +0,0 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Server-end for the ASR demo."""
import os
import time
import random
import argparse
import functools
from time import gmtime, strftime
import SocketServer
import struct
import wave
import paddle.fluid as fluid
import numpy as np
import _init_paths
from data_utils.data import DataGenerator
from model_utils.model import DeepSpeech2Model
from data_utils.utility import read_manifest
from utils.utility import add_arguments, print_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('host_port', int, 8086, "Server's IP port.")
add_arg('beam_size', int, 500, "Beam search width.")
add_arg('num_conv_layers', int, 2, "# of convolution layers.")
add_arg('num_rnn_layers', int, 3, "# of recurrent layers.")
add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.")
add_arg('alpha', float, 2.5, "Coef of LM for beam search.")
add_arg('beta', float, 0.3, "Coef of WC for beam search.")
add_arg('cutoff_prob', float, 1.0, "Cutoff probability for pruning.")
add_arg('cutoff_top_n', int, 40, "Cutoff number for pruning.")
add_arg('use_gru', bool, False, "Use GRUs instead of simple RNNs.")
add_arg('use_gpu', bool, True, "Use GPU or not.")
add_arg('share_rnn_weights',bool, True, "Share input-hidden weights across "
"bi-directional RNNs. Not for GRU.")
add_arg('host_ip', str,
'localhost',
"Server's IP address.")
add_arg('speech_save_dir', str,
'demo_cache',
"Directory to save demo audios.")
add_arg('warmup_manifest', str,
'data/librispeech/manifest.test-clean',
"Filepath of manifest to warm up.")
add_arg('mean_std_path', str,
'data/librispeech/mean_std.npz',
"Filepath of normalizer's mean & std.")
add_arg('vocab_path', str,
'data/librispeech/eng_vocab.txt',
"Filepath of vocabulary.")
add_arg('model_path', str,
'./checkpoints/libri/step_final',
"If None, the training starts from scratch, "
"otherwise, it resumes from the pre-trained model.")
add_arg('lang_model_path', str,
'lm/data/common_crawl_00.prune01111.trie.klm',
"Filepath for language model.")
add_arg('decoding_method', str,
'ctc_beam_search',
"Decoding method. Options: ctc_beam_search, ctc_greedy",
choices = ['ctc_beam_search', 'ctc_greedy'])
add_arg('specgram_type', str,
'linear',
"Audio feature type. Options: linear, mfcc.",
choices=['linear', 'mfcc'])
# yapf: disable
args = parser.parse_args()
class AsrTCPServer(SocketServer.TCPServer):
"""The ASR TCP Server."""
def __init__(self,
server_address,
RequestHandlerClass,
speech_save_dir,
audio_process_handler,
bind_and_activate=True):
self.speech_save_dir = speech_save_dir
self.audio_process_handler = audio_process_handler
SocketServer.TCPServer.__init__(
self, server_address, RequestHandlerClass, bind_and_activate=True)
class AsrRequestHandler(SocketServer.BaseRequestHandler):
"""The ASR request handler."""
def handle(self):
# receive data through TCP socket
chunk = self.request.recv(1024)
target_len = struct.unpack('>i', chunk[:4])[0]
data = chunk[4:]
while len(data) < target_len:
chunk = self.request.recv(1024)
data += chunk
# write to file
filename = self._write_to_file(data)
print("Received utterance[length=%d] from %s, saved to %s." %
(len(data), self.client_address[0], filename))
start_time = time.time()
transcript = self.server.audio_process_handler(filename)
finish_time = time.time()
print("Response Time: %f, Transcript: %s" %
(finish_time - start_time, transcript))
self.request.sendall(transcript.encode('utf-8'))
def _write_to_file(self, data):
# prepare save dir and filename
if not os.path.exists(self.server.speech_save_dir):
os.mkdir(self.server.speech_save_dir)
timestamp = strftime("%Y%m%d%H%M%S", gmtime())
out_filename = os.path.join(
self.server.speech_save_dir,
timestamp + "_" + self.client_address[0] + ".wav")
# write to wav file
file = wave.open(out_filename, 'wb')
file.setnchannels(1)
file.setsampwidth(4)
file.setframerate(16000)
file.writeframes(data)
file.close()
return out_filename
def warm_up_test(audio_process_handler,
manifest_path,
num_test_cases,
random_seed=0):
"""Warming-up test."""
manifest = read_manifest(manifest_path)
rng = random.Random(random_seed)
samples = rng.sample(manifest, num_test_cases)
for idx, sample in enumerate(samples):
print("Warm-up Test Case %d: %s", idx, sample['audio_filepath'])
start_time = time.time()
transcript = audio_process_handler(sample['audio_filepath'])
finish_time = time.time()
print("Response Time: %f, Transcript: %s" %
(finish_time - start_time, transcript))
def start_server():
"""Start the ASR server"""
# prepare data generator
if args.use_gpu:
place = fluid.CUDAPlace(0)
else:
place = fluid.CPUPlace()
data_generator = DataGenerator(
vocab_filepath=args.vocab_path,
mean_std_filepath=args.mean_std_path,
augmentation_config='{}',
specgram_type=args.specgram_type,
keep_transcription_text=True,
place = place,
is_training = False)
# prepare ASR model
ds2_model = DeepSpeech2Model(
vocab_size=data_generator.vocab_size,
num_conv_layers=args.num_conv_layers,
num_rnn_layers=args.num_rnn_layers,
rnn_layer_size=args.rnn_layer_size,
use_gru=args.use_gru,
init_from_pretrained_model=args.model_path,
place=place,
share_rnn_weights=args.share_rnn_weights)
vocab_list = [chars for chars in data_generator.vocab_list]
if args.decoding_method == "ctc_beam_search":
ds2_model.init_ext_scorer(args.alpha, args.beta, args.lang_model_path,
vocab_list)
# prepare ASR inference handler
def file_to_transcript(filename):
feature = data_generator.process_utterance(filename, "")
audio_len = feature[0].shape[1]
mask_shape0 = (feature[0].shape[0] - 1) // 2 + 1
mask_shape1 = (feature[0].shape[1] - 1) // 3 + 1
mask_max_len = (audio_len - 1) // 3 + 1
mask_ones = np.ones((mask_shape0, mask_shape1))
mask_zeros = np.zeros((mask_shape0, mask_max_len - mask_shape1))
mask = np.repeat(
np.reshape(
np.concatenate((mask_ones, mask_zeros), axis=1),
(1, mask_shape0, mask_max_len)),
32,
axis=0)
feature = (np.array([feature[0]]).astype('float32'),
None,
np.array([audio_len]).astype('int64').reshape([-1,1]),
np.array([mask]).astype('float32'))
probs_split = ds2_model.infer_batch_probs(
infer_data=feature,
feeding_dict=data_generator.feeding)
if args.decoding_method == "ctc_greedy":
result_transcript = ds2_model.decode_batch_greedy(
probs_split=probs_split,
vocab_list=vocab_list)
else:
result_transcript = ds2_model.decode_batch_beam_search(
probs_split=probs_split,
beam_alpha=args.alpha,
beam_beta=args.beta,
beam_size=args.beam_size,
cutoff_prob=args.cutoff_prob,
cutoff_top_n=args.cutoff_top_n,
vocab_list=vocab_list,
num_processes=1)
return result_transcript[0]
# warming up with utterrances sampled from Librispeech
print('-----------------------------------------------------------')
print('Warming up ...')
warm_up_test(
audio_process_handler=file_to_transcript,
manifest_path=args.warmup_manifest,
num_test_cases=3)
print('-----------------------------------------------------------')
# start the server
server = AsrTCPServer(
server_address=(args.host_ip, args.host_port),
RequestHandlerClass=AsrRequestHandler,
speech_save_dir=args.speech_save_dir,
audio_process_handler=file_to_transcript)
print("ASR Server Started.")
server.serve_forever()
def main():
print_arguments(args)
start_server()
if __name__ == "__main__":
main()

@ -0,0 +1,508 @@
# 语音识别: DeepSpeech2
[English](README.md)
*DeepSpeech2*是一个采用[PaddlePaddle](https://github.com/PaddlePaddle/Paddle)平台的端到端自动语音识别ASR引擎的开源项目具体原理参考这篇论文[Baidu's Deep Speech 2 paper](http://proceedings.mlr.press/v48/amodei16.pdf)。
我们的愿景是为语音识别在工业应用和学术研究上,提供易于使用、高效和可扩展的工具,包括训练,推理,测试模块,以及 demo 部署。同时,我们还将发布一些预训练好的英语和普通话模型。
## 目录
- [安装](#安装)
- [在 Docker 容器上运行](#在Docker容器上运行)
- [开始](#开始)
- [数据准备](#数据准备)
- [训练模型](#训练模型)
- [数据增强流水线](#数据增强流水线)
- [推断和评价](#推断和评价)
- [超参数调整](#超参数调整)
- [训练汉语语言](#训练汉语语言)
- [用自己的声音尝试现场演示](#用自己的声音尝试现场演示)
- [发布模型](#发布模型)
- [试验和基准](#试验和基准)
- [问题和帮助](#问题和帮助)
## 安装
为了避免环境配置问题,强烈建议在[Docker容器上运行](#在Docker容器上运行),否则请按照下面的指南安装依赖项。
### 前提
- Python >= 3.7
- PaddlePaddle 1.8.5 版本及以上(请参考[安装指南](https://www.paddlepaddle.org.cn/install/quick)
### 安装
- 请确保以下库或工具已安装完毕:`pkg-config`, `flac`, `ogg`, `vorbis`, `boost``swig`, 如可以通过`apt-get`安装:
```bash
sudo apt-get install -y pkg-config libflac-dev libogg-dev libvorbis-dev libboost-dev swig python3-dev
```
或者,也可以通过`yum`安装:
```bash
sudo yum install pkgconfig libogg-devel libvorbis-devel boost-devel python3-devel
wget https://ftp.osuosl.org/pub/xiph/releases/flac/flac-1.3.1.tar.xz
xz -d flac-1.3.1.tar.xz
tar -xvf flac-1.3.1.tar
cd flac-1.3.1
./configure
make
make install
```
- 运行脚本安装其余的依赖项
```bash
git clone https://github.com/PaddlePaddle/DeepSpeech.git
cd DeepSpeech
pushd tools; make; popd
source tools/venv/bin/activate
sh setup.sh
```
- Source venv before do experiment.
```bash
source tools/venv/bin/activate
```
### 在Docker容器上运行
Docker 是一个开源工具,用于在孤立的环境中构建、发布和运行分布式应用程序。此项目的 Docker 镜像已在[hub.docker.com](https://hub.docker.com)中提供并安装了所有依赖项其中包括预先构建的PaddlePaddleCTC解码器以及其他必要的 Python 和第三方库。这个 Docker 映像需要NVIDIA GPU的支持所以请确保它的可用性并已完成[nvidia-docker](https://github.com/NVIDIA/nvidia-docker)的安装。
采取以下步骤来启动 Docker 镜像:
- 下载 Docker 镜像
```bash
nvidia-docker pull hub.baidubce.com/paddlepaddle/deep_speech_fluid:latest-gpu
```
- git clone 这个资源库
```
git clone https://github.com/PaddlePaddle/DeepSpeech.git
```
- 运行 Docker 镜像
```bash
sudo nvidia-docker run -it -v $(pwd)/DeepSpeech:/DeepSpeech hub.baidubce.com/paddlepaddle/deep_speech_fluid:latest-gpu /bin/bash
```
现在返回并从[开始](#开始)部分开始您可以在Docker容器中同样执行模型训练推断和超参数调整。
- 安装 PaddlePaddle
例如 CUDA 10.1, CuDNN7.5:
```bash
python3 -m pip install paddlepaddle-gpu==1.8.5.post107
```
## 开始
`./examples`里的一些 shell 脚本将帮助我们在一些公开数据集(比如:[LibriSpeech](http://www.openslr.org/12/), [Aishell](http://www.openslr.org/33)) 进行快速尝试,包括了数据准备,模型训练,案例推断和模型评价。阅读这些例子将帮助你理解如何使用你的数据集训练模型。
`./examples`目录中的一些脚本配置使用了 8 个 GPU。如果你没有 8 个可用的 GPU请修改环境变量`CUDA_VISIBLE_DEVICES`。如果你没有可用的 GPU请设置`--use_gpu`为 False这样程序会用 CPU 代替 GPU。另外如果发生内存不足的问题减小`--batch_size`即可。
让我们先看看[LibriSpeech dataset](http://www.openslr.org/12/)小样本集的例子。
- 进入目录
```bash
cd examples/tiny
```
注意这仅仅是 LibriSpeech 一个小数据集的例子。如果你想尝试完整的数据集(可能需要花好几天来训练模型),请使用这个路径`examples/librispeech`。
- 准备数据
```bash
sh run_data.sh
```
运行`run_data.sh`脚本将会下载数据集,产出 manifests 文件,收集一些归一化需要的统计信息并建立词表。当数据准备完成之后,下载完的数据(仅有 LibriSpeech 一部分)在`dataset/librispeech`中;其对应的 manifest 文件,均值标准差和词表文件在`./data/tiny`中。在第一次执行的时候一定要执行这个脚本,在接下来所有的实验中我们都会用到这个数据集。
- 训练你自己的 ASR 模型
```bash
sh run_train.sh
```
`run_train.sh`将会启动训练任务,训练日志会打印到终端,并且模型每个 epoch 的 checkpoint 都会保存到`./checkpoints/tiny`目录中。这些 checkpoint 可以用来恢复训练,推断,评价和部署。
- 用已有的模型进行案例推断
```bash
sh run_infer.sh
```
`run_infer.sh`将会利用训练好的模型展现一些(默认 10 个)样本语音到文本的解码结果。由于当前模型只使用了 LibriSpeech 一部分数据集训练,因此性能可能不会太好。为了看到更好模型上的表现,你可以下载一个已训练好的模型(用完整的 LibriSpeech 训练了好几天)来做推断。
```bash
sh run_infer_golden.sh
```
- 评价一个已经存在的模型
```bash
sh run_test.sh
```
`run_test.sh`能够利用误字率(或字符错误率)来评价模型。类似的,你可以下载一个完全训练好的模型来测试它的性能:
```bash
sh run_test_golden.sh
```
更多细节会在接下来的章节中阐述。祝你在*DeepSpeech2*ASR引擎学习中过得愉快
## 数据准备
### 生成Manifest
*DeepSpeech2*接受文本**manifest**文件作为数据接口。manifest 文件包含了一系列语音数据,其中每一行代表一个[JSON](http://www.json.org/)格式的音频元数据(比如文件路径,描述,时长)。具体格式如下:
```
{"audio_filepath": "/home/work/.cache/paddle/Libri/134686/1089-134686-0001.flac", "duration": 3.275, "text": "stuff it into you his belly counselled him"}
{"audio_filepath": "/home/work/.cache/paddle/Libri/134686/1089-134686-0007.flac", "duration": 4.275, "text": "a cold lucid indifference reigned in his soul"}
```
如果你要使用自定义数据,你只需要按照以上格式生成自己的 manifest 文件即可。给定 manifest 文件,训练、推断以及其它所有模块都能够访问到音频数据以及对应的时长和标签数据。
关于如何生成 manifest 文件,请参考`data/librispeech/librispeech.py`。该脚本将会下载 LibriSpeech 数据集并生成 manifest 文件。
### 计算均值和标准差用于归一化
为了对音频特征进行 z-score 归一化(零均值,单位标准差),我们必须预估训练样本特征的均值和标准差:
```bash
python3 tools/compute_mean_std.py \
--num_samples 2000 \
--specgram_type linear \
--manifest_path data/librispeech/manifest.train \
--output_path data/librispeech/mean_std.npz
```
以上这段代码会计算在`data/librispeech/manifest.train`路径中2000 个随机采样的语音频谱特征的均值和标准差,并将结果保存在`data/librispeech/mean_std.npz`中,方便以后使用。
### 建立词表
我们需要一个包含可能会出现的字符集合的词表来在训练的时候将字符转换成索引,并在解码的时候将索引转换回文本。`tools/build_vocab.py`脚本将生成这种基于字符的词表。
```bash
python3 tools/build_vocab.py \
--count_threshold 0 \
--vocab_path data/librispeech/eng_vocab.txt \
--manifest_paths data/librispeech/manifest.train
```
它将`data/librispeech/manifest.train`目录中的所有录音文本写入词表文件`data/librispeeech/eng_vocab.txt`,并且没有词汇截断(`--count_threshold 0`)。
### 更多帮助
获得更多帮助:
```bash
python3 data/librispeech/librispeech.py --help
python3 tools/compute_mean_std.py --help
python3 tools/build_vocab.py --help
```
## 训练模型
`train.py`是训练模块的主要调用者。使用示例如下。
- 开始使用 8 片 GPU 训练:
```
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train.py
```
- 开始使用 CPU 训练:
```
python3 train.py --use_gpu False
```
- 从检查点恢复训练:
```
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python3 train.py \
--init_from_pretrained_model CHECKPOINT_PATH_TO_RESUME_FROM
```
获得更多帮助:
```bash
python3 train.py --help
```
或参考 `example/librispeech/run_train.sh`.
## 数据增强流水线
数据增强是用来提升深度学习性能的非常有效的技术。我们通过在原始音频中添加小的随机扰动标签不变转换获得新音频来增强我们的语音数据。你不必自己合成因为数据增强已经嵌入到数据生成器中并且能够即时完成在训练模型的每个epoch中随机合成音频。
目前提供六个可选的增强组件供选择,配置并插入处理过程。
- 音量扰动
- 速度扰动
- 移动扰动
- 在线贝叶斯归一化
- 噪声干扰(需要背景噪音的音频文件)
- 脉冲响应(需要脉冲音频文件)
为了让训练模块知道需要哪些增强组件以及它们的处理顺序,我们需要事先准备一个[JSON](http://www.json.org/)格式的*扩展配置文件*。例如:
```
[{
"type": "speed",
"params": {"min_speed_rate": 0.95,
"max_speed_rate": 1.05},
"prob": 0.6
},
{
"type": "shift",
"params": {"min_shift_ms": -5,
"max_shift_ms": 5},
"prob": 0.8
}]
```
当`trainer.py`的`--augment_conf_file`参数被设置为上述示例配置文件的路径时,每个 epoch 中的每个音频片段都将被处理。首先均匀随机采样速率会有60的概率在 0.95 和 1.05 之间对音频片段进行速度扰动。然后,音频片段有 80 的概率在时间上被挪移,挪移偏差值是 -5 毫秒和 5 毫秒之间的随机采样。最后,这个新合成的音频片段将被传送给特征提取器,以用于接下来的训练。
有关其他配置实例,请参考`conf/augmenatation.config.example`.
使用数据增强技术时要小心,由于扩大了训练和测试集的差异,不恰当的增强会对训练模型不利,导致训练和预测的差距增大。
## 推断和评价
### 准备语言模型
提升解码器的性能需要准备语言模型。我们准备了两种语言模型(有损压缩)供用户下载和尝试。一个是英语模型,另一个是普通话模型。用户可以执行以下命令来下载已经训练好的语言模型:
```bash
cd models/lm
bash download_lm_en.sh
bash download_lm_ch.sh
```
如果你想训练自己更好的语言模型,请参考[KenLM](https://github.com/kpu/kenlm)获取教程。在这里,我们提供一些技巧来展示我们如何准备我们的英语和普通话模型。当你训练自己的模型的时候,可以参考这些技巧。
#### 英语语言模型
英语语料库来自[Common Crawl Repository](http://commoncrawl.org),你可以从[statmt](http://data.statmt.org/ngrams/deduped_en)下载它。我们使用en.00部分来训练我们的英语语言模型。训练前有如下的一些预处理过程:
* 不在\['A-Za-z0-9\s'\]\s表示空白字符中的字符将被删除阿拉伯数字被转换为英文数字比如“1000”转换为 one thousand。
* 重复的空白字符被压缩为一个,并且开始的空白字符将被删除。请注意,所有的录音都是小写字母,因此所有字符都转换为小写字母。
* 选择前 40 万个最常用的单词来建立词表其余部分将被替换为“UNKNOWNWORD”。
现在预处理完成了,我们得到一个干净的语料库来训练语言模型。我们发布的语言模型版本使用了参数“-o 5 --prune 0 1 1 1 1”来训练。“-o 5”表示语言模型的最大order为 5。“--prune 0 1 1 1 1”表示每个 order 的计数阈值,更具体地说,它将第 2 个以及更高的 order 修剪为单个。为了节省磁盘存储空间,我们将使用参数“-a 22 -q 8 -b 8”将 arpa 文件转换为“trie”二进制文件。“-a”表示在“trie”中用于切分的指针的最高位数。“-q -b”是概率和退避的量化参数。
#### 普通话语言模型
与英语语言模型不同的是,普通话语言模型是基于字符的,其中每一位都是中文汉字。我们使用内部语料库来训练发布的汉语语言模型。该语料库包含数十亿汉字。预处理阶段与英语语言模型有一些小的差别,主要步骤包括:
* 删除开始和结尾的空白字符。
* 删除英文标点和中文标点。
* 在两个字符之间插入空白字符。
请注意,发布的语言模型只包含中文简体字。预处理完成后,我们开始训练语言模型。这个小的语言模型训练关键参数是“-o 5 --prune 0 1 2 4 4”“-o 5”是针对大语言模型。请参考上面的部分了解每个参数的含义。我们还使用默认设置将 arpa 文件转换为二进制文件。
### 语音到文本推断
推断模块使用`infer.py`进行调用可以用来推断解码以及输出一些给定音频片段可视化到文本的结果。这有助于对ASR模型的性能进行直观和定性的评估。
- GPU 版本的推断:
```bash
CUDA_VISIBLE_DEVICES=0 python3 infer.py
```
- CPU 版本的推断:
```bash
python3 infer.py --use_gpu False
```
我们提供两种类型的 CTC 解码器:*CTC贪心解码器*和*CTC波束搜索解码器*。*CTC贪心解码器*是简单的最佳路径解码算法的实现,在每个时间步选择最可能的字符,因此是贪心的并且是局部最优的。[*CTC波束搜索解码器*](https://arxiv.org/abs/1408.2873)另外使用了启发式广度优先图搜索以达到近似全局最优; 它也需要预先训练的KenLM语言模型以获得更好的评分和排名。解码器类型可以用参数`--decoding_method`设置。
获得更多帮助:
```
python3 infer.py --help
```
或参考`example/librispeech/run_infer.sh`.
### 评估模型
要定量评估模型的性能,请运行:
- GPU 版本评估
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 test.py
```
- CPU 版本评估
```bash
python3 test.py --use_gpu False
```
错误率(默认:误字率;可以用--error_rate_type设置将被打印出来。
获得更多帮助:
```bash
python3 test.py --help
```
或参考`example/librispeech/run_test.sh`.
## 超参数调整
[*CTC波束搜索解码器*](https://arxiv.org/abs/1408.2873)的超参数$\alpha$(语言模型权重)和$\beta$(单词插入权重)对解码器的性能有非常显著的影响。当声学模型更新时,最好在验证集上重新调整它们。
`tools/tune.py`会进行2维网格查找超参数$\alpha$和$\beta$。你必须提供$\alpha$和$\beta$的范围,以及尝试的次数。
- GPU 版的调整:
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python3 tools/tune.py \
--alpha_from 1.0 \
--alpha_to 3.2 \
--num_alphas 45 \
--beta_from 0.1 \
--beta_to 0.45 \
--num_betas 8
```
- CPU 版的调整:
```bash
python3 tools/tune.py --use_gpu False
```
网格搜索将会在超参数空间的每个点处打印出 WER (误字率)或者 CER (字符错误率),并且可绘出误差曲面。一个合适的超参数范围应包括 WER/CER 误差表面的全局最小值,如下图所示。
<p align="center">
<img src="docs/images/tuning_error_surface.png" width=550>
<br/>调整LibriSpeech的dev-clean集合的误差曲面示例
</p>
通常,如图所示,语言模型权重($\alpha$)的变化显著影响 CTC波束搜索解码器的性能。更好的方法是首先调整多批数据可指定数量以找出适当的超参数范围然后更改为完整的验证集以进行精确调整。
调整之后,您可以在推理和评价模块中重置$\alpha$和$\beta$,以检查它们是否真的有助于提高 ASR 性能。更多帮助如下:
```bash
python3 tune.py --help
```
或参考`example/librispeech/run_tune.sh`.
## 训练普通话语言
普通话语言训练与英语训练的关键步骤相同,我们提供了一个使用 Aishell 进行普通话训练的例子```examples/aishell```。如上所述,请执行```sh run_data.sh```, ```sh run_train.sh```, ```sh run_test.sh```和```sh run_infer.sh```做相应的数据准备,训练,测试和推断。我们还准备了一个预训练过的模型(执行./models/aishell/download_model.sh下载供用户使用```run_infer_golden.sh```和```run_test_golden.sh```来。请注意,与英语语言模型不同,普通话语言模型是基于汉字的,请运行```tools/tune.py```来查找最佳设置。
## 用自己的声音尝试现场演示
到目前为止,一个 ASR 模型已经训练完毕,并且用现有的音频文件进行了定性测试(`infer.py`)和定量测试(`test.py`)。但目前还没有用你自己的声音进行测试。`deploy/demo_english_server.py`和`deploy/demo_client.py`能够快速构建一个利用已训练好的模型对ASR引擎进行实时演示的系统使你能够用自己的语音测试和演示。
要启动演示服务,请在控制台中运行:
```bash
CUDA_VISIBLE_DEVICES=0 \
python3 deploy/demo_server.py \
--host_ip localhost \
--host_port 8086
```
对于运行 demo 客户端的机器(可能不是同一台机器),请在继续之前执行以下安装。
比如,对于 MAC OS X 机器:
```bash
brew install portaudio
pip install pyaudio
pip install keyboard
```
然后启动客户端,请在另一个控制台中运行:
```bash
CUDA_VISIBLE_DEVICES=0 \
python3 -u deploy/demo_client.py \
--host_ip 'localhost' \
--host_port 8086
```
现在,在客户端控制台中,按下`空格`键,按住并开始讲话。讲话完毕请释放该键以让控制台中显示语音的文本结果。要退出客户端,只需按`ESC`键。
请注意,`deploy/demo_client.py`必须在带麦克风设备的机器上运行,而`deploy/demo_server.py`可以在没有任何录音硬件的情况下运行,例如任何远程服务器机器。如果服务器和客户端使用两台独立的机器运行,只需要注意将`host_ip`和`host_port`参数设置为实际可访问的IP地址和端口。如果它们在单台机器上运行则不用作任何处理。
请参考`examples/deploy_demo/run_english_demo_server.sh`它将首先下载一个预先训练过的英语模型用3000小时的内部语音数据训练然后用模型启动演示服务器。通过运行`examples/mandarin/run_demo_client.sh`,你可以说英语来测试它。如果您想尝试其他模型,只需更新脚本中的`--model_path`参数即可。
获得更多帮助:
```bash
python3 deploy/demo_server.py --help
python3 deploy/demo_client.py --help
```
## 发布模型
#### 语音模型发布
语种 | 模型名 | 训练数据 | 语音时长
:-----------: | :------------: | :----------: | -------:
English | [LibriSpeech Model](https://deepspeech.bj.bcebos.com/eng_models/librispeech_model_fluid.tar.gz) | [LibriSpeech Dataset](http://www.openslr.org/12/) | 960 h
English | [BaiduEN8k Model](https://deepspeech.bj.bcebos.com/demo_models/baidu_en8k_model_fluid.tar.gz) | Baidu Internal English Dataset | 8628 h
Mandarin | [Aishell Model](https://deepspeech.bj.bcebos.com/mandarin_models/aishell_model_fluid.tar.gz) | [Aishell Dataset](http://www.openslr.org/33/) | 151 h
Mandarin | [BaiduCN1.2k Model](https://deepspeech.bj.bcebos.com/demo_models/baidu_cn1.2k_model_fluid.tar.gz) | Baidu Internal Mandarin Dataset | 1204 h
#### 语言模型发布
语言模型 | 训练数据 | 基于的字符 | 大小 | 描述
:-------------:| :------------:| :-----: | -----: | :-----------------
[English LM](https://deepspeech.bj.bcebos.com/en_lm/common_crawl_00.prune01111.trie.klm) | [CommonCrawl(en.00)](http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/en/deduped/en.00.deduped.xz) | Word-based | 8.3 GB | Pruned with 0 1 1 1 1; <br/> About 1.85 billion n-grams; <br/> 'trie' binary with '-a 22 -q 8 -b 8'
[Mandarin LM Small](https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm) | Baidu Internal Corpus | Char-based | 2.8 GB | Pruned with 0 1 2 4 4; <br/> About 0.13 billion n-grams; <br/> 'probing' binary with default settings
[Mandarin LM Large](https://deepspeech.bj.bcebos.com/zh_lm/zhidao_giga.klm) | Baidu Internal Corpus | Char-based | 70.4 GB | No Pruning; <br/> About 3.7 billion n-grams; <br/> 'probing' binary with default settings
## 实验和baseline
#### 英语模型的baseline测试结果字错误率
测试集 | LibriSpeech Model | BaiduEN8K Model
:--------------------- | ---------------: | -------------------:
LibriSpeech Test-Clean | 6.85 | 5.41
LibriSpeech Test-Other | 21.18 | 13.85
VoxForge American-Canadian | 12.12 | 7.13
VoxForge Commonwealth | 19.82 | 14.93
VoxForge European | 30.15 | 18.64
VoxForge Indian | 53.73 | 25.51
Baidu Internal Testset | 40.75 | 8.48
为了在VoxForge数据上重现基准测试结果我们提供了一个脚本来下载数据并生成VoxForge方言manifest文件。请到```data/voxforge```执行````run_data.sh```来获取VoxForge方言manifest文件。请注意VoxForge数据可能会持续更新生成的清单文件可能与我们评估的清单文件有所不同。
#### 普通话模型的baseline测试结果字符错误率
测试集 | BaiduCN1.2k Model
:--------------------- | -------------------:
Baidu Internal Testset | 12.64
#### 多GPU加速
我们对1,2,4,8个Tesla V100 GPU的训练时间LibriSpeech样本的子集其音频持续时间介于6.0和7.0秒之间进行比较。它表明已经实现了具有多个GPU的**近线性**加速。在下图中,训练的时间(以秒为单位)显示在蓝色条上。
<img src="docs/images/multi_gpu_speedup.png" width=450><br/>
| # of GPU | 加速比 |
| -------- | --------------: |
| 1 | 1.00 X |
| 2 | 1.98 X |
| 4 | 3.73 X |
| 8 | 6.95 X |
`tools/profile.sh`提供了上述分析工具.
## 问题和帮助
欢迎您在[Github问题](https://github.com/PaddlePaddle/models/issues)中提交问题和bug。也欢迎您为这个项目做出贡献。

@ -0,0 +1,507 @@
# DeepSpeech2 on PaddlePaddle
[中文版](README_cn.md)
*DeepSpeech2 on PaddlePaddle* is an open-source implementation of end-to-end Automatic Speech Recognition (ASR) engine, based on [Baidu's Deep Speech 2 paper](http://proceedings.mlr.press/v48/amodei16.pdf), with [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) platform. Our vision is to empower both industrial application and academic research on speech recognition, via an easy-to-use, efficient and scalable implementation, including training, inference & testing module, and demo deployment. Besides, several pre-trained models for both English and Mandarin are also released.
## Table of Contents
- [Installation](#installation)
- [Running in Docker Container](#running-in-docker-container)
- [Getting Started](#getting-started)
- [Data Preparation](#data-preparation)
- [Training a Model](#training-a-model)
- [Data Augmentation Pipeline](#data-augmentation-pipeline)
- [Inference and Evaluation](#inference-and-evaluation)
- [Hyper-parameters Tuning](#hyper-parameters-tuning)
- [Training for Mandarin Language](#training-for-mandarin-language)
- [Trying Live Demo with Your Own Voice](#trying-live-demo-with-your-own-voice)
- [Released Models](#released-models)
- [Experiments and Benchmarks](#experiments-and-benchmarks)
- [Questions and Help](#questions-and-help)
## Installation
To avoid the trouble of environment setup, [running in Docker container](#running-in-docker-container) is highly recommended. Otherwise follow the guidelines below to install the dependencies manually.
### Prerequisites
- Python >= 3.7
- PaddlePaddle 1.8.5 (please refer to the [Installation Guide](https://www.paddlepaddle.org.cn/documentation/docs/en/beginners_guide/index_en.html))
### Setup
- Make sure these libraries or tools installed: `pkg-config`, `flac`, `ogg`, `vorbis`, `boost` and `swig`, e.g. installing them via `apt-get`:
```bash
sudo apt-get install -y pkg-config libflac-dev libogg-dev libvorbis-dev libboost-dev swig python3-dev
```
or, installing them via `yum`:
```bash
sudo yum install pkgconfig libogg-devel libvorbis-devel boost-devel python3-devel
wget https://ftp.osuosl.org/pub/xiph/releases/flac/flac-1.3.1.tar.xz
xz -d flac-1.3.1.tar.xz
tar -xvf flac-1.3.1.tar
cd flac-1.3.1
./configure
make
make install
```
- Run the setup script for the remaining dependencies
```bash
git clone https://github.com/PaddlePaddle/DeepSpeech.git
cd DeepSpeech
pushd tools; make; popd
source tools/venv/bin/activate
bash setup.sh
```
- Source venv before do experiment.
```bash
source tools/venv/bin/activate
```
### Running in Docker Container
Docker is an open source tool to build, ship, and run distributed applications in an isolated environment. A Docker image for this project has been provided in [hub.docker.com](https://hub.docker.com) with all the dependencies installed, including the pre-built PaddlePaddle, CTC decoders, and other necessary Python and third-party packages. This Docker image requires the support of NVIDIA GPU, so please make sure its availiability and the [nvidia-docker](https://github.com/NVIDIA/nvidia-docker) has been installed.
Take several steps to launch the Docker image:
- Download the Docker image
```bash
nvidia-docker pull hub.baidubce.com/paddlepaddle/deep_speech_fluid:latest-gpu
```
- Clone this repository
```
git clone https://github.com/PaddlePaddle/DeepSpeech.git
```
- Run the Docker image
```bash
sudo nvidia-docker run -it -v $(pwd)/DeepSpeech:/DeepSpeech hub.baidubce.com/paddlepaddle/deep_speech_fluid:latest-gpu /bin/bash
```
Now go back and start from the [Getting Started](#getting-started) section, you can execute training, inference and hyper-parameters tuning similarly in the Docker container.
- Install PaddlePaddle
For example, for CUDA 10.1, CuDNN7.5:
```bash
python3 -m pip install paddlepaddle-gpu==1.8.0.post107
```
## Getting Started
Several shell scripts provided in `./examples` will help us to quickly give it a try, for most major modules, including data preparation, model training, case inference and model evaluation, with a few public dataset (e.g. [LibriSpeech](http://www.openslr.org/12/), [Aishell](http://www.openslr.org/33)). Reading these examples will also help you to understand how to make it work with your own data.
Some of the scripts in `./examples` are configured with 8 GPUs. If you don't have 8 GPUs available, please modify `CUDA_VISIBLE_DEVICES`. If you don't have any GPU available, please set `--use_gpu` to False to use CPUs instead. Besides, if out-of-memory problem occurs, just reduce `--batch_size` to fit.
Let's take a tiny sampled subset of [LibriSpeech dataset](http://www.openslr.org/12/) for instance.
- Go to directory
```bash
cd examples/tiny
```
Notice that this is only a toy example with a tiny sampled subset of LibriSpeech. If you would like to try with the complete dataset (would take several days for training), please go to `examples/librispeech` instead.
- Prepare the data
```bash
sh run_data.sh
```
`run_data.sh` will download dataset, generate manifests, collect normalizer's statistics and build vocabulary. Once the data preparation is done, you will find the data (only part of LibriSpeech) downloaded in `./dataset/librispeech` and the corresponding manifest files generated in `./data/tiny` as well as a mean stddev file and a vocabulary file. It has to be run for the very first time you run this dataset and is reusable for all further experiments.
- Train your own ASR model
```bash
sh run_train.sh
```
`run_train.sh` will start a training job, with training logs printed to stdout and model checkpoint of every pass/epoch saved to `./checkpoints/tiny`. These checkpoints could be used for training resuming, inference, evaluation and deployment.
- Case inference with an existing model
```bash
sh run_infer.sh
```
`run_infer.sh` will show us some speech-to-text decoding results for several (default: 10) samples with the trained model. The performance might not be good now as the current model is only trained with a toy subset of LibriSpeech. To see the results with a better model, you can download a well-trained (trained for several days, with the complete LibriSpeech) model and do the inference:
```bash
sh run_infer_golden.sh
```
- Evaluate an existing model
```bash
sh run_test.sh
```
`run_test.sh` will evaluate the model with Word Error Rate (or Character Error Rate) measurement. Similarly, you can also download a well-trained model and test its performance:
```bash
sh run_test_golden.sh
```
More detailed information are provided in the following sections. Wish you a happy journey with the *DeepSpeech2 on PaddlePaddle* ASR engine!
## Data Preparation
### Generate Manifest
*DeepSpeech2 on PaddlePaddle* accepts a textual **manifest** file as its data set interface. A manifest file summarizes a set of speech data, with each line containing some meta data (e.g. filepath, transcription, duration) of one audio clip, in [JSON](http://www.json.org/) format, such as:
```
{"audio_filepath": "/home/work/.cache/paddle/Libri/134686/1089-134686-0001.flac", "duration": 3.275, "text": "stuff it into you his belly counselled him"}
{"audio_filepath": "/home/work/.cache/paddle/Libri/134686/1089-134686-0007.flac", "duration": 4.275, "text": "a cold lucid indifference reigned in his soul"}
```
To use your custom data, you only need to generate such manifest files to summarize the dataset. Given such summarized manifests, training, inference and all other modules can be aware of where to access the audio files, as well as their meta data including the transcription labels.
For how to generate such manifest files, please refer to `data/librispeech/librispeech.py`, which will download data and generate manifest files for LibriSpeech dataset.
### Compute Mean & Stddev for Normalizer
To perform z-score normalization (zero-mean, unit stddev) upon audio features, we have to estimate in advance the mean and standard deviation of the features, with some training samples:
```bash
python3 tools/compute_mean_std.py \
--num_samples 2000 \
--specgram_type linear \
--manifest_path data/librispeech/manifest.train \
--output_path data/librispeech/mean_std.npz
```
It will compute the mean and standard deviatio of power spectrum feature with 2000 random sampled audio clips listed in `data/librispeech/manifest.train` and save the results to `data/librispeech/mean_std.npz` for further usage.
### Build Vocabulary
A vocabulary of possible characters is required to convert the transcription into a list of token indices for training, and in decoding, to convert from a list of indices back to text again. Such a character-based vocabulary can be built with `tools/build_vocab.py`.
```bash
python3 tools/build_vocab.py \
--count_threshold 0 \
--vocab_path data/librispeech/eng_vocab.txt \
--manifest_paths data/librispeech/manifest.train
```
It will write a vocabuary file `data/librispeeech/eng_vocab.txt` with all transcription text in `data/librispeech/manifest.train`, without vocabulary truncation (`--count_threshold 0`).
### More Help
For more help on arguments:
```bash
python3 data/librispeech/librispeech.py --help
python3 tools/compute_mean_std.py --help
python3 tools/build_vocab.py --help
```
## Training a model
`train.py` is the main caller of the training module. Examples of usage are shown below.
- Start training from scratch with 8 GPUs:
```
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train.py
```
- Start training from scratch with CPUs:
```
python3 train.py --use_gpu False
```
- Resume training from a checkpoint:
```
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python3 train.py \
--init_from_pretrained_model CHECKPOINT_PATH_TO_RESUME_FROM
```
For more help on arguments:
```bash
python3 train.py --help
```
or refer to `example/librispeech/run_train.sh`.
## Data Augmentation Pipeline
Data augmentation has often been a highly effective technique to boost the deep learning performance. We augment our speech data by synthesizing new audios with small random perturbation (label-invariant transformation) added upon raw audios. You don't have to do the syntheses on your own, as it is already embedded into the data provider and is done on the fly, randomly for each epoch during training.
Six optional augmentation components are provided to be selected, configured and inserted into the processing pipeline.
- Volume Perturbation
- Speed Perturbation
- Shifting Perturbation
- Online Bayesian normalization
- Noise Perturbation (need background noise audio files)
- Impulse Response (need impulse audio files)
In order to inform the trainer of what augmentation components are needed and what their processing orders are, it is required to prepare in advance an *augmentation configuration file* in [JSON](http://www.json.org/) format. For example:
```
[{
"type": "speed",
"params": {"min_speed_rate": 0.95,
"max_speed_rate": 1.05},
"prob": 0.6
},
{
"type": "shift",
"params": {"min_shift_ms": -5,
"max_shift_ms": 5},
"prob": 0.8
}]
```
When the `--augment_conf_file` argument of `trainer.py` is set to the path of the above example configuration file, every audio clip in every epoch will be processed: with 60% of chance, it will first be speed perturbed with a uniformly random sampled speed-rate between 0.95 and 1.05, and then with 80% of chance it will be shifted in time with a random sampled offset between -5 ms and 5 ms. Finally this newly synthesized audio clip will be feed into the feature extractor for further training.
For other configuration examples, please refer to `conf/augmenatation.config.example`.
Be careful when utilizing the data augmentation technique, as improper augmentation will do harm to the training, due to the enlarged train-test gap.
## Inference and Evaluation
### Prepare Language Model
A language model is required to improve the decoder's performance. We have prepared two language models (with lossy compression) for users to download and try. One is for English and the other is for Mandarin. Users can simply run this to download the preprared language models:
```bash
cd models/lm
bash download_lm_en.sh
bash download_lm_ch.sh
```
If you wish to train your own better language model, please refer to [KenLM](https://github.com/kpu/kenlm) for tutorials. Here we provide some tips to show how we preparing our English and Mandarin language models. You can take it as a reference when you train your own.
#### English LM
The English corpus is from the [Common Crawl Repository](http://commoncrawl.org) and you can download it from [statmt](http://data.statmt.org/ngrams/deduped_en). We use part en.00 to train our English language model. There are some preprocessing steps before training:
* Characters not in \['A-Za-z0-9\s'\] (\s represents whitespace characters) are removed and Arabic numbers are converted to English numbers like 1000 to one thousand.
* Repeated whitespace characters are squeezed to one and the beginning whitespace characters are removed. Notice that all transcriptions are lowercase, so all characters are converted to lowercase.
* Top 400,000 most frequent words are selected to build the vocabulary and the rest are replaced with 'UNKNOWNWORD'.
Now the preprocessing is done and we get a clean corpus to train the language model. Our released language model are trained with agruments '-o 5 --prune 0 1 1 1 1'. '-o 5' means the max order of language model is 5. '--prune 0 1 1 1 1' represents count thresholds for each order and more specifically it will prune singletons for orders two and higher. To save disk storage we convert the arpa file to 'trie' binary file with arguments '-a 22 -q 8 -b 8'. '-a' represents the maximum number of leading bits of pointers in 'trie' to chop. '-q -b' are quantization parameters for probability and backoff.
#### Mandarin LM
Different from the English language model, Mandarin language model is character-based where each token is a Chinese character. We use internal corpus to train the released Mandarin language models. The corpus contain billions of tokens. The preprocessing has tiny difference from English language model and main steps include:
* The beginning and trailing whitespace characters are removed.
* English punctuations and Chinese punctuations are removed.
* A whitespace character between two tokens is inserted.
Please notice that the released language models only contain Chinese simplified characters. After preprocessing done we can begin to train the language model. The key training arguments for small LM is '-o 5 --prune 0 1 2 4 4' and '-o 5' for large LM. Please refer above section for the meaning of each argument. We also convert the arpa file to binary file using default settings.
### Speech-to-text Inference
An inference module caller `infer.py` is provided to infer, decode and visualize speech-to-text results for several given audio clips. It might help to have an intuitive and qualitative evaluation of the ASR model's performance.
- Inference with GPU:
```bash
CUDA_VISIBLE_DEVICES=0 python3 infer.py
```
- Inference with CPUs:
```bash
python3 infer.py --use_gpu False
```
We provide two types of CTC decoders: *CTC greedy decoder* and *CTC beam search decoder*. The *CTC greedy decoder* is an implementation of the simple best-path decoding algorithm, selecting at each timestep the most likely token, thus being greedy and locally optimal. The [*CTC beam search decoder*](https://arxiv.org/abs/1408.2873) otherwise utilizes a heuristic breadth-first graph search for reaching a near global optimality; it also requires a pre-trained KenLM language model for better scoring and ranking. The decoder type can be set with argument `--decoding_method`.
For more help on arguments:
```
python3 infer.py --help
```
or refer to `example/librispeech/run_infer.sh`.
### Evaluate a Model
To evaluate a model's performance quantitatively, please run:
- Evaluation with GPUs:
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 test.py
```
- Evaluation with CPUs:
```bash
python3 test.py --use_gpu False
```
The error rate (default: word error rate; can be set with `--error_rate_type`) will be printed.
For more help on arguments:
```bash
python3 test.py --help
```
or refer to `example/librispeech/run_test.sh`.
## Hyper-parameters Tuning
The hyper-parameters $\alpha$ (language model weight) and $\beta$ (word insertion weight) for the [*CTC beam search decoder*](https://arxiv.org/abs/1408.2873) often have a significant impact on the decoder's performance. It would be better to re-tune them on the validation set when the acoustic model is renewed.
`tools/tune.py` performs a 2-D grid search over the hyper-parameter $\alpha$ and $\beta$. You must provide the range of $\alpha$ and $\beta$, as well as the number of their attempts.
- Tuning with GPU:
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python3 tools/tune.py \
--alpha_from 1.0 \
--alpha_to 3.2 \
--num_alphas 45 \
--beta_from 0.1 \
--beta_to 0.45 \
--num_betas 8
```
- Tuning with CPU:
```bash
python3 tools/tune.py --use_gpu False
```
The grid search will print the WER (word error rate) or CER (character error rate) at each point in the hyper-parameters space, and draw the error surface optionally. A proper hyper-parameters range should include the global minima of the error surface for WER/CER, as illustrated in the following figure.
<p align="center">
<img src="docs/images/tuning_error_surface.png" width=550>
<br/>An example error surface for tuning on the dev-clean set of LibriSpeech
</p>
Usually, as the figure shows, the variation of language model weight ($\alpha$) significantly affect the performance of CTC beam search decoder. And a better procedure is to first tune on serveral data batches (the number can be specified) to find out the proper range of hyper-parameters, then change to the whole validation set to carray out an accurate tuning.
After tuning, you can reset $\alpha$ and $\beta$ in the inference and evaluation modules to see if they really help improve the ASR performance. For more help
```bash
python3 tune.py --help
```
or refer to `example/librispeech/run_tune.sh`.
## Training for Mandarin Language
The key steps of training for Mandarin language are same to that of English language and we have also provided an example for Mandarin training with Aishell in ```examples/aishell```. As mentioned above, please execute ```sh run_data.sh```, ```sh run_train.sh```, ```sh run_test.sh``` and ```sh run_infer.sh``` to do data preparation, training, testing and inference correspondingly. We have also prepared a pre-trained model (downloaded by ./models/aishell/download_model.sh) for users to try with ```sh run_infer_golden.sh``` and ```sh run_test_golden.sh```. Notice that, different from English LM, the Mandarin LM is character-based and please run ```tools/tune.py``` to find an optimal setting.
## Trying Live Demo with Your Own Voice
Until now, an ASR model is trained and tested qualitatively (`infer.py`) and quantitatively (`test.py`) with existing audio files. But it is not yet tested with your own speech. `deploy/demo_english_server.py` and `deploy/demo_client.py` helps quickly build up a real-time demo ASR engine with the trained model, enabling you to test and play around with the demo, with your own voice.
To start the demo's server, please run this in one console:
```bash
CUDA_VISIBLE_DEVICES=0 \
python3 deploy/demo_server.py \
--host_ip localhost \
--host_port 8086
```
For the machine (might not be the same machine) to run the demo's client, please do the following installation before moving on.
For example, on MAC OS X:
```bash
brew install portaudio
pip install pyaudio
pip install keyboard
```
Then to start the client, please run this in another console:
```bash
CUDA_VISIBLE_DEVICES=0 \
python3 -u deploy/demo_client.py \
--host_ip 'localhost' \
--host_port 8086
```
Now, in the client console, press the `whitespace` key, hold, and start speaking. Until finishing your utterance, release the key to let the speech-to-text results shown in the console. To quit the client, just press `ESC` key.
Notice that `deploy/demo_client.py` must be run on a machine with a microphone device, while `deploy/demo_server.py` could be run on one without any audio recording hardware, e.g. any remote server machine. Just be careful to set the `host_ip` and `host_port` argument with the actual accessible IP address and port, if the server and client are running with two separate machines. Nothing should be done if they are running on one single machine.
Please also refer to `examples/deploy_demo/run_english_demo_server.sh`, which will first download a pre-trained English model (trained with 3000 hours of internal speech data) and then start the demo server with the model. With running `examples/mandarin/run_demo_client.sh`, you can speak English to test it. If you would like to try some other models, just update `--model_path` argument in the script.
For more help on arguments:
```bash
python3 deploy/demo_server.py --help
python3 deploy/demo_client.py --help
```
## Released Models
#### Speech Model Released
Language | Model Name | Training Data | Hours of Speech
:-----------: | :------------: | :----------: | -------:
English | [LibriSpeech Model](https://deepspeech.bj.bcebos.com/eng_models/librispeech_model_fluid.tar.gz) | [LibriSpeech Dataset](http://www.openslr.org/12/) | 960 h
English | [BaiduEN8k Model](https://deepspeech.bj.bcebos.com/demo_models/baidu_en8k_model_fluid.tar.gz) | Baidu Internal English Dataset | 8628 h
Mandarin | [Aishell Model](https://deepspeech.bj.bcebos.com/mandarin_models/aishell_model_fluid.tar.gz) | [Aishell Dataset](http://www.openslr.org/33/) | 151 h
Mandarin | [BaiduCN1.2k Model](https://deepspeech.bj.bcebos.com/demo_models/baidu_cn1.2k_model_fluid.tar.gz) | Baidu Internal Mandarin Dataset | 1204 h
#### Language Model Released
Language Model | Training Data | Token-based | Size | Descriptions
:-------------:| :------------:| :-----: | -----: | :-----------------
[English LM](https://deepspeech.bj.bcebos.com/en_lm/common_crawl_00.prune01111.trie.klm) | [CommonCrawl(en.00)](http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/en/deduped/en.00.deduped.xz) | Word-based | 8.3 GB | Pruned with 0 1 1 1 1; <br/> About 1.85 billion n-grams; <br/> 'trie' binary with '-a 22 -q 8 -b 8'
[Mandarin LM Small](https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm) | Baidu Internal Corpus | Char-based | 2.8 GB | Pruned with 0 1 2 4 4; <br/> About 0.13 billion n-grams; <br/> 'probing' binary with default settings
[Mandarin LM Large](https://deepspeech.bj.bcebos.com/zh_lm/zhidao_giga.klm) | Baidu Internal Corpus | Char-based | 70.4 GB | No Pruning; <br/> About 3.7 billion n-grams; <br/> 'probing' binary with default settings
## Experiments and Benchmarks
#### Benchmark Results for English Models (Word Error Rate)
Test Set | LibriSpeech Model | BaiduEN8K Model
:--------------------- | ---------------: | -------------------:
LibriSpeech Test-Clean | 6.85 | 5.41
LibriSpeech Test-Other | 21.18 | 13.85
VoxForge American-Canadian | 12.12 | 7.13
VoxForge Commonwealth | 19.82 | 14.93
VoxForge European | 30.15 | 18.64
VoxForge Indian | 53.73 | 25.51
Baidu Internal Testset | 40.75 | 8.48
For reproducing benchmark results on VoxForge data, we provide a script to download data and generate VoxForge dialect manifest files. Please go to ```data/voxforge``` and execute ```sh run_data.sh``` to get VoxForge dialect manifest files. Notice that VoxForge data may keep updating and the generated manifest files may have difference from those we evaluated on.
#### Benchmark Results for Mandarin Model (Character Error Rate)
Test Set | BaiduCN1.2k Model
:--------------------- | -------------------:
Baidu Internal Testset | 12.64
#### Acceleration with Multi-GPUs
We compare the training time with 1, 2, 4, 8 Tesla V100 GPUs (with a subset of LibriSpeech samples whose audio durations are between 6.0 and 7.0 seconds). And it shows that a **near-linear** acceleration with multiple GPUs has been achieved. In the following figure, the time (in seconds) cost for training is printed on the blue bars.
<img src="docs/images/multi_gpu_speedup.png" width=450><br/>
| # of GPU | Acceleration Rate |
| -------- | --------------: |
| 1 | 1.00 X |
| 2 | 1.98 X |
| 4 | 3.73 X |
| 8 | 6.95 X |
`tools/profile.sh` provides such a profiling tool.
## Questions and Help
You are welcome to submit questions and bug reports in [Github Issues](https://github.com/PaddlePaddle/DeepSpeech/issues). You are also welcome to contribute to this project.

@ -0,0 +1,36 @@
# Data Augmentation Pipeline
Data augmentation has often been a highly effective technique to boost the deep learning performance. We augment our speech data by synthesizing new audios with small random perturbation (label-invariant transformation) added upon raw audios. You don't have to do the syntheses on your own, as it is already embedded into the data provider and is done on the fly, randomly for each epoch during training.
Six optional augmentation components are provided to be selected, configured and inserted into the processing pipeline.
- Volume Perturbation
- Speed Perturbation
- Shifting Perturbation
- Online Bayesian normalization
- Noise Perturbation (need background noise audio files)
- Impulse Response (need impulse audio files)
In order to inform the trainer of what augmentation components are needed and what their processing orders are, it is required to prepare in advance an *augmentation configuration file* in [JSON](http://www.json.org/) format. For example:
```
[{
"type": "speed",
"params": {"min_speed_rate": 0.95,
"max_speed_rate": 1.05},
"prob": 0.6
},
{
"type": "shift",
"params": {"min_shift_ms": -5,
"max_shift_ms": 5},
"prob": 0.8
}]
```
When the `augment_conf_file` argument is set to the path of the above example configuration file, every audio clip in every epoch will be processed: with 60% of chance, it will first be speed perturbed with a uniformly random sampled speed-rate between 0.95 and 1.05, and then with 80% of chance it will be shifted in time with a random sampled offset between -5 ms and 5 ms. Finally this newly synthesized audio clip will be feed into the feature extractor for further training.
For other configuration examples, please refer to `examples/conf/augmentation.config.example`.
Be careful when utilizing the data augmentation technique, as improper augmentation will do harm to the training, due to the enlarged train-test gap.

@ -0,0 +1,16 @@
# Benchmarks
## Acceleration with Multi-GPUs
We compare the training time with 1, 2, 4, 8 Tesla V100 GPUs (with a subset of LibriSpeech samples whose audio durations are between 6.0 and 7.0 seconds). And it shows that a **near-linear** acceleration with multiple GPUs has been achieved. In the following figure, the time (in seconds) cost for training is printed on the blue bars.
<img src="docs/images/multi_gpu_speedup.png" width=450><br/>
| # of GPU | Acceleration Rate |
| -------- | --------------: |
| 1 | 1.00 X |
| 2 | 1.98 X |
| 4 | 3.73 X |
| 8 | 6.95 X |
`utils/profile.sh` provides such a demo profiling tool, you can change it as need.

@ -0,0 +1,43 @@
# Data Preparation
## Generate Manifest
*DeepSpeech2 on PaddlePaddle* accepts a textual **manifest** file as its data set interface. A manifest file summarizes a set of speech data, with each line containing some meta data (e.g. filepath, transcription, duration) of one audio clip, in [JSON](http://www.json.org/) format, such as:
```
{"audio_filepath": "/home/work/.cache/paddle/Libri/134686/1089-134686-0001.flac", "duration": 3.275, "text": "stuff it into you his belly counselled him"}
{"audio_filepath": "/home/work/.cache/paddle/Libri/134686/1089-134686-0007.flac", "duration": 4.275, "text": "a cold lucid indifference reigned in his soul"}
```
To use your custom data, you only need to generate such manifest files to summarize the dataset. Given such summarized manifests, training, inference and all other modules can be aware of where to access the audio files, as well as their meta data including the transcription labels.
For how to generate such manifest files, please refer to `examples/librispeech/local/librispeech.py`, which will download data and generate manifest files for LibriSpeech dataset.
## Compute Mean & Stddev for Normalizer
To perform z-score normalization (zero-mean, unit stddev) upon audio features, we have to estimate in advance the mean and standard deviation of the features, with some training samples:
```bash
python3 utils/compute_mean_std.py \
--num_samples 2000 \
--specgram_type linear \
--manifest_path examples/librispeech/data/manifest.train \
--output_path examples/librispeech/data/mean_std.npz
```
It will compute the mean and standard deviatio of power spectrum feature with 2000 random sampled audio clips listed in `examples/librispeech/data/manifest.train` and save the results to `examples/librispeech/data/mean_std.npz` for further usage.
## Build Vocabulary
A vocabulary of possible characters is required to convert the transcription into a list of token indices for training, and in decoding, to convert from a list of indices back to text again. Such a character-based vocabulary can be built with `utils/build_vocab.py`.
```bash
python3 utils/build_vocab.py \
--count_threshold 0 \
--vocab_path examples/librispeech/data/eng_vocab.txt \
--manifest_paths examples/librispeech/data/manifest.train
```
It will write a vocabuary file `examples/librispeech/data/eng_vocab.txt` with all transcription text in `examples/librispeech/data/manifest.train`, without vocabulary truncation (`--count_threshold 0`).

@ -0,0 +1,80 @@
# Getting Started
Several shell scripts provided in `./examples/tiny/local` will help us to quickly give it a try, for most major modules, including data preparation, model training, case inference and model evaluation, with a few public dataset (e.g. [LibriSpeech](http://www.openslr.org/12/), [Aishell](http://www.openslr.org/33)). Reading these examples will also help you to understand how to make it work with your own data.
Some of the scripts in `./examples` are not configured with GPUs. If you want to train with 8 GPUs, please modify `CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7`. If you don't have any GPU available, please set `CUDA_VISIBLE_DEVICES=` to use CPUs instead. Besides, if out-of-memory problem occurs, just reduce `batch_size` to fit.
Let's take a tiny sampled subset of [LibriSpeech dataset](http://www.openslr.org/12/) for instance.
- Go to directory
```bash
cd examples/tiny
```
Notice that this is only a toy example with a tiny sampled subset of LibriSpeech. If you would like to try with the complete dataset (would take several days for training), please go to `examples/librispeech` instead.
- Source env
```bash
source path.sh
```
**Must do this before starting do anything.**
Set `MAIN_ROOT` as project dir. Using defualt `deepspeech2` model as default, you can change this in the script.
- Main entrypoint
```bash
bash run.sh
```
This just a demo, please make sure every `step` is work fine when do next `step`.
More detailed information are provided in the following sections. Wish you a happy journey with the *DeepSpeech on PaddlePaddle* ASR engine!
## Training a model
The key steps of training for Mandarin language are same to that of English language and we have also provided an example for Mandarin training with Aishell in ```examples/aishell/local```. As mentioned above, please execute ```sh data.sh```, ```sh train.sh```, ```sh test.sh``` and ```sh infer.sh``` to do data preparation, training, testing and inference correspondingly. We have also prepared a pre-trained model (downloaded by local/download_model.sh) for users to try with ```sh infer_golden.sh``` and ```sh test_golden.sh```. Notice that, different from English LM, the Mandarin LM is character-based and please run ```local/tune.sh``` to find an optimal setting.
## Speech-to-text Inference
An inference module caller `infer.py` is provided to infer, decode and visualize speech-to-text results for several given audio clips. It might help to have an intuitive and qualitative evaluation of the ASR model's performance.
```bash
CUDA_VISIBLE_DEVICES=0 bash local/infer.sh
```
We provide two types of CTC decoders: *CTC greedy decoder* and *CTC beam search decoder*. The *CTC greedy decoder* is an implementation of the simple best-path decoding algorithm, selecting at each timestep the most likely token, thus being greedy and locally optimal. The [*CTC beam search decoder*](https://arxiv.org/abs/1408.2873) otherwise utilizes a heuristic breadth-first graph search for reaching a near global optimality; it also requires a pre-trained KenLM language model for better scoring and ranking. The decoder type can be set with argument `decoding_method`.
## Evaluate a Model
To evaluate a model's performance quantitatively, please run:
```bash
CUDA_VISIBLE_DEVICES=0 bash local/test.sh
```
The error rate (default: word error rate; can be set with `error_rate_type`) will be printed.
For more help on arguments:
## Hyper-parameters Tuning
The hyper-parameters $\alpha$ (language model weight) and $\beta$ (word insertion weight) for the [*CTC beam search decoder*](https://arxiv.org/abs/1408.2873) often have a significant impact on the decoder's performance. It would be better to re-tune them on the validation set when the acoustic model is renewed.
`tune.py` performs a 2-D grid search over the hyper-parameter $\alpha$ and $\beta$. You must provide the range of $\alpha$ and $\beta$, as well as the number of their attempts.
```bash
CUDA_VISIBLE_DEVICES=0 bash local/tune.sh
```
The grid search will print the WER (word error rate) or CER (character error rate) at each point in the hyper-parameters space, and draw the error surface optionally. A proper hyper-parameters range should include the global minima of the error surface for WER/CER, as illustrated in the following figure.
<p align="center">
<img src="docs/images/tuning_error_surface.png" width=550>
<br/>An example error surface for tuning on the dev-clean set of LibriSpeech
</p>
Usually, as the figure shows, the variation of language model weight ($\alpha$) significantly affect the performance of CTC beam search decoder. And a better procedure is to first tune on serveral data batches (the number can be specified) to find out the proper range of hyper-parameters, then change to the whole validation set to carray out an accurate tuning.
After tuning, you can reset $\alpha$ and $\beta$ in the inference and evaluation modules to see if they really help improve the ASR performance. For more help

@ -0,0 +1,81 @@
# Installation
To avoid the trouble of environment setup, [running in Docker container](#running-in-docker-container) is highly recommended. Otherwise follow the guidelines below to install the dependencies manually.
## Prerequisites
- Python >= 3.7
- PaddlePaddle 2.0.0 or later (please refer to the [Installation Guide](https://www.paddlepaddle.org.cn/documentation/docs/en/beginners_guide/index_en.html))
## Setup
- Make sure these libraries or tools installed: `pkg-config`, `flac`, `ogg`, `vorbis`, `boost` and `swig`, e.g. installing them via `apt-get`:
```bash
sudo apt-get install -y pkg-config libflac-dev libogg-dev libvorbis-dev libboost-dev swig python3-dev
```
or, installing them via `yum`:
```bash
sudo yum install pkgconfig libogg-devel libvorbis-devel boost-devel python3-devel
wget https://ftp.osuosl.org/pub/xiph/releases/flac/flac-1.3.1.tar.xz
xz -d flac-1.3.1.tar.xz
tar -xvf flac-1.3.1.tar
cd flac-1.3.1
./configure
make
make install
```
- Run the setup script for the remaining dependencies
```bash
git clone https://github.com/PaddlePaddle/DeepSpeech.git
cd DeepSpeech
pushd tools; make; popd
source tools/venv/bin/activate
bash setup.sh
```
- Source venv before do experiment.
```bash
source tools/venv/bin/activate
```
## Running in Docker Container
Docker is an open source tool to build, ship, and run distributed applications in an isolated environment. A Docker image for this project has been provided in [hub.docker.com](https://hub.docker.com) with all the dependencies installed, including the pre-built PaddlePaddle, CTC decoders, and other necessary Python and third-party packages. This Docker image requires the support of NVIDIA GPU, so please make sure its availiability and the [nvidia-docker](https://github.com/NVIDIA/nvidia-docker) has been installed.
Take several steps to launch the Docker image:
- Download the Docker image
For example, pull paddle 2.0.0 image:
```bash
nvidia-docker pull registry.baidubce.com/paddlepaddle/paddle:2.0.0-gpu-cuda10.1-cudnn7
```
- Clone this repository
```
git clone https://github.com/PaddlePaddle/DeepSpeech.git
```
- Run the Docker image
```bash
sudo nvidia-docker run --rm -it -v $(pwd)/DeepSpeech:/DeepSpeech registry.baidubce.com/paddlepaddle/paddle:2.0.0-gpu-cuda10.1-cudnn7 /bin/bash
```
Now you can execute training, inference and hyper-parameters tuning in the Docker container.
- Install PaddlePaddle
For example, for CUDA 10.1, CuDNN7.5 install paddle 2.0.0:
```bash
python3 -m pip install paddlepaddle-gpu==2.0.0
```

@ -0,0 +1,31 @@
# Prepare Language Model
A language model is required to improve the decoder's performance. We have prepared two language models (with lossy compression) for users to download and try. One is for English and the other is for Mandarin. Users can simply run this to download the preprared language models:
```bash
cd examples/aishell
source path.sh
bash local/download_lm_ch.sh
```
If you wish to train your own better language model, please refer to [KenLM](https://github.com/kpu/kenlm) for tutorials. Here we provide some tips to show how we preparing our English and Mandarin language models. You can take it as a reference when you train your own.
## English LM
The English corpus is from the [Common Crawl Repository](http://commoncrawl.org) and you can download it from [statmt](http://data.statmt.org/ngrams/deduped_en). We use part en.00 to train our English language model. There are some preprocessing steps before training:
* Characters not in \['A-Za-z0-9\s'\] (\s represents whitespace characters) are removed and Arabic numbers are converted to English numbers like 1000 to one thousand.
* Repeated whitespace characters are squeezed to one and the beginning whitespace characters are removed. Notice that all transcriptions are lowercase, so all characters are converted to lowercase.
* Top 400,000 most frequent words are selected to build the vocabulary and the rest are replaced with 'UNKNOWNWORD'.
Now the preprocessing is done and we get a clean corpus to train the language model. Our released language model are trained with agruments '-o 5 --prune 0 1 1 1 1'. '-o 5' means the max order of language model is 5. '--prune 0 1 1 1 1' represents count thresholds for each order and more specifically it will prune singletons for orders two and higher. To save disk storage we convert the arpa file to 'trie' binary file with arguments '-a 22 -q 8 -b 8'. '-a' represents the maximum number of leading bits of pointers in 'trie' to chop. '-q -b' are quantization parameters for probability and backoff.
## Mandarin LM
Different from the English language model, Mandarin language model is character-based where each token is a Chinese character. We use internal corpus to train the released Mandarin language models. The corpus contain billions of tokens. The preprocessing has tiny difference from English language model and main steps include:
* The beginning and trailing whitespace characters are removed.
* English punctuations and Chinese punctuations are removed.
* A whitespace character between two tokens is inserted.
Please notice that the released language models only contain Chinese simplified characters. After preprocessing done we can begin to train the language model. The key training arguments for small LM is '-o 5 --prune 0 1 2 4 4' and '-o 5' for large LM. Please refer above section for the meaning of each argument. We also convert the arpa file to binary file using default settings.

@ -0,0 +1,9 @@
# Released Models
## Language Model Released
Language Model | Training Data | Token-based | Size | Descriptions
:-------------:| :------------:| :-----: | -----: | :-----------------
[English LM](https://deepspeech.bj.bcebos.com/en_lm/common_crawl_00.prune01111.trie.klm) | [CommonCrawl(en.00)](http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/en/deduped/en.00.deduped.xz) | Word-based | 8.3 GB | Pruned with 0 1 1 1 1; <br/> About 1.85 billion n-grams; <br/> 'trie' binary with '-a 22 -q 8 -b 8'
[Mandarin LM Small](https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm) | Baidu Internal Corpus | Char-based | 2.8 GB | Pruned with 0 1 2 4 4; <br/> About 0.13 billion n-grams; <br/> 'probing' binary with default settings
[Mandarin LM Large](https://deepspeech.bj.bcebos.com/zh_lm/zhidao_giga.klm) | Baidu Internal Corpus | Char-based | 70.4 GB | No Pruning; <br/> About 3.7 billion n-grams; <br/> 'probing' binary with default settings

@ -0,0 +1,34 @@
# Trying Live Demo with Your Own Voice
Until now, an ASR model is trained and tested qualitatively (`infer`) and quantitatively (`test`) with existing audio files. But it is not yet tested with your own speech. We build up a real-time demo ASR engine with the trained model, enabling you to test and play around with the demo, with your own voice.
First, change your directory to `examples/aishell` and `source path.sh`.
To start the demo's server, please run this in one console:
```bash
CUDA_VISIBLE_DEVICES=0 bash local/server.sh
```
For the machine (might not be the same machine) to run the demo's client, please do the following installation before moving on.
For example, on MAC OS X:
```bash
brew install portaudio
pip install pyaudio
pip install keyboard
```
Then to start the client, please run this in another console:
```bash
CUDA_VISIBLE_DEVICES=0 bash local/client.sh
```
Now, in the client console, press the `whitespace` key, hold, and start speaking. Until finishing your utterance, release the key to let the speech-to-text results shown in the console. To quit the client, just press `ESC` key.
Notice that `deepspeech/exps/deepspeech2/deploy/client.py` must be run on a machine with a microphone device, while `deepspeech/exps/deepspeech2/deploy/server.py` could be run on one without any audio recording hardware, e.g. any remote server machine. Just be careful to set the `host_ip` and `host_port` argument with the actual accessible IP address and port, if the server and client are running with two separate machines. Nothing should be done if they are running on one single machine.
Please also refer to `examples/aishell/local/server.sh`, which will first download a pre-trained Chinese model (trained with AISHELL1) and then start the demo server with the model. With running `examples/aishell/local/client.sh`, you can speak Chinese to test it. If you would like to try some other models, just update `--checkpoint_path` argument in the script.  

@ -1,4 +1,4 @@
export MAIN_ROOT=${PWD}/../../
export MAIN_ROOT=${PWD}
export PATH=${MAIN_ROOT}:${PWD}/tools:${PATH}
export LC_ALL=C
@ -6,3 +6,5 @@ export LC_ALL=C
# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
export PYTHONIOENCODING=UTF-8
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
export export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/lib/

@ -0,0 +1,4 @@
data
ckpt*
demo_cache
*.log

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save