You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/server/engine/asr/online/asr_engine.py

1088 lines
45 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import os
from typing import Optional
3 years ago
import numpy as np
import paddle
3 years ago
from numpy import float32
from yacs.config import CfgNode
from .pretrained_models import pretrained_models
from paddlespeech.cli.asr.infer import ASRExecutor
from paddlespeech.cli.log import logger
from paddlespeech.cli.utils import MODEL_HOME
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
3 years ago
from paddlespeech.s2t.frontend.speech import SpeechSegment
from paddlespeech.s2t.modules.ctc import CTCDecoder
from paddlespeech.s2t.transform.transformation import Transformation
from paddlespeech.s2t.utils.dynamic_import import dynamic_import
from paddlespeech.s2t.utils.tensor_utils import add_sos_eos
from paddlespeech.s2t.utils.tensor_utils import pad_sequence
from paddlespeech.s2t.utils.utility import UpdateConfig
from paddlespeech.server.engine.asr.online.ctc_search import CTCPrefixBeamSearch
from paddlespeech.server.engine.base_engine import BaseEngine
from paddlespeech.server.utils.audio_process import pcm2float
from paddlespeech.server.utils.paddle_predictor import init_predictor
__all__ = ['ASREngine']
# ASR server connection process class
class PaddleASRConnectionHanddler:
def __init__(self, asr_engine):
"""Init a Paddle ASR Connection Handler instance
Args:
asr_engine (ASREngine): the global asr engine
"""
super().__init__()
logger.info(
"create an paddle asr connection handler to process the websocket connection"
)
self.config = asr_engine.config
self.model_config = asr_engine.executor.config
self.asr_engine = asr_engine
self.init()
self.reset()
def init(self):
# model_type, sample_rate and text_feature is shared for deepspeech2 and conformer
self.model_type = self.asr_engine.executor.model_type
self.sample_rate = self.asr_engine.executor.sample_rate
# tokens to text
self.text_feature = self.asr_engine.executor.text_feature
if "deepspeech2online" in self.model_type or "deepspeech2offline" in self.model_type:
from paddlespeech.s2t.io.collator import SpeechCollator
self.am_predictor = self.asr_engine.executor.am_predictor
self.collate_fn_test = SpeechCollator.from_config(self.model_config)
self.decoder = CTCDecoder(
odim=self.model_config.output_dim, # <blank> is in vocab
enc_n_units=self.model_config.rnn_layer_size * 2,
blank_id=self.model_config.blank_id,
dropout_rate=0.0,
reduction=True, # sum
batch_average=True, # sum / batch_size
grad_norm_type=self.model_config.get('ctc_grad_norm_type',
None))
cfg = self.model_config.decode
decode_batch_size = 1 # for online
self.decoder.init_decoder(
decode_batch_size, self.text_feature.vocab_list,
cfg.decoding_method, cfg.lang_model_path, cfg.alpha, cfg.beta,
cfg.beam_size, cfg.cutoff_prob, cfg.cutoff_top_n,
cfg.num_proc_bsearch)
# frame window samples length and frame shift samples length
self.win_length = int(self.model_config.window_ms / 1000 *
self.sample_rate)
self.n_shift = int(self.model_config.stride_ms / 1000 *
self.sample_rate)
elif "conformer" in self.model_type or "transformer" in self.model_type:
# acoustic model
self.model = self.asr_engine.executor.model
# ctc decoding config
self.ctc_decode_config = self.asr_engine.executor.config.decode
self.searcher = CTCPrefixBeamSearch(self.ctc_decode_config)
# extract feat, new only fbank in conformer model
self.preprocess_conf = self.model_config.preprocess_config
self.preprocess_args = {"train": False}
self.preprocessing = Transformation(self.preprocess_conf)
# frame window samples length and frame shift samples length
self.win_length = self.preprocess_conf.process[0]['win_length']
self.n_shift = self.preprocess_conf.process[0]['n_shift']
def extract_feat(self, samples):
# we compute the elapsed time of first char occuring
# and we record the start time at the first pcm sample arraving
# if self.first_char_occur_elapsed is not None:
# self.first_char_occur_elapsed = time.time()
if "deepspeech2online" in self.model_type:
# self.reamined_wav stores all the samples,
# include the original remained_wav and this package samples
samples = np.frombuffer(samples, dtype=np.int16)
assert samples.ndim == 1
# pcm16 -> pcm 32
# pcm2float will change the orignal samples,
# so we shoule do pcm2float before concatenate
samples = pcm2float(samples)
if self.remained_wav is None:
self.remained_wav = samples
else:
assert self.remained_wav.ndim == 1
self.remained_wav = np.concatenate([self.remained_wav, samples])
logger.info(
f"The connection remain the audio samples: {self.remained_wav.shape}"
)
# read audio
speech_segment = SpeechSegment.from_pcm(
self.remained_wav, self.sample_rate, transcript=" ")
# audio augment
self.collate_fn_test.augmentation.transform_audio(speech_segment)
# extract speech feature
spectrum, transcript_part = self.collate_fn_test._speech_featurizer.featurize(
speech_segment, self.collate_fn_test.keep_transcription_text)
# CMVN spectrum
if self.collate_fn_test._normalizer:
spectrum = self.collate_fn_test._normalizer.apply(spectrum)
# spectrum augment
audio = self.collate_fn_test.augmentation.transform_feature(
spectrum)
audio_len = audio.shape[0]
audio = paddle.to_tensor(audio, dtype='float32')
# audio_len = paddle.to_tensor(audio_len)
audio = paddle.unsqueeze(audio, axis=0)
if self.cached_feat is None:
self.cached_feat = audio
else:
assert (len(audio.shape) == 3)
assert (len(self.cached_feat.shape) == 3)
self.cached_feat = paddle.concat(
[self.cached_feat, audio], axis=1)
# set the feat device
if self.device is None:
self.device = self.cached_feat.place
self.num_frames += audio_len
self.remained_wav = self.remained_wav[self.n_shift * audio_len:]
logger.info(
f"process the audio feature success, the connection feat shape: {self.cached_feat.shape}"
)
logger.info(
f"After extract feat, the connection remain the audio samples: {self.remained_wav.shape}"
)
elif "conformer_online" in self.model_type:
logger.info("Online ASR extract the feat")
samples = np.frombuffer(samples, dtype=np.int16)
assert samples.ndim == 1
logger.info(f"This package receive {samples.shape[0]} pcm data")
self.num_samples += samples.shape[0]
# self.reamined_wav stores all the samples,
# include the original remained_wav and this package samples
if self.remained_wav is None:
self.remained_wav = samples
else:
assert self.remained_wav.ndim == 1
self.remained_wav = np.concatenate([self.remained_wav, samples])
logger.info(
f"The connection remain the audio samples: {self.remained_wav.shape}"
)
if len(self.remained_wav) < self.win_length:
return 0
# fbank
x_chunk = self.preprocessing(self.remained_wav,
**self.preprocess_args)
x_chunk = paddle.to_tensor(
x_chunk, dtype="float32").unsqueeze(axis=0)
if self.cached_feat is None:
self.cached_feat = x_chunk
else:
assert (len(x_chunk.shape) == 3)
assert (len(self.cached_feat.shape) == 3)
self.cached_feat = paddle.concat(
[self.cached_feat, x_chunk], axis=1)
# set the feat device
if self.device is None:
self.device = self.cached_feat.place
num_frames = x_chunk.shape[1]
self.num_frames += num_frames
self.remained_wav = self.remained_wav[self.n_shift * num_frames:]
logger.info(
f"process the audio feature success, the connection feat shape: {self.cached_feat.shape}"
)
logger.info(
f"After extract feat, the connection remain the audio samples: {self.remained_wav.shape}"
)
# logger.info(f"accumulate samples: {self.num_samples}")
def reset(self):
if "deepspeech2online" in self.model_type or "deepspeech2offline" in self.model_type:
# for deepspeech2
self.chunk_state_h_box = copy.deepcopy(
self.asr_engine.executor.chunk_state_h_box)
self.chunk_state_c_box = copy.deepcopy(
self.asr_engine.executor.chunk_state_c_box)
self.decoder.reset_decoder(batch_size=1)
# for conformer online
self.subsampling_cache = None
self.elayers_output_cache = None
self.conformer_cnn_cache = None
self.encoder_out = None
self.cached_feat = None
self.remained_wav = None
self.offset = 0
self.num_samples = 0
self.device = None
self.hyps = []
self.num_frames = 0
self.chunk_num = 0
self.global_frame_offset = 0
self.result_transcripts = ['']
self.word_time_stamp = []
self.time_stamp = []
self.first_char_occur_elapsed = None
def decode(self, is_finished=False):
if "deepspeech2online" in self.model_type:
# x_chunk 是特征数据
decoding_chunk_size = 1 # decoding_chunk_size=1 in deepspeech2 model
context = 7 # context=7 in deepspeech2 model
subsampling = 4 # subsampling=4 in deepspeech2 model
stride = subsampling * decoding_chunk_size
cached_feature_num = context - subsampling
# decoding window for model
decoding_window = (decoding_chunk_size - 1) * subsampling + context
if self.cached_feat is None:
logger.info("no audio feat, please input more pcm data")
return
num_frames = self.cached_feat.shape[1]
logger.info(
f"Required decoding window {decoding_window} frames, and the connection has {num_frames} frames"
)
# the cached feat must be larger decoding_window
if num_frames < decoding_window and not is_finished:
logger.info(
f"frame feat num is less than {decoding_window}, please input more pcm data"
)
return None, None
# if is_finished=True, we need at least context frames
if num_frames < context:
logger.info(
"flast {num_frames} is less than context {context} frames, and we cannot do model forward"
)
return None, None
logger.info("start to do model forward")
# num_frames - context + 1 ensure that current frame can get context window
if is_finished:
# if get the finished chunk, we need process the last context
left_frames = context
else:
# we only process decoding_window frames for one chunk
left_frames = decoding_window
for cur in range(0, num_frames - left_frames + 1, stride):
end = min(cur + decoding_window, num_frames)
# extract the audio
x_chunk = self.cached_feat[:, cur:end, :].numpy()
x_chunk_lens = np.array([x_chunk.shape[1]])
trans_best = self.decode_one_chunk(x_chunk, x_chunk_lens)
self.result_transcripts = [trans_best]
self.cached_feat = self.cached_feat[:, end - cached_feature_num:, :]
# return trans_best[0]
elif "conformer" in self.model_type or "transformer" in self.model_type:
try:
logger.info(
f"we will use the transformer like model : {self.model_type}"
)
self.advance_decoding(is_finished)
self.update_result()
except Exception as e:
logger.exception(e)
else:
raise Exception("invalid model name")
@paddle.no_grad()
def decode_one_chunk(self, x_chunk, x_chunk_lens):
logger.info("start to decoce one chunk with deepspeech2 model")
input_names = self.am_predictor.get_input_names()
audio_handle = self.am_predictor.get_input_handle(input_names[0])
audio_len_handle = self.am_predictor.get_input_handle(input_names[1])
h_box_handle = self.am_predictor.get_input_handle(input_names[2])
c_box_handle = self.am_predictor.get_input_handle(input_names[3])
audio_handle.reshape(x_chunk.shape)
audio_handle.copy_from_cpu(x_chunk)
audio_len_handle.reshape(x_chunk_lens.shape)
audio_len_handle.copy_from_cpu(x_chunk_lens)
h_box_handle.reshape(self.chunk_state_h_box.shape)
h_box_handle.copy_from_cpu(self.chunk_state_h_box)
c_box_handle.reshape(self.chunk_state_c_box.shape)
c_box_handle.copy_from_cpu(self.chunk_state_c_box)
output_names = self.am_predictor.get_output_names()
output_handle = self.am_predictor.get_output_handle(output_names[0])
output_lens_handle = self.am_predictor.get_output_handle(
output_names[1])
output_state_h_handle = self.am_predictor.get_output_handle(
output_names[2])
output_state_c_handle = self.am_predictor.get_output_handle(
output_names[3])
self.am_predictor.run()
output_chunk_probs = output_handle.copy_to_cpu()
output_chunk_lens = output_lens_handle.copy_to_cpu()
self.chunk_state_h_box = output_state_h_handle.copy_to_cpu()
self.chunk_state_c_box = output_state_c_handle.copy_to_cpu()
self.decoder.next(output_chunk_probs, output_chunk_lens)
trans_best, trans_beam = self.decoder.decode()
logger.info(f"decode one best result: {trans_best[0]}")
return trans_best[0]
@paddle.no_grad()
def advance_decoding(self, is_finished=False):
logger.info("start to decode with advanced_decoding method")
cfg = self.ctc_decode_config
decoding_chunk_size = cfg.decoding_chunk_size
num_decoding_left_chunks = cfg.num_decoding_left_chunks
assert decoding_chunk_size > 0
subsampling = self.model.encoder.embed.subsampling_rate
context = self.model.encoder.embed.right_context + 1
stride = subsampling * decoding_chunk_size
cached_feature_num = context - subsampling # processed chunk feature cached for next chunk
# decoding window for model
decoding_window = (decoding_chunk_size - 1) * subsampling + context
if self.cached_feat is None:
logger.info("no audio feat, please input more pcm data")
return
num_frames = self.cached_feat.shape[1]
logger.info(
f"Required decoding window {decoding_window} frames, and the connection has {num_frames} frames"
)
# the cached feat must be larger decoding_window
if num_frames < decoding_window and not is_finished:
logger.info(
f"frame feat num is less than {decoding_window}, please input more pcm data"
)
return None, None
# if is_finished=True, we need at least context frames
if num_frames < context:
logger.info(
"flast {num_frames} is less than context {context} frames, and we cannot do model forward"
)
return None, None
logger.info("start to do model forward")
required_cache_size = decoding_chunk_size * num_decoding_left_chunks
outputs = []
# num_frames - context + 1 ensure that current frame can get context window
if is_finished:
# if get the finished chunk, we need process the last context
left_frames = context
else:
# we only process decoding_window frames for one chunk
left_frames = decoding_window
# record the end for removing the processed feat
end = None
for cur in range(0, num_frames - left_frames + 1, stride):
end = min(cur + decoding_window, num_frames)
self.chunk_num += 1
chunk_xs = self.cached_feat[:, cur:end, :]
(y, self.subsampling_cache, self.elayers_output_cache,
self.conformer_cnn_cache) = self.model.encoder.forward_chunk(
chunk_xs, self.offset, required_cache_size,
self.subsampling_cache, self.elayers_output_cache,
self.conformer_cnn_cache)
outputs.append(y)
# update the offset
self.offset += y.shape[1]
ys = paddle.cat(outputs, 1)
if self.encoder_out is None:
self.encoder_out = ys
else:
self.encoder_out = paddle.concat([self.encoder_out, ys], axis=1)
# get the ctc probs
ctc_probs = self.model.ctc.log_softmax(ys) # (1, maxlen, vocab_size)
ctc_probs = ctc_probs.squeeze(0)
self.searcher.search(ctc_probs, self.cached_feat.place)
self.hyps = self.searcher.get_one_best_hyps()
assert self.cached_feat.shape[0] == 1
assert end >= cached_feature_num
self.cached_feat = self.cached_feat[0, end -
cached_feature_num:, :].unsqueeze(0)
assert len(
self.cached_feat.shape
) == 3, f"current cache feat shape is: {self.cached_feat.shape}"
logger.info(
f"This connection handler encoder out shape: {self.encoder_out.shape}"
)
def update_result(self):
logger.info("update the final result")
hyps = self.hyps
self.result_transcripts = [
self.text_feature.defeaturize(hyp) for hyp in hyps
]
self.result_tokenids = [hyp for hyp in hyps]
def get_result(self):
if len(self.result_transcripts) > 0:
return self.result_transcripts[0]
else:
return ''
def get_word_time_stamp(self):
return self.word_time_stamp
@paddle.no_grad()
def rescoring(self):
if "deepspeech2online" in self.model_type or "deepspeech2offline" in self.model_type:
return
logger.info("rescoring the final result")
if "attention_rescoring" != self.ctc_decode_config.decoding_method:
return
self.searcher.finalize_search()
self.update_result()
beam_size = self.ctc_decode_config.beam_size
hyps = self.searcher.get_hyps()
if hyps is None or len(hyps) == 0:
return
# assert len(hyps) == beam_size
hyp_list = []
for hyp in hyps:
hyp_content = hyp[0]
# Prevent the hyp is empty
if len(hyp_content) == 0:
hyp_content = (self.model.ctc.blank_id, )
hyp_content = paddle.to_tensor(
hyp_content, place=self.device, dtype=paddle.long)
hyp_list.append(hyp_content)
hyps_pad = pad_sequence(hyp_list, True, self.model.ignore_id)
hyps_lens = paddle.to_tensor(
[len(hyp[0]) for hyp in hyps], place=self.device,
dtype=paddle.long) # (beam_size,)
hyps_pad, _ = add_sos_eos(hyps_pad, self.model.sos, self.model.eos,
self.model.ignore_id)
hyps_lens = hyps_lens + 1 # Add <sos> at begining
encoder_out = self.encoder_out.repeat(beam_size, 1, 1)
encoder_mask = paddle.ones(
(beam_size, 1, encoder_out.shape[1]), dtype=paddle.bool)
decoder_out, _ = self.model.decoder(
encoder_out, encoder_mask, hyps_pad,
hyps_lens) # (beam_size, max_hyps_len, vocab_size)
# ctc score in ln domain
decoder_out = paddle.nn.functional.log_softmax(decoder_out, axis=-1)
decoder_out = decoder_out.numpy()
# Only use decoder score for rescoring
best_score = -float('inf')
best_index = 0
# hyps is List[(Text=List[int], Score=float)], len(hyps)=beam_size
for i, hyp in enumerate(hyps):
score = 0.0
for j, w in enumerate(hyp[0]):
score += decoder_out[i][j][w]
# last decoder output token is `eos`, for laste decoder input token.
score += decoder_out[i][len(hyp[0])][self.model.eos]
# add ctc score (which in ln domain)
score += hyp[1] * self.ctc_decode_config.ctc_weight
if score > best_score:
best_score = score
best_index = i
# update the one best result
# hyps stored the beam results and each fields is:
logger.info(f"best index: {best_index}")
# logger.info(f'best result: {hyps[best_index]}')
# the field of the hyps is:
# hyps[0][0]: the sentence word-id in the vocab with a tuple
# hyps[0][1]: the sentence decoding probability with all paths
# hyps[0][2]: viterbi_blank ending probability
# hyps[0][3]: viterbi_non_blank probability
# hyps[0][4]: current_token_prob,
# hyps[0][5]: times_viterbi_blank,
# hyps[0][6]: times_titerbi_non_blank
self.hyps = [hyps[best_index][0]]
# update the hyps time stamp
self.time_stamp = hyps[best_index][5] if hyps[best_index][2] > hyps[
best_index][3] else hyps[best_index][6]
logger.info(f"time stamp: {self.time_stamp}")
self.update_result()
# update each word start and end time stamp
frame_shift_in_ms = self.model.encoder.embed.subsampling_rate * self.n_shift / self.sample_rate
logger.info(f"frame shift ms: {frame_shift_in_ms}")
word_time_stamp = []
for idx, _ in enumerate(self.time_stamp):
start = (self.time_stamp[idx - 1] + self.time_stamp[idx]
) / 2.0 if idx > 0 else 0
start = start * frame_shift_in_ms
end = (self.time_stamp[idx] + self.time_stamp[idx + 1]
) / 2.0 if idx < len(self.time_stamp) - 1 else self.offset
end = end * frame_shift_in_ms
word_time_stamp.append({
"w": self.result_transcripts[0][idx],
"bg": start,
"ed": end
})
# logger.info(f"{self.result_transcripts[0][idx]}, start: {start}, end: {end}")
self.word_time_stamp = word_time_stamp
logger.info(f"word time stamp: {self.word_time_stamp}")
class ASRServerExecutor(ASRExecutor):
def __init__(self):
super().__init__()
self.pretrained_models = pretrained_models
def _init_from_path(self,
model_type: str='deepspeech2online_aishell',
am_model: Optional[os.PathLike]=None,
am_params: Optional[os.PathLike]=None,
lang: str='zh',
sample_rate: int=16000,
cfg_path: Optional[os.PathLike]=None,
decode_method: str='attention_rescoring',
am_predictor_conf: dict=None):
"""
Init model and other resources from a specific path.
"""
self.model_type = model_type
self.sample_rate = sample_rate
sample_rate_str = '16k' if sample_rate == 16000 else '8k'
tag = model_type + '-' + lang + '-' + sample_rate_str
if cfg_path is None or am_model is None or am_params is None:
logger.info(f"Load the pretrained model, tag = {tag}")
res_path = self._get_pretrained_path(tag) # wenetspeech_zh
self.res_path = res_path
self.cfg_path = os.path.join(
res_path, self.pretrained_models[tag]['cfg_path'])
self.am_model = os.path.join(res_path,
self.pretrained_models[tag]['model'])
self.am_params = os.path.join(res_path,
self.pretrained_models[tag]['params'])
logger.info(res_path)
else:
self.cfg_path = os.path.abspath(cfg_path)
self.am_model = os.path.abspath(am_model)
self.am_params = os.path.abspath(am_params)
self.res_path = os.path.dirname(
os.path.dirname(os.path.abspath(self.cfg_path)))
logger.info(self.cfg_path)
logger.info(self.am_model)
logger.info(self.am_params)
#Init body.
self.config = CfgNode(new_allowed=True)
self.config.merge_from_file(self.cfg_path)
with UpdateConfig(self.config):
if "deepspeech2online" in model_type or "deepspeech2offline" in model_type:
from paddlespeech.s2t.io.collator import SpeechCollator
self.vocab = self.config.vocab_filepath
self.config.decode.lang_model_path = os.path.join(
MODEL_HOME, 'language_model',
self.config.decode.lang_model_path)
self.collate_fn_test = SpeechCollator.from_config(self.config)
self.text_feature = TextFeaturizer(
unit_type=self.config.unit_type, vocab=self.vocab)
lm_url = self.pretrained_models[tag]['lm_url']
lm_md5 = self.pretrained_models[tag]['lm_md5']
logger.info(f"Start to load language model {lm_url}")
self.download_lm(
lm_url,
os.path.dirname(self.config.decode.lang_model_path), lm_md5)
elif "conformer" in model_type or "transformer" in model_type:
logger.info("start to create the stream conformer asr engine")
if self.config.spm_model_prefix:
self.config.spm_model_prefix = os.path.join(
self.res_path, self.config.spm_model_prefix)
self.vocab = self.config.vocab_filepath
self.text_feature = TextFeaturizer(
unit_type=self.config.unit_type,
vocab=self.config.vocab_filepath,
spm_model_prefix=self.config.spm_model_prefix)
# update the decoding method
if decode_method:
self.config.decode.decoding_method = decode_method
# we only support ctc_prefix_beam_search and attention_rescoring dedoding method
# Generally we set the decoding_method to attention_rescoring
if self.config.decode.decoding_method not in [
"ctc_prefix_beam_search", "attention_rescoring"
]:
logger.info(
"we set the decoding_method to attention_rescoring")
self.config.decode.decoding_method = "attention_rescoring"
assert self.config.decode.decoding_method in [
"ctc_prefix_beam_search", "attention_rescoring"
], f"we only support ctc_prefix_beam_search and attention_rescoring dedoding method, current decoding method is {self.config.decode.decoding_method}"
else:
raise Exception("wrong type")
if "deepspeech2online" in model_type or "deepspeech2offline" in model_type:
# AM predictor
logger.info("ASR engine start to init the am predictor")
self.am_predictor_conf = am_predictor_conf
self.am_predictor = init_predictor(
model_file=self.am_model,
params_file=self.am_params,
predictor_conf=self.am_predictor_conf)
# decoder
logger.info("ASR engine start to create the ctc decoder instance")
self.decoder = CTCDecoder(
odim=self.config.output_dim, # <blank> is in vocab
enc_n_units=self.config.rnn_layer_size * 2,
blank_id=self.config.blank_id,
dropout_rate=0.0,
reduction=True, # sum
batch_average=True, # sum / batch_size
grad_norm_type=self.config.get('ctc_grad_norm_type', None))
# init decoder
logger.info("ASR engine start to init the ctc decoder")
cfg = self.config.decode
decode_batch_size = 1 # for online
self.decoder.init_decoder(
decode_batch_size, self.text_feature.vocab_list,
cfg.decoding_method, cfg.lang_model_path, cfg.alpha, cfg.beta,
cfg.beam_size, cfg.cutoff_prob, cfg.cutoff_top_n,
cfg.num_proc_bsearch)
# init state box
self.chunk_state_h_box = np.zeros(
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
dtype=float32)
self.chunk_state_c_box = np.zeros(
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
dtype=float32)
elif "conformer" in model_type or "transformer" in model_type:
model_name = model_type[:model_type.rindex(
'_')] # model_type: {model_name}_{dataset}
logger.info(f"model name: {model_name}")
model_class = dynamic_import(model_name, self.model_alias)
model_conf = self.config
model = model_class.from_config(model_conf)
self.model = model
self.model.eval()
# load model
model_dict = paddle.load(self.am_model)
self.model.set_state_dict(model_dict)
logger.info("create the transformer like model success")
# update the ctc decoding
self.searcher = CTCPrefixBeamSearch(self.config.decode)
self.transformer_decode_reset()
def reset_decoder_and_chunk(self):
"""reset decoder and chunk state for an new audio
"""
if "deepspeech2online" in self.model_type or "deepspeech2offline" in self.model_type:
self.decoder.reset_decoder(batch_size=1)
# init state box, for new audio request
self.chunk_state_h_box = np.zeros(
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
dtype=float32)
self.chunk_state_c_box = np.zeros(
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
dtype=float32)
elif "conformer" in self.model_type or "transformer" in self.model_type:
self.transformer_decode_reset()
def decode_one_chunk(self, x_chunk, x_chunk_lens, model_type: str):
"""decode one chunk
Args:
x_chunk (numpy.array): shape[B, T, D]
x_chunk_lens (numpy.array): shape[B]
model_type (str): online model type
Returns:
str: one best result
"""
logger.info("start to decoce chunk by chunk")
3 years ago
if "deepspeech2online" in model_type:
input_names = self.am_predictor.get_input_names()
audio_handle = self.am_predictor.get_input_handle(input_names[0])
3 years ago
audio_len_handle = self.am_predictor.get_input_handle(
input_names[1])
h_box_handle = self.am_predictor.get_input_handle(input_names[2])
c_box_handle = self.am_predictor.get_input_handle(input_names[3])
audio_handle.reshape(x_chunk.shape)
audio_handle.copy_from_cpu(x_chunk)
audio_len_handle.reshape(x_chunk_lens.shape)
audio_len_handle.copy_from_cpu(x_chunk_lens)
h_box_handle.reshape(self.chunk_state_h_box.shape)
h_box_handle.copy_from_cpu(self.chunk_state_h_box)
c_box_handle.reshape(self.chunk_state_c_box.shape)
c_box_handle.copy_from_cpu(self.chunk_state_c_box)
output_names = self.am_predictor.get_output_names()
output_handle = self.am_predictor.get_output_handle(output_names[0])
3 years ago
output_lens_handle = self.am_predictor.get_output_handle(
output_names[1])
output_state_h_handle = self.am_predictor.get_output_handle(
output_names[2])
output_state_c_handle = self.am_predictor.get_output_handle(
output_names[3])
self.am_predictor.run()
output_chunk_probs = output_handle.copy_to_cpu()
output_chunk_lens = output_lens_handle.copy_to_cpu()
self.chunk_state_h_box = output_state_h_handle.copy_to_cpu()
self.chunk_state_c_box = output_state_c_handle.copy_to_cpu()
self.decoder.next(output_chunk_probs, output_chunk_lens)
trans_best, trans_beam = self.decoder.decode()
logger.info(f"decode one best result: {trans_best[0]}")
return trans_best[0]
elif "conformer" in model_type or "transformer" in model_type:
try:
logger.info(
f"we will use the transformer like model : {self.model_type}"
)
self.advanced_decoding(x_chunk, x_chunk_lens)
self.update_result()
return self.result_transcripts[0]
except Exception as e:
logger.exception(e)
else:
raise Exception("invalid model name")
def advanced_decoding(self, xs: paddle.Tensor, x_chunk_lens):
logger.info("start to decode with advanced_decoding method")
encoder_out, encoder_mask = self.encoder_forward(xs)
ctc_probs = self.model.ctc.log_softmax(
encoder_out) # (1, maxlen, vocab_size)
ctc_probs = ctc_probs.squeeze(0)
self.searcher.search(ctc_probs, xs.place)
# update the one best result
self.hyps = self.searcher.get_one_best_hyps()
# now we supprot ctc_prefix_beam_search and attention_rescoring
if "attention_rescoring" in self.config.decode.decoding_method:
self.rescoring(encoder_out, xs.place)
def encoder_forward(self, xs):
logger.info("get the model out from the feat")
cfg = self.config.decode
decoding_chunk_size = cfg.decoding_chunk_size
num_decoding_left_chunks = cfg.num_decoding_left_chunks
assert decoding_chunk_size > 0
subsampling = self.model.encoder.embed.subsampling_rate
context = self.model.encoder.embed.right_context + 1
stride = subsampling * decoding_chunk_size
# decoding window for model
decoding_window = (decoding_chunk_size - 1) * subsampling + context
num_frames = xs.shape[1]
required_cache_size = decoding_chunk_size * num_decoding_left_chunks
logger.info("start to do model forward")
outputs = []
# num_frames - context + 1 ensure that current frame can get context window
for cur in range(0, num_frames - context + 1, stride):
end = min(cur + decoding_window, num_frames)
chunk_xs = xs[:, cur:end, :]
(y, self.subsampling_cache, self.elayers_output_cache,
self.conformer_cnn_cache) = self.model.encoder.forward_chunk(
chunk_xs, self.offset, required_cache_size,
self.subsampling_cache, self.elayers_output_cache,
self.conformer_cnn_cache)
outputs.append(y)
self.offset += y.shape[1]
ys = paddle.cat(outputs, 1)
masks = paddle.ones([1, ys.shape[1]], dtype=paddle.bool)
masks = masks.unsqueeze(1)
return ys, masks
def rescoring(self, encoder_out, device):
logger.info("start to rescoring the hyps")
beam_size = self.config.decode.beam_size
hyps = self.searcher.get_hyps()
assert len(hyps) == beam_size
hyp_list = []
for hyp in hyps:
hyp_content = hyp[0]
# Prevent the hyp is empty
if len(hyp_content) == 0:
hyp_content = (self.model.ctc.blank_id, )
hyp_content = paddle.to_tensor(
hyp_content, place=device, dtype=paddle.long)
hyp_list.append(hyp_content)
hyps_pad = pad_sequence(hyp_list, True, self.model.ignore_id)
hyps_lens = paddle.to_tensor(
[len(hyp[0]) for hyp in hyps], place=device,
dtype=paddle.long) # (beam_size,)
hyps_pad, _ = add_sos_eos(hyps_pad, self.model.sos, self.model.eos,
self.model.ignore_id)
hyps_lens = hyps_lens + 1 # Add <sos> at begining
encoder_out = encoder_out.repeat(beam_size, 1, 1)
encoder_mask = paddle.ones(
(beam_size, 1, encoder_out.shape[1]), dtype=paddle.bool)
decoder_out, _ = self.model.decoder(
encoder_out, encoder_mask, hyps_pad,
hyps_lens) # (beam_size, max_hyps_len, vocab_size)
# ctc score in ln domain
decoder_out = paddle.nn.functional.log_softmax(decoder_out, axis=-1)
decoder_out = decoder_out.numpy()
# Only use decoder score for rescoring
best_score = -float('inf')
best_index = 0
# hyps is List[(Text=List[int], Score=float)], len(hyps)=beam_size
for i, hyp in enumerate(hyps):
score = 0.0
for j, w in enumerate(hyp[0]):
score += decoder_out[i][j][w]
# last decoder output token is `eos`, for laste decoder input token.
score += decoder_out[i][len(hyp[0])][self.model.eos]
# add ctc score (which in ln domain)
score += hyp[1] * self.config.decode.ctc_weight
if score > best_score:
best_score = score
best_index = i
# update the one best result
self.hyps = [hyps[best_index][0]]
return hyps[best_index][0]
def transformer_decode_reset(self):
self.subsampling_cache = None
self.elayers_output_cache = None
self.conformer_cnn_cache = None
self.offset = 0
# decoding reset
self.searcher.reset()
def update_result(self):
logger.info("update the final result")
hyps = self.hyps
self.result_transcripts = [
self.text_feature.defeaturize(hyp) for hyp in hyps
]
self.result_tokenids = [hyp for hyp in hyps]
def extract_feat(self, samples, sample_rate):
"""extract feat
Args:
samples (numpy.array): numpy.float32
sample_rate (int): sample rate
Returns:
x_chunk (numpy.array): shape[B, T, D]
x_chunk_lens (numpy.array): shape[B]
"""
if "deepspeech2online" in self.model_type:
# pcm16 -> pcm 32
samples = pcm2float(samples)
# read audio
speech_segment = SpeechSegment.from_pcm(
samples, sample_rate, transcript=" ")
# audio augment
self.collate_fn_test.augmentation.transform_audio(speech_segment)
# extract speech feature
spectrum, transcript_part = self.collate_fn_test._speech_featurizer.featurize(
speech_segment, self.collate_fn_test.keep_transcription_text)
# CMVN spectrum
if self.collate_fn_test._normalizer:
spectrum = self.collate_fn_test._normalizer.apply(spectrum)
# spectrum augment
audio = self.collate_fn_test.augmentation.transform_feature(
spectrum)
audio_len = audio.shape[0]
audio = paddle.to_tensor(audio, dtype='float32')
# audio_len = paddle.to_tensor(audio_len)
audio = paddle.unsqueeze(audio, axis=0)
x_chunk = audio.numpy()
x_chunk_lens = np.array([audio_len])
return x_chunk, x_chunk_lens
elif "conformer_online" in self.model_type:
if sample_rate != self.sample_rate:
logger.info(f"audio sample rate {sample_rate} is not match,"
"the model sample_rate is {self.sample_rate}")
logger.info(f"ASR Engine use the {self.model_type} to process")
logger.info("Create the preprocess instance")
preprocess_conf = self.config.preprocess_config
preprocess_args = {"train": False}
preprocessing = Transformation(preprocess_conf)
logger.info("Read the audio file")
logger.info(f"audio shape: {samples.shape}")
# fbank
x_chunk = preprocessing(samples, **preprocess_args)
x_chunk_lens = paddle.to_tensor(x_chunk.shape[0])
x_chunk = paddle.to_tensor(
x_chunk, dtype="float32").unsqueeze(axis=0)
logger.info(
f"process the audio feature success, feat shape: {x_chunk.shape}"
)
return x_chunk, x_chunk_lens
class ASREngine(BaseEngine):
"""ASR server engine
Args:
metaclass: Defaults to Singleton.
"""
def __init__(self):
super(ASREngine, self).__init__()
logger.info("create the online asr engine instance")
def init(self, config: dict) -> bool:
"""init engine resource
Args:
config_file (str): config file
Returns:
bool: init failed or success
"""
self.input = None
self.output = ""
self.executor = ASRServerExecutor()
self.config = config
try:
if self.config.get("device", None):
self.device = self.config.device
else:
self.device = paddle.get_device()
logger.info(f"paddlespeech_server set the device: {self.device}")
paddle.set_device(self.device)
except BaseException:
logger.error(
"Set device failed, please check if device is already used and the parameter 'device' in the yaml file"
)
self.executor._init_from_path(
model_type=self.config.model_type,
am_model=self.config.am_model,
am_params=self.config.am_params,
lang=self.config.lang,
sample_rate=self.config.sample_rate,
cfg_path=self.config.cfg_path,
decode_method=self.config.decode_method,
am_predictor_conf=self.config.am_predictor_conf)
logger.info("Initialize ASR server engine successfully.")
return True
def preprocess(self,
samples,
sample_rate,
model_type="deepspeech2online_aishell-zh-16k"):
"""preprocess
Args:
samples (numpy.array): numpy.float32
sample_rate (int): sample rate
Returns:
x_chunk (numpy.array): shape[B, T, D]
x_chunk_lens (numpy.array): shape[B]
"""
# if "deepspeech" in model_type:
x_chunk, x_chunk_lens = self.executor.extract_feat(samples, sample_rate)
return x_chunk, x_chunk_lens
def run(self, x_chunk, x_chunk_lens, decoder_chunk_size=1):
"""run online engine
Args:
x_chunk (numpy.array): shape[B, T, D]
x_chunk_lens (numpy.array): shape[B]
decoder_chunk_size(int)
"""
3 years ago
self.output = self.executor.decode_one_chunk(x_chunk, x_chunk_lens,
self.config.model_type)
def postprocess(self):
"""postprocess
"""
return self.output
def reset(self):
"""reset engine decoder and inference state
"""
self.executor.reset_decoder_and_chunk()
self.output = ""