You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
356 lines
13 KiB
356 lines
13 KiB
3 years ago
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import io
|
||
|
import os
|
||
|
import time
|
||
|
from typing import Optional
|
||
|
import pickle
|
||
|
import numpy as np
|
||
|
from numpy import float32
|
||
|
import soundfile
|
||
|
|
||
|
import paddle
|
||
|
from yacs.config import CfgNode
|
||
|
|
||
|
from paddlespeech.s2t.frontend.speech import SpeechSegment
|
||
|
from paddlespeech.cli.asr.infer import ASRExecutor
|
||
|
from paddlespeech.cli.log import logger
|
||
|
from paddlespeech.cli.utils import MODEL_HOME
|
||
|
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
|
||
|
from paddlespeech.s2t.modules.ctc import CTCDecoder
|
||
|
from paddlespeech.s2t.utils.utility import UpdateConfig
|
||
|
from paddlespeech.server.engine.base_engine import BaseEngine
|
||
|
from paddlespeech.server.utils.config import get_config
|
||
|
from paddlespeech.server.utils.paddle_predictor import init_predictor
|
||
|
from paddlespeech.server.utils.paddle_predictor import run_model
|
||
|
|
||
|
__all__ = ['ASREngine']
|
||
|
|
||
|
pretrained_models = {
|
||
|
"deepspeech2online_aishell-zh-16k": {
|
||
|
'url':
|
||
|
'https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_online_aishell_ckpt_0.1.1.model.tar.gz',
|
||
|
'md5':
|
||
|
'd5e076217cf60486519f72c217d21b9b',
|
||
|
'cfg_path':
|
||
|
'model.yaml',
|
||
|
'ckpt_path':
|
||
|
'exp/deepspeech2_online/checkpoints/avg_1',
|
||
|
'model':
|
||
|
'exp/deepspeech2_online/checkpoints/avg_1.jit.pdmodel',
|
||
|
'params':
|
||
|
'exp/deepspeech2_online/checkpoints/avg_1.jit.pdiparams',
|
||
|
'lm_url':
|
||
|
'https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm',
|
||
|
'lm_md5':
|
||
|
'29e02312deb2e59b3c8686c7966d4fe3'
|
||
|
},
|
||
|
}
|
||
|
|
||
|
|
||
|
class ASRServerExecutor(ASRExecutor):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
pass
|
||
|
|
||
|
def _init_from_path(self,
|
||
|
model_type: str='wenetspeech',
|
||
|
am_model: Optional[os.PathLike]=None,
|
||
|
am_params: Optional[os.PathLike]=None,
|
||
|
lang: str='zh',
|
||
|
sample_rate: int=16000,
|
||
|
cfg_path: Optional[os.PathLike]=None,
|
||
|
decode_method: str='attention_rescoring',
|
||
|
am_predictor_conf: dict=None):
|
||
|
"""
|
||
|
Init model and other resources from a specific path.
|
||
|
"""
|
||
|
|
||
|
if cfg_path is None or am_model is None or am_params is None:
|
||
|
sample_rate_str = '16k' if sample_rate == 16000 else '8k'
|
||
|
tag = model_type + '-' + lang + '-' + sample_rate_str
|
||
|
res_path = self._get_pretrained_path(tag) # wenetspeech_zh
|
||
|
self.res_path = res_path
|
||
|
self.cfg_path = os.path.join(res_path,
|
||
|
pretrained_models[tag]['cfg_path'])
|
||
|
|
||
|
self.am_model = os.path.join(res_path,
|
||
|
pretrained_models[tag]['model'])
|
||
|
self.am_params = os.path.join(res_path,
|
||
|
pretrained_models[tag]['params'])
|
||
|
logger.info(res_path)
|
||
|
logger.info(self.cfg_path)
|
||
|
logger.info(self.am_model)
|
||
|
logger.info(self.am_params)
|
||
|
else:
|
||
|
self.cfg_path = os.path.abspath(cfg_path)
|
||
|
self.am_model = os.path.abspath(am_model)
|
||
|
self.am_params = os.path.abspath(am_params)
|
||
|
self.res_path = os.path.dirname(
|
||
|
os.path.dirname(os.path.abspath(self.cfg_path)))
|
||
|
|
||
|
#Init body.
|
||
|
self.config = CfgNode(new_allowed=True)
|
||
|
self.config.merge_from_file(self.cfg_path)
|
||
|
|
||
|
with UpdateConfig(self.config):
|
||
|
if "deepspeech2online" in model_type or "deepspeech2offline" in model_type:
|
||
|
from paddlespeech.s2t.io.collator import SpeechCollator
|
||
|
self.vocab = self.config.vocab_filepath
|
||
|
self.config.decode.lang_model_path = os.path.join(
|
||
|
MODEL_HOME, 'language_model',
|
||
|
self.config.decode.lang_model_path)
|
||
|
self.collate_fn_test = SpeechCollator.from_config(self.config)
|
||
|
self.text_feature = TextFeaturizer(
|
||
|
unit_type=self.config.unit_type, vocab=self.vocab)
|
||
|
|
||
|
lm_url = pretrained_models[tag]['lm_url']
|
||
|
lm_md5 = pretrained_models[tag]['lm_md5']
|
||
|
self.download_lm(
|
||
|
lm_url,
|
||
|
os.path.dirname(self.config.decode.lang_model_path), lm_md5)
|
||
|
elif "conformer" in model_type or "transformer" in model_type or "wenetspeech" in model_type:
|
||
|
raise Exception("wrong type")
|
||
|
else:
|
||
|
raise Exception("wrong type")
|
||
|
|
||
|
# AM predictor
|
||
|
self.am_predictor_conf = am_predictor_conf
|
||
|
self.am_predictor = init_predictor(
|
||
|
model_file=self.am_model,
|
||
|
params_file=self.am_params,
|
||
|
predictor_conf=self.am_predictor_conf)
|
||
|
|
||
|
# decoder
|
||
|
self.decoder = CTCDecoder(
|
||
|
odim=self.config.output_dim, # <blank> is in vocab
|
||
|
enc_n_units=self.config.rnn_layer_size * 2,
|
||
|
blank_id=self.config.blank_id,
|
||
|
dropout_rate=0.0,
|
||
|
reduction=True, # sum
|
||
|
batch_average=True, # sum / batch_size
|
||
|
grad_norm_type=self.config.get('ctc_grad_norm_type', None))
|
||
|
|
||
|
# init decoder
|
||
|
cfg = self.config.decode
|
||
|
decode_batch_size = 1 # for online
|
||
|
self.decoder.init_decoder(
|
||
|
decode_batch_size, self.text_feature.vocab_list,
|
||
|
cfg.decoding_method, cfg.lang_model_path, cfg.alpha, cfg.beta,
|
||
|
cfg.beam_size, cfg.cutoff_prob, cfg.cutoff_top_n,
|
||
|
cfg.num_proc_bsearch)
|
||
|
|
||
|
# init state box
|
||
|
self.chunk_state_h_box = np.zeros(
|
||
|
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
|
||
|
dtype=float32)
|
||
|
self.chunk_state_c_box = np.zeros(
|
||
|
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
|
||
|
dtype=float32)
|
||
|
|
||
|
def reset_decoder_and_chunk(self):
|
||
|
"""reset decoder and chunk state for an new audio
|
||
|
"""
|
||
|
self.decoder.reset_decoder(batch_size=1)
|
||
|
# init state box, for new audio request
|
||
|
self.chunk_state_h_box = np.zeros(
|
||
|
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
|
||
|
dtype=float32)
|
||
|
self.chunk_state_c_box = np.zeros(
|
||
|
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
|
||
|
dtype=float32)
|
||
|
|
||
|
def decode_one_chunk(self, x_chunk, x_chunk_lens, model_type: str):
|
||
|
"""decode one chunk
|
||
|
|
||
|
Args:
|
||
|
x_chunk (numpy.array): shape[B, T, D]
|
||
|
x_chunk_lens (numpy.array): shape[B]
|
||
|
model_type (str): online model type
|
||
|
|
||
|
Returns:
|
||
|
[type]: [description]
|
||
|
"""
|
||
|
if "deepspeech2online" in model_type :
|
||
|
input_names = self.am_predictor.get_input_names()
|
||
|
audio_handle = self.am_predictor.get_input_handle(input_names[0])
|
||
|
audio_len_handle = self.am_predictor.get_input_handle(input_names[1])
|
||
|
h_box_handle = self.am_predictor.get_input_handle(input_names[2])
|
||
|
c_box_handle = self.am_predictor.get_input_handle(input_names[3])
|
||
|
|
||
|
audio_handle.reshape(x_chunk.shape)
|
||
|
audio_handle.copy_from_cpu(x_chunk)
|
||
|
|
||
|
audio_len_handle.reshape(x_chunk_lens.shape)
|
||
|
audio_len_handle.copy_from_cpu(x_chunk_lens)
|
||
|
|
||
|
h_box_handle.reshape(self.chunk_state_h_box.shape)
|
||
|
h_box_handle.copy_from_cpu(self.chunk_state_h_box)
|
||
|
|
||
|
c_box_handle.reshape(self.chunk_state_c_box.shape)
|
||
|
c_box_handle.copy_from_cpu(self.chunk_state_c_box)
|
||
|
|
||
|
output_names = self.am_predictor.get_output_names()
|
||
|
output_handle = self.am_predictor.get_output_handle(output_names[0])
|
||
|
output_lens_handle = self.am_predictor.get_output_handle(output_names[1])
|
||
|
output_state_h_handle = self.am_predictor.get_output_handle(
|
||
|
output_names[2])
|
||
|
output_state_c_handle = self.am_predictor.get_output_handle(
|
||
|
output_names[3])
|
||
|
|
||
|
self.am_predictor.run()
|
||
|
|
||
|
output_chunk_probs = output_handle.copy_to_cpu()
|
||
|
output_chunk_lens = output_lens_handle.copy_to_cpu()
|
||
|
self.chunk_state_h_box = output_state_h_handle.copy_to_cpu()
|
||
|
self.chunk_state_c_box = output_state_c_handle.copy_to_cpu()
|
||
|
|
||
|
self.decoder.next(output_chunk_probs, output_chunk_lens)
|
||
|
trans_best, trans_beam = self.decoder.decode()
|
||
|
|
||
|
return trans_best[0]
|
||
|
|
||
|
elif "conformer" in model_type or "transformer" in model_type:
|
||
|
raise Exception("invalid model name")
|
||
|
else:
|
||
|
raise Exception("invalid model name")
|
||
|
|
||
|
def _pcm16to32(self, audio):
|
||
|
"""pcm int16 to float32
|
||
|
|
||
|
Args:
|
||
|
audio(numpy.array): numpy.int16
|
||
|
|
||
|
Returns:
|
||
|
audio(numpy.array): numpy.float32
|
||
|
"""
|
||
|
if audio.dtype == np.int16:
|
||
|
audio = audio.astype("float32")
|
||
|
bits = np.iinfo(np.int16).bits
|
||
|
audio = audio / (2**(bits - 1))
|
||
|
return audio
|
||
|
|
||
|
def extract_feat(self, samples, sample_rate):
|
||
|
"""extract feat
|
||
|
|
||
|
Args:
|
||
|
samples (numpy.array): numpy.float32
|
||
|
sample_rate (int): sample rate
|
||
|
|
||
|
Returns:
|
||
|
x_chunk (numpy.array): shape[B, T, D]
|
||
|
x_chunk_lens (numpy.array): shape[B]
|
||
|
"""
|
||
|
# pcm16 -> pcm 32
|
||
|
samples = self._pcm16to32(samples)
|
||
|
|
||
|
# read audio
|
||
|
speech_segment = SpeechSegment.from_pcm(
|
||
|
samples, sample_rate, transcript=" ")
|
||
|
# audio augment
|
||
|
self.collate_fn_test.augmentation.transform_audio(speech_segment)
|
||
|
|
||
|
# extract speech feature
|
||
|
spectrum, transcript_part = self.collate_fn_test._speech_featurizer.featurize(
|
||
|
speech_segment, self.collate_fn_test.keep_transcription_text)
|
||
|
# CMVN spectrum
|
||
|
if self.collate_fn_test._normalizer:
|
||
|
spectrum = self.collate_fn_test._normalizer.apply(spectrum)
|
||
|
|
||
|
# spectrum augment
|
||
|
audio = self.collate_fn_test.augmentation.transform_feature(spectrum)
|
||
|
|
||
|
audio_len = audio.shape[0]
|
||
|
audio = paddle.to_tensor(audio, dtype='float32')
|
||
|
# audio_len = paddle.to_tensor(audio_len)
|
||
|
audio = paddle.unsqueeze(audio, axis=0)
|
||
|
|
||
|
x_chunk = audio.numpy()
|
||
|
x_chunk_lens = np.array([audio_len])
|
||
|
|
||
|
return x_chunk, x_chunk_lens
|
||
|
|
||
|
|
||
|
class ASREngine(BaseEngine):
|
||
|
"""ASR server engine
|
||
|
|
||
|
Args:
|
||
|
metaclass: Defaults to Singleton.
|
||
|
"""
|
||
|
|
||
|
def __init__(self):
|
||
|
super(ASREngine, self).__init__()
|
||
|
|
||
|
def init(self, config: dict) -> bool:
|
||
|
"""init engine resource
|
||
|
|
||
|
Args:
|
||
|
config_file (str): config file
|
||
|
|
||
|
Returns:
|
||
|
bool: init failed or success
|
||
|
"""
|
||
|
self.input = None
|
||
|
self.output = ""
|
||
|
self.executor = ASRServerExecutor()
|
||
|
self.config = config
|
||
|
|
||
|
self.executor._init_from_path(
|
||
|
model_type=self.config.model_type,
|
||
|
am_model=self.config.am_model,
|
||
|
am_params=self.config.am_params,
|
||
|
lang=self.config.lang,
|
||
|
sample_rate=self.config.sample_rate,
|
||
|
cfg_path=self.config.cfg_path,
|
||
|
decode_method=self.config.decode_method,
|
||
|
am_predictor_conf=self.config.am_predictor_conf)
|
||
|
|
||
|
logger.info("Initialize ASR server engine successfully.")
|
||
|
return True
|
||
|
|
||
|
def preprocess(self, samples, sample_rate):
|
||
|
"""preprocess
|
||
|
|
||
|
Args:
|
||
|
samples (numpy.array): numpy.float32
|
||
|
sample_rate (int): sample rate
|
||
|
|
||
|
Returns:
|
||
|
x_chunk (numpy.array): shape[B, T, D]
|
||
|
x_chunk_lens (numpy.array): shape[B]
|
||
|
"""
|
||
|
x_chunk, x_chunk_lens = self.executor.extract_feat(samples, sample_rate)
|
||
|
return x_chunk, x_chunk_lens
|
||
|
|
||
|
def run(self, x_chunk, x_chunk_lens, decoder_chunk_size=1):
|
||
|
"""run online engine
|
||
|
|
||
|
Args:
|
||
|
x_chunk (numpy.array): shape[B, T, D]
|
||
|
x_chunk_lens (numpy.array): shape[B]
|
||
|
decoder_chunk_size(int)
|
||
|
"""
|
||
|
self.output = self.executor.decode_one_chunk(x_chunk, x_chunk_lens, self.config.model_type)
|
||
|
|
||
|
def postprocess(self):
|
||
|
"""postprocess
|
||
|
"""
|
||
|
return self.output
|
||
|
|
||
|
def reset(self):
|
||
|
"""reset engine decoder and inference state
|
||
|
"""
|
||
|
self.executor.reset_decoder_and_chunk()
|
||
|
self.output = ""
|