|
|
|
|
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
|
#
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
#
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
import argparse
|
|
|
|
|
import os
|
|
|
|
|
import time
|
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
import librosa
|
|
|
|
|
import paddle
|
|
|
|
|
import soundfile as sf
|
|
|
|
|
import yaml
|
|
|
|
|
from yacs.config import CfgNode
|
|
|
|
|
|
|
|
|
|
from paddlespeech.cli.utils import download_and_decompress
|
|
|
|
|
from paddlespeech.resource.pretrained_models import StarGANv2VC_source
|
|
|
|
|
from paddlespeech.t2s.datasets.get_feats import LogMelFBank
|
|
|
|
|
from paddlespeech.t2s.models.parallel_wavegan import PWGGenerator
|
|
|
|
|
from paddlespeech.t2s.models.starganv2_vc import Generator
|
|
|
|
|
from paddlespeech.t2s.models.starganv2_vc import JDCNet
|
|
|
|
|
from paddlespeech.t2s.models.starganv2_vc import MappingNetwork
|
|
|
|
|
from paddlespeech.t2s.models.starganv2_vc import StyleEncoder
|
|
|
|
|
from paddlespeech.utils.env import MODEL_HOME
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_mel_extractor():
|
|
|
|
|
sr = 16000
|
|
|
|
|
n_fft = 2048
|
|
|
|
|
win_length = 1200
|
|
|
|
|
hop_length = 300
|
|
|
|
|
n_mels = 80
|
|
|
|
|
fmin = 0
|
|
|
|
|
fmax = sr // 2
|
|
|
|
|
|
|
|
|
|
mel_extractor = LogMelFBank(
|
|
|
|
|
sr=sr,
|
|
|
|
|
n_fft=n_fft,
|
|
|
|
|
hop_length=hop_length,
|
|
|
|
|
win_length=win_length,
|
|
|
|
|
n_mels=n_mels,
|
|
|
|
|
fmin=fmin,
|
|
|
|
|
fmax=fmax,
|
|
|
|
|
norm=None,
|
|
|
|
|
htk=True,
|
|
|
|
|
power=2.0)
|
|
|
|
|
return mel_extractor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def preprocess(wave, mel_extractor):
|
|
|
|
|
logmel = mel_extractor.get_log_mel_fbank(wave, base='e')
|
|
|
|
|
# [1, 80, 1011]
|
|
|
|
|
mean, std = -4, 4
|
|
|
|
|
mel_tensor = (paddle.to_tensor(logmel.T).unsqueeze(0) - mean) / std
|
|
|
|
|
return mel_tensor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def compute_style(speaker_dicts, mel_extractor, style_encoder, mapping_network):
|
|
|
|
|
reference_embeddings = {}
|
|
|
|
|
for key, (path, speaker) in speaker_dicts.items():
|
|
|
|
|
if path == '':
|
|
|
|
|
label = paddle.to_tensor([speaker], dtype=paddle.int64)
|
|
|
|
|
latent_dim = mapping_network.shared[0].weight.shape[0]
|
|
|
|
|
ref = mapping_network(paddle.randn([1, latent_dim]), label)
|
|
|
|
|
else:
|
|
|
|
|
wave, sr = librosa.load(path, sr=24000)
|
|
|
|
|
audio, index = librosa.effects.trim(wave, top_db=30)
|
|
|
|
|
if sr != 24000:
|
|
|
|
|
wave = librosa.resample(wave, sr, 24000)
|
|
|
|
|
mel_tensor = preprocess(wave=wave, mel_extractor=mel_extractor)
|
|
|
|
|
with paddle.no_grad():
|
|
|
|
|
label = paddle.to_tensor([speaker], dtype=paddle.int64)
|
|
|
|
|
ref = style_encoder(mel_tensor.unsqueeze(1), label)
|
|
|
|
|
reference_embeddings[key] = (ref, label)
|
|
|
|
|
|
|
|
|
|
return reference_embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_models(args, uncompress_path):
|
|
|
|
|
model_dict = {}
|
|
|
|
|
jdc_model_dir = os.path.join(uncompress_path, 'jdcnet.pdz')
|
|
|
|
|
voc_model_dir = os.path.join(uncompress_path, 'Vocoder/')
|
|
|
|
|
starganv2vc_model_dir = os.path.join(uncompress_path, 'starganv2vc.pdz')
|
|
|
|
|
|
|
|
|
|
F0_model = JDCNet(num_class=1, seq_len=192)
|
|
|
|
|
F0_model.set_state_dict(paddle.load(jdc_model_dir)['main_params'])
|
|
|
|
|
F0_model.eval()
|
|
|
|
|
|
|
|
|
|
voc_config_path = os.path.join(voc_model_dir, 'config.yml')
|
|
|
|
|
with open(voc_config_path) as f:
|
|
|
|
|
voc_config = CfgNode(yaml.safe_load(f))
|
|
|
|
|
voc_config["generator_params"].pop("upsample_net")
|
|
|
|
|
voc_config["generator_params"]["upsample_scales"] = voc_config[
|
|
|
|
|
"generator_params"].pop("upsample_params")["upsample_scales"]
|
|
|
|
|
vocoder = PWGGenerator(**voc_config["generator_params"])
|
|
|
|
|
vocoder.remove_weight_norm()
|
|
|
|
|
vocoder.eval()
|
|
|
|
|
voc_model_path = os.path.join(voc_model_dir, 'checkpoint-400000steps.pd')
|
|
|
|
|
vocoder.set_state_dict(paddle.load(voc_model_path))
|
|
|
|
|
|
|
|
|
|
with open(args.config_path) as f:
|
|
|
|
|
config = CfgNode(yaml.safe_load(f))
|
|
|
|
|
|
|
|
|
|
generator = Generator(**config['generator_params'])
|
|
|
|
|
mapping_network = MappingNetwork(**config['mapping_network_params'])
|
|
|
|
|
style_encoder = StyleEncoder(**config['style_encoder_params'])
|
|
|
|
|
|
|
|
|
|
starganv2vc_model_param = paddle.load(starganv2vc_model_dir)
|
|
|
|
|
|
|
|
|
|
generator.set_state_dict(starganv2vc_model_param['generator_params'])
|
|
|
|
|
mapping_network.set_state_dict(
|
|
|
|
|
starganv2vc_model_param['mapping_network_params'])
|
|
|
|
|
style_encoder.set_state_dict(
|
|
|
|
|
starganv2vc_model_param['style_encoder_params'])
|
|
|
|
|
|
|
|
|
|
generator.eval()
|
|
|
|
|
mapping_network.eval()
|
|
|
|
|
style_encoder.eval()
|
|
|
|
|
|
|
|
|
|
model_dict['F0_model'] = F0_model
|
|
|
|
|
model_dict['vocoder'] = vocoder
|
|
|
|
|
model_dict['generator'] = generator
|
|
|
|
|
model_dict['mapping_network'] = mapping_network
|
|
|
|
|
model_dict['style_encoder'] = style_encoder
|
|
|
|
|
return model_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def voice_conversion(args, uncompress_path):
|
|
|
|
|
speakers = [
|
|
|
|
|
225, 228, 229, 230, 231, 233, 236, 239, 240, 244, 226, 227, 232, 243,
|
|
|
|
|
254, 256, 258, 259, 270, 273
|
|
|
|
|
]
|
|
|
|
|
demo_dir = os.path.join(uncompress_path, 'Demo/VCTK-corpus/')
|
|
|
|
|
model_dict = get_models(args, uncompress_path=uncompress_path)
|
|
|
|
|
style_encoder = model_dict['style_encoder']
|
|
|
|
|
mapping_network = model_dict['mapping_network']
|
|
|
|
|
generator = model_dict['generator']
|
|
|
|
|
vocoder = model_dict['vocoder']
|
|
|
|
|
F0_model = model_dict['F0_model']
|
|
|
|
|
|
|
|
|
|
# 计算 Demo 文件夹下的说话人的风格
|
|
|
|
|
speaker_dicts = {}
|
|
|
|
|
selected_speakers = [273, 259, 258, 243, 254, 244, 236, 233, 230, 228]
|
|
|
|
|
for s in selected_speakers:
|
|
|
|
|
k = s
|
|
|
|
|
speaker_dicts['p' + str(s)] = (
|
|
|
|
|
demo_dir + 'p' + str(k) + '/p' + str(k) + '_023.wav',
|
|
|
|
|
speakers.index(s))
|
|
|
|
|
mel_extractor = get_mel_extractor()
|
|
|
|
|
reference_embeddings = compute_style(
|
|
|
|
|
speaker_dicts=speaker_dicts,
|
|
|
|
|
mel_extractor=mel_extractor,
|
|
|
|
|
style_encoder=style_encoder,
|
|
|
|
|
mapping_network=mapping_network)
|
|
|
|
|
|
|
|
|
|
wave, sr = librosa.load(args.source_path, sr=24000)
|
|
|
|
|
source = preprocess(wave=wave, mel_extractor=mel_extractor)
|
|
|
|
|
output_dir = Path(args.output_dir)
|
|
|
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
orig_wav_name = str(output_dir / 'orig_voc.wav')
|
|
|
|
|
print('原始语音 (使用声码器解码): %s' % orig_wav_name)
|
|
|
|
|
c = source.transpose([0, 2, 1]).squeeze()
|
|
|
|
|
with paddle.no_grad():
|
|
|
|
|
recon = vocoder.inference(c)
|
|
|
|
|
recon = recon.reshape([-1]).numpy()
|
|
|
|
|
sf.write(orig_wav_name, recon, samplerate=24000)
|
|
|
|
|
|
|
|
|
|
keys = []
|
|
|
|
|
converted_samples = {}
|
|
|
|
|
reconstructed_samples = {}
|
|
|
|
|
converted_mels = {}
|
|
|
|
|
start = time.time()
|
|
|
|
|
|
|
|
|
|
for key, (ref, _) in reference_embeddings.items():
|
|
|
|
|
with paddle.no_grad():
|
|
|
|
|
# F0_model 输入的特征是否可以不带 norm,或者 norm 是否一定要和 stargan 原作保持一致?
|
|
|
|
|
# !! 需要,ASR 和 F0_model 用的是一样的数据预处理方式
|
|
|
|
|
# 如果不想要重新训练 ASR 和 F0_model, 则我们的数据预处理需要和 stargan 原作保持一致
|
|
|
|
|
# 但是 vocoder 就无法复用
|
|
|
|
|
# 是否因为 asr 的输入是 16k 的,所以 torchaudio 的参数也是 16k 的?
|
|
|
|
|
f0_feat = F0_model.get_feature_GAN(source.unsqueeze(1))
|
|
|
|
|
# 输出是带 norm 的 mel, 所以可以直接用 vocoder.inference
|
|
|
|
|
out = generator(source.unsqueeze(1), ref, F0=f0_feat)
|
|
|
|
|
c = out.transpose([0, 1, 3, 2]).squeeze()
|
|
|
|
|
y_out = vocoder.inference(c)
|
|
|
|
|
y_out = y_out.reshape([-1])
|
|
|
|
|
if key not in speaker_dicts or speaker_dicts[key][0] == "":
|
|
|
|
|
recon = None
|
|
|
|
|
else:
|
|
|
|
|
wave, sr = librosa.load(speaker_dicts[key][0], sr=24000)
|
|
|
|
|
mel = preprocess(wave=wave, mel_extractor=mel_extractor)
|
|
|
|
|
c = mel.transpose([0, 2, 1]).squeeze()
|
|
|
|
|
recon = vocoder.inference(c)
|
|
|
|
|
recon = recon.reshape([-1]).numpy()
|
|
|
|
|
|
|
|
|
|
converted_samples[key] = y_out.numpy()
|
|
|
|
|
reconstructed_samples[key] = recon
|
|
|
|
|
converted_mels[key] = out
|
|
|
|
|
keys.append(key)
|
|
|
|
|
end = time.time()
|
|
|
|
|
print('总共花费时间: %.3f sec' % (end - start))
|
|
|
|
|
for key, wave in converted_samples.items():
|
|
|
|
|
wav_name = str(output_dir / ('vc_result_' + key + '.wav'))
|
|
|
|
|
print('语音转换结果: %s' % wav_name)
|
|
|
|
|
sf.write(wav_name, wave, samplerate=24000)
|
|
|
|
|
ref_wav_name = str(output_dir / ('ref_voc_' + key + '.wav'))
|
|
|
|
|
print('参考的说话人 (使用声码器解码): %s' % ref_wav_name)
|
|
|
|
|
if reconstructed_samples[key] is not None:
|
|
|
|
|
sf.write(ref_wav_name, reconstructed_samples[key], samplerate=24000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def parse_args():
|
|
|
|
|
# parse args and config
|
|
|
|
|
parser = argparse.ArgumentParser(
|
|
|
|
|
description="StarGANv2-VC Voice Conversion.")
|
|
|
|
|
parser.add_argument("--source_path", type=str, help="source audio's path.")
|
|
|
|
|
parser.add_argument("--output_dir", type=str, help="output dir.")
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
'--config_path',
|
|
|
|
|
type=str,
|
|
|
|
|
default=None,
|
|
|
|
|
help='Config of StarGANv2-VC model.')
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
return args
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
args = parse_args()
|
|
|
|
|
if args.ngpu == 0:
|
|
|
|
|
paddle.set_device("cpu")
|
|
|
|
|
elif args.ngpu > 0:
|
|
|
|
|
paddle.set_device("gpu")
|
|
|
|
|
else:
|
|
|
|
|
print("ngpu should >= 0 !")
|
|
|
|
|
model_version = '1.0'
|
|
|
|
|
uncompress_path = download_and_decompress(StarGANv2VC_source[model_version],
|
|
|
|
|
MODEL_HOME)
|
|
|
|
|
voice_conversion(args, uncompress_path=uncompress_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
main()
|