You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/exps/starganv2_vc/vc.py

265 lines
9.9 KiB

# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import time
from pathlib import Path
import librosa
import paddle
import soundfile as sf
import yaml
from yacs.config import CfgNode
from paddlespeech.cli.utils import download_and_decompress
from paddlespeech.resource.pretrained_models import StarGANv2VC_source
from paddlespeech.t2s.datasets.get_feats import LogMelFBank
from paddlespeech.t2s.models.parallel_wavegan import PWGGenerator
from paddlespeech.t2s.models.starganv2_vc import Generator
from paddlespeech.t2s.models.starganv2_vc import JDCNet
from paddlespeech.t2s.models.starganv2_vc import MappingNetwork
from paddlespeech.t2s.models.starganv2_vc import StyleEncoder
from paddlespeech.utils.env import MODEL_HOME
def get_mel_extractor():
sr = 16000
n_fft = 2048
win_length = 1200
hop_length = 300
n_mels = 80
fmin = 0
fmax = sr // 2
mel_extractor = LogMelFBank(
sr=sr,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
n_mels=n_mels,
fmin=fmin,
fmax=fmax,
norm=None,
htk=True,
power=2.0)
return mel_extractor
def preprocess(wave, mel_extractor):
# (T, 80)
logmel = mel_extractor.get_log_mel_fbank(wave, base='e')
mean, std = -4, 4
# [1, 80, T]
mel_tensor = (paddle.to_tensor(logmel.T).unsqueeze(0) - mean) / std
return mel_tensor
def compute_style(speaker_dicts, mel_extractor, style_encoder, mapping_network):
reference_embeddings = {}
for key, (path, speaker) in speaker_dicts.items():
# path = ''
if path == '':
label = paddle.to_tensor([speaker], dtype=paddle.int64)
latent_dim = mapping_network.shared[0].weight.shape[0]
ref = mapping_network(paddle.randn([1, latent_dim]), label)
else:
wave, sr = librosa.load(path, sr=24000)
audio, index = librosa.effects.trim(wave, top_db=30)
if sr != 24000:
wave = librosa.resample(wave, sr, 24000)
mel_tensor = preprocess(wave=wave, mel_extractor=mel_extractor)
with paddle.no_grad():
label = paddle.to_tensor([speaker], dtype=paddle.int64)
ref = style_encoder(mel_tensor.unsqueeze(1), label)
reference_embeddings[key] = (ref, label)
return reference_embeddings
def get_models(args, uncompress_path):
model_dict = {}
jdc_model_dir = os.path.join(uncompress_path, 'jdcnet.pdz')
voc_model_dir = os.path.join(uncompress_path, 'Vocoder/')
starganv2vc_model_dir = os.path.join(uncompress_path, 'starganv2vc.pdz')
F0_model = JDCNet(num_class=1, seq_len=192)
F0_model.set_state_dict(paddle.load(jdc_model_dir)['main_params'])
F0_model.eval()
voc_config_path = os.path.join(voc_model_dir, 'config.yml')
with open(voc_config_path) as f:
voc_config = CfgNode(yaml.safe_load(f))
voc_config["generator_params"].pop("upsample_net")
voc_config["generator_params"]["upsample_scales"] = voc_config[
"generator_params"].pop("upsample_params")["upsample_scales"]
vocoder = PWGGenerator(**voc_config["generator_params"])
vocoder.remove_weight_norm()
vocoder.eval()
voc_model_path = os.path.join(voc_model_dir, 'checkpoint-400000steps.pd')
vocoder.set_state_dict(paddle.load(voc_model_path))
with open(args.config_path) as f:
config = CfgNode(yaml.safe_load(f))
generator = Generator(**config['generator_params'])
mapping_network = MappingNetwork(**config['mapping_network_params'])
style_encoder = StyleEncoder(**config['style_encoder_params'])
starganv2vc_model_param = paddle.load(starganv2vc_model_dir)
generator.set_state_dict(starganv2vc_model_param['generator_params'])
mapping_network.set_state_dict(
starganv2vc_model_param['mapping_network_params'])
style_encoder.set_state_dict(
starganv2vc_model_param['style_encoder_params'])
generator.eval()
mapping_network.eval()
style_encoder.eval()
model_dict['F0_model'] = F0_model
model_dict['vocoder'] = vocoder
model_dict['generator'] = generator
model_dict['mapping_network'] = mapping_network
model_dict['style_encoder'] = style_encoder
return model_dict
def voice_conversion(args, uncompress_path):
speakers = [
225, 228, 229, 230, 231, 233, 236, 239, 240, 244, 226, 227, 232, 243,
254, 256, 258, 259, 270, 273
]
demo_dir = os.path.join(uncompress_path, 'Demo/VCTK-corpus/')
model_dict = get_models(args, uncompress_path=uncompress_path)
style_encoder = model_dict['style_encoder']
mapping_network = model_dict['mapping_network']
generator = model_dict['generator']
vocoder = model_dict['vocoder']
F0_model = model_dict['F0_model']
# 计算 Demo 文件夹下的说话人的风格
speaker_dicts = {}
selected_speakers = [273, 259, 258, 243, 254, 244, 236, 233, 230, 228]
for s in selected_speakers:
k = s
speaker_dicts['p' + str(s)] = (
demo_dir + 'p' + str(k) + '/p' + str(k) + '_023.wav',
speakers.index(s))
mel_extractor = get_mel_extractor()
reference_embeddings = compute_style(
speaker_dicts=speaker_dicts,
mel_extractor=mel_extractor,
style_encoder=style_encoder,
mapping_network=mapping_network)
wave, sr = librosa.load(args.source_path, sr=24000)
source = preprocess(wave=wave, mel_extractor=mel_extractor)
# # 测试 preprocess.py 的输出是否 ok
# # 直接用 raw 然后 norm 的在这里 ok
# # 直接用 norm 在这里 ok
# import numpy as np
# source = np.load("~/PaddleSpeech_stargan_preprocess/PaddleSpeech/examples/vctk/vc3/dump/train/norm/p329_414_speech.npy")
# # !!!对 mel_extractor norm 后的操作
# # [1, 80, T]
# source = paddle.to_tensor(source.T).unsqueeze(0)
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
orig_wav_name = str(output_dir / 'orig_voc.wav')
print('原始语音 (使用声码器解码): %s' % orig_wav_name)
c = source.transpose([0, 2, 1]).squeeze()
with paddle.no_grad():
recon = vocoder.inference(c)
recon = recon.reshape([-1]).numpy()
sf.write(orig_wav_name, recon, samplerate=24000)
keys = []
converted_samples = {}
reconstructed_samples = {}
converted_mels = {}
start = time.time()
for key, (ref, _) in reference_embeddings.items():
with paddle.no_grad():
# F0_model 输入的特征是否可以不带 norm或者 norm 是否一定要和 stargan 原作保持一致?
# !! 需要ASR 和 F0_model 用的是一样的数据预处理方式
# 如果不想要重新训练 ASR 和 F0_model, 则我们的数据预处理需要和 stargan 原作保持一致
# 但是 vocoder 就无法复用
# 是否因为 asr 的输入是 16k 的,所以 torchaudio 的参数也是 16k 的?
f0_feat = F0_model.get_feature_GAN(source.unsqueeze(1))
# 输出是带 norm 的 mel, 所以可以直接用 vocoder.inference
out = generator(source.unsqueeze(1), ref, F0=f0_feat)
c = out.transpose([0, 1, 3, 2]).squeeze()
y_out = vocoder.inference(c)
y_out = y_out.reshape([-1])
if key not in speaker_dicts or speaker_dicts[key][0] == "":
recon = None
else:
wave, sr = librosa.load(speaker_dicts[key][0], sr=24000)
mel = preprocess(wave=wave, mel_extractor=mel_extractor)
c = mel.transpose([0, 2, 1]).squeeze()
recon = vocoder.inference(c)
recon = recon.reshape([-1]).numpy()
converted_samples[key] = y_out.numpy()
reconstructed_samples[key] = recon
converted_mels[key] = out
keys.append(key)
end = time.time()
print('总共花费时间: %.3f sec' % (end - start))
for key, wave in converted_samples.items():
wav_name = str(output_dir / ('vc_result_' + key + '.wav'))
print('语音转换结果: %s' % wav_name)
sf.write(wav_name, wave, samplerate=24000)
ref_wav_name = str(output_dir / ('ref_voc_' + key + '.wav'))
print('参考的说话人 (使用声码器解码): %s' % ref_wav_name)
if reconstructed_samples[key] is not None:
sf.write(ref_wav_name, reconstructed_samples[key], samplerate=24000)
def parse_args():
# parse args and config
parser = argparse.ArgumentParser(
description="StarGANv2-VC Voice Conversion.")
parser.add_argument("--source_path", type=str, help="source audio's path.")
parser.add_argument("--output_dir", type=str, help="output dir.")
parser.add_argument(
'--config_path',
type=str,
default=None,
help='Config of StarGANv2-VC model.')
parser.add_argument(
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
args = parser.parse_args()
return args
def main():
args = parse_args()
if args.ngpu == 0:
paddle.set_device("cpu")
elif args.ngpu > 0:
paddle.set_device("gpu")
else:
print("ngpu should >= 0 !")
model_version = '1.0'
uncompress_path = download_and_decompress(StarGANv2VC_source[model_version],
MODEL_HOME)
voice_conversion(args, uncompress_path=uncompress_path)
if __name__ == "__main__":
main()