# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import time from pathlib import Path import librosa import paddle import soundfile as sf import yaml from yacs.config import CfgNode from paddlespeech.cli.utils import download_and_decompress from paddlespeech.resource.pretrained_models import StarGANv2VC_source from paddlespeech.t2s.datasets.get_feats import LogMelFBank from paddlespeech.t2s.models.parallel_wavegan import PWGGenerator from paddlespeech.t2s.models.starganv2_vc import Generator from paddlespeech.t2s.models.starganv2_vc import JDCNet from paddlespeech.t2s.models.starganv2_vc import MappingNetwork from paddlespeech.t2s.models.starganv2_vc import StyleEncoder from paddlespeech.utils.env import MODEL_HOME def get_mel_extractor(): sr = 16000 n_fft = 2048 win_length = 1200 hop_length = 300 n_mels = 80 fmin = 0 fmax = sr // 2 mel_extractor = LogMelFBank( sr=sr, n_fft=n_fft, hop_length=hop_length, win_length=win_length, n_mels=n_mels, fmin=fmin, fmax=fmax, norm=None, htk=True, power=2.0) return mel_extractor def preprocess(wave, mel_extractor): # (T, 80) logmel = mel_extractor.get_log_mel_fbank(wave, base='e') mean, std = -4, 4 # [1, 80, T] mel_tensor = (paddle.to_tensor(logmel.T).unsqueeze(0) - mean) / std return mel_tensor def compute_style(speaker_dicts, mel_extractor, style_encoder, mapping_network): reference_embeddings = {} for key, (path, speaker) in speaker_dicts.items(): # path = '' if path == '': label = paddle.to_tensor([speaker], dtype=paddle.int64) latent_dim = mapping_network.shared[0].weight.shape[0] ref = mapping_network(paddle.randn([1, latent_dim]), label) else: wave, sr = librosa.load(path, sr=24000) audio, index = librosa.effects.trim(wave, top_db=30) if sr != 24000: wave = librosa.resample(wave, sr, 24000) mel_tensor = preprocess(wave=wave, mel_extractor=mel_extractor) with paddle.no_grad(): label = paddle.to_tensor([speaker], dtype=paddle.int64) ref = style_encoder(mel_tensor.unsqueeze(1), label) reference_embeddings[key] = (ref, label) return reference_embeddings def get_models(args, uncompress_path): model_dict = {} jdc_model_dir = os.path.join(uncompress_path, 'jdcnet.pdz') voc_model_dir = os.path.join(uncompress_path, 'Vocoder/') starganv2vc_model_dir = os.path.join(uncompress_path, 'starganv2vc.pdz') F0_model = JDCNet(num_class=1, seq_len=192) F0_model.set_state_dict(paddle.load(jdc_model_dir)['main_params']) F0_model.eval() voc_config_path = os.path.join(voc_model_dir, 'config.yml') with open(voc_config_path) as f: voc_config = CfgNode(yaml.safe_load(f)) voc_config["generator_params"].pop("upsample_net") voc_config["generator_params"]["upsample_scales"] = voc_config[ "generator_params"].pop("upsample_params")["upsample_scales"] vocoder = PWGGenerator(**voc_config["generator_params"]) vocoder.remove_weight_norm() vocoder.eval() voc_model_path = os.path.join(voc_model_dir, 'checkpoint-400000steps.pd') vocoder.set_state_dict(paddle.load(voc_model_path)) with open(args.config_path) as f: config = CfgNode(yaml.safe_load(f)) generator = Generator(**config['generator_params']) mapping_network = MappingNetwork(**config['mapping_network_params']) style_encoder = StyleEncoder(**config['style_encoder_params']) starganv2vc_model_param = paddle.load(starganv2vc_model_dir) generator.set_state_dict(starganv2vc_model_param['generator_params']) mapping_network.set_state_dict( starganv2vc_model_param['mapping_network_params']) style_encoder.set_state_dict( starganv2vc_model_param['style_encoder_params']) generator.eval() mapping_network.eval() style_encoder.eval() model_dict['F0_model'] = F0_model model_dict['vocoder'] = vocoder model_dict['generator'] = generator model_dict['mapping_network'] = mapping_network model_dict['style_encoder'] = style_encoder return model_dict def voice_conversion(args, uncompress_path): speakers = [ 225, 228, 229, 230, 231, 233, 236, 239, 240, 244, 226, 227, 232, 243, 254, 256, 258, 259, 270, 273 ] demo_dir = os.path.join(uncompress_path, 'Demo/VCTK-corpus/') model_dict = get_models(args, uncompress_path=uncompress_path) style_encoder = model_dict['style_encoder'] mapping_network = model_dict['mapping_network'] generator = model_dict['generator'] vocoder = model_dict['vocoder'] F0_model = model_dict['F0_model'] # 计算 Demo 文件夹下的说话人的风格 speaker_dicts = {} selected_speakers = [273, 259, 258, 243, 254, 244, 236, 233, 230, 228] for s in selected_speakers: k = s speaker_dicts['p' + str(s)] = ( demo_dir + 'p' + str(k) + '/p' + str(k) + '_023.wav', speakers.index(s)) mel_extractor = get_mel_extractor() reference_embeddings = compute_style( speaker_dicts=speaker_dicts, mel_extractor=mel_extractor, style_encoder=style_encoder, mapping_network=mapping_network) wave, sr = librosa.load(args.source_path, sr=24000) source = preprocess(wave=wave, mel_extractor=mel_extractor) # # 测试 preprocess.py 的输出是否 ok # # 直接用 raw 然后 norm 的在这里 ok # # 直接用 norm 在这里 ok # import numpy as np # source = np.load("~/PaddleSpeech_stargan_preprocess/PaddleSpeech/examples/vctk/vc3/dump/train/norm/p329_414_speech.npy") # # !!!对 mel_extractor norm 后的操作 # # [1, 80, T] # source = paddle.to_tensor(source.T).unsqueeze(0) output_dir = Path(args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) orig_wav_name = str(output_dir / 'orig_voc.wav') print('原始语音 (使用声码器解码): %s' % orig_wav_name) c = source.transpose([0, 2, 1]).squeeze() with paddle.no_grad(): recon = vocoder.inference(c) recon = recon.reshape([-1]).numpy() sf.write(orig_wav_name, recon, samplerate=24000) keys = [] converted_samples = {} reconstructed_samples = {} converted_mels = {} start = time.time() for key, (ref, _) in reference_embeddings.items(): with paddle.no_grad(): # F0_model 输入的特征是否可以不带 norm,或者 norm 是否一定要和 stargan 原作保持一致? # !! 需要,ASR 和 F0_model 用的是一样的数据预处理方式 # 如果不想要重新训练 ASR 和 F0_model, 则我们的数据预处理需要和 stargan 原作保持一致 # 但是 vocoder 就无法复用 # 是否因为 asr 的输入是 16k 的,所以 torchaudio 的参数也是 16k 的? f0_feat = F0_model.get_feature_GAN(source.unsqueeze(1)) # 输出是带 norm 的 mel, 所以可以直接用 vocoder.inference out = generator(source.unsqueeze(1), ref, F0=f0_feat) c = out.transpose([0, 1, 3, 2]).squeeze() y_out = vocoder.inference(c) y_out = y_out.reshape([-1]) if key not in speaker_dicts or speaker_dicts[key][0] == "": recon = None else: wave, sr = librosa.load(speaker_dicts[key][0], sr=24000) mel = preprocess(wave=wave, mel_extractor=mel_extractor) c = mel.transpose([0, 2, 1]).squeeze() recon = vocoder.inference(c) recon = recon.reshape([-1]).numpy() converted_samples[key] = y_out.numpy() reconstructed_samples[key] = recon converted_mels[key] = out keys.append(key) end = time.time() print('总共花费时间: %.3f sec' % (end - start)) for key, wave in converted_samples.items(): wav_name = str(output_dir / ('vc_result_' + key + '.wav')) print('语音转换结果: %s' % wav_name) sf.write(wav_name, wave, samplerate=24000) ref_wav_name = str(output_dir / ('ref_voc_' + key + '.wav')) print('参考的说话人 (使用声码器解码): %s' % ref_wav_name) if reconstructed_samples[key] is not None: sf.write(ref_wav_name, reconstructed_samples[key], samplerate=24000) def parse_args(): # parse args and config parser = argparse.ArgumentParser( description="StarGANv2-VC Voice Conversion.") parser.add_argument("--source_path", type=str, help="source audio's path.") parser.add_argument("--output_dir", type=str, help="output dir.") parser.add_argument( '--config_path', type=str, default=None, help='Config of StarGANv2-VC model.') parser.add_argument( "--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.") args = parser.parse_args() return args def main(): args = parse_args() if args.ngpu == 0: paddle.set_device("cpu") elif args.ngpu > 0: paddle.set_device("gpu") else: print("ngpu should >= 0 !") model_version = '1.0' uncompress_path = download_and_decompress(StarGANv2VC_source[model_version], MODEL_HOME) voice_conversion(args, uncompress_path=uncompress_path) if __name__ == "__main__": main()