You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1088 lines
45 KiB
1088 lines
45 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import copy
|
|
import os
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
import paddle
|
|
from numpy import float32
|
|
from yacs.config import CfgNode
|
|
|
|
from .pretrained_models import pretrained_models
|
|
from paddlespeech.cli.asr.infer import ASRExecutor
|
|
from paddlespeech.cli.log import logger
|
|
from paddlespeech.cli.utils import MODEL_HOME
|
|
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
|
|
from paddlespeech.s2t.frontend.speech import SpeechSegment
|
|
from paddlespeech.s2t.modules.ctc import CTCDecoder
|
|
from paddlespeech.s2t.transform.transformation import Transformation
|
|
from paddlespeech.s2t.utils.dynamic_import import dynamic_import
|
|
from paddlespeech.s2t.utils.tensor_utils import add_sos_eos
|
|
from paddlespeech.s2t.utils.tensor_utils import pad_sequence
|
|
from paddlespeech.s2t.utils.utility import UpdateConfig
|
|
from paddlespeech.server.engine.asr.online.ctc_search import CTCPrefixBeamSearch
|
|
from paddlespeech.server.engine.base_engine import BaseEngine
|
|
from paddlespeech.server.utils.audio_process import pcm2float
|
|
from paddlespeech.server.utils.paddle_predictor import init_predictor
|
|
|
|
__all__ = ['ASREngine']
|
|
|
|
|
|
# ASR server connection process class
|
|
class PaddleASRConnectionHanddler:
|
|
def __init__(self, asr_engine):
|
|
"""Init a Paddle ASR Connection Handler instance
|
|
|
|
Args:
|
|
asr_engine (ASREngine): the global asr engine
|
|
"""
|
|
super().__init__()
|
|
logger.info(
|
|
"create an paddle asr connection handler to process the websocket connection"
|
|
)
|
|
self.config = asr_engine.config
|
|
self.model_config = asr_engine.executor.config
|
|
self.asr_engine = asr_engine
|
|
|
|
self.init()
|
|
self.reset()
|
|
|
|
def init(self):
|
|
# model_type, sample_rate and text_feature is shared for deepspeech2 and conformer
|
|
self.model_type = self.asr_engine.executor.model_type
|
|
self.sample_rate = self.asr_engine.executor.sample_rate
|
|
# tokens to text
|
|
self.text_feature = self.asr_engine.executor.text_feature
|
|
|
|
if "deepspeech2online" in self.model_type or "deepspeech2offline" in self.model_type:
|
|
from paddlespeech.s2t.io.collator import SpeechCollator
|
|
self.am_predictor = self.asr_engine.executor.am_predictor
|
|
|
|
self.collate_fn_test = SpeechCollator.from_config(self.model_config)
|
|
self.decoder = CTCDecoder(
|
|
odim=self.model_config.output_dim, # <blank> is in vocab
|
|
enc_n_units=self.model_config.rnn_layer_size * 2,
|
|
blank_id=self.model_config.blank_id,
|
|
dropout_rate=0.0,
|
|
reduction=True, # sum
|
|
batch_average=True, # sum / batch_size
|
|
grad_norm_type=self.model_config.get('ctc_grad_norm_type',
|
|
None))
|
|
|
|
cfg = self.model_config.decode
|
|
decode_batch_size = 1 # for online
|
|
self.decoder.init_decoder(
|
|
decode_batch_size, self.text_feature.vocab_list,
|
|
cfg.decoding_method, cfg.lang_model_path, cfg.alpha, cfg.beta,
|
|
cfg.beam_size, cfg.cutoff_prob, cfg.cutoff_top_n,
|
|
cfg.num_proc_bsearch)
|
|
# frame window samples length and frame shift samples length
|
|
|
|
self.win_length = int(self.model_config.window_ms / 1000 *
|
|
self.sample_rate)
|
|
self.n_shift = int(self.model_config.stride_ms / 1000 *
|
|
self.sample_rate)
|
|
|
|
elif "conformer" in self.model_type or "transformer" in self.model_type:
|
|
# acoustic model
|
|
self.model = self.asr_engine.executor.model
|
|
|
|
# ctc decoding config
|
|
self.ctc_decode_config = self.asr_engine.executor.config.decode
|
|
self.searcher = CTCPrefixBeamSearch(self.ctc_decode_config)
|
|
|
|
# extract feat, new only fbank in conformer model
|
|
self.preprocess_conf = self.model_config.preprocess_config
|
|
self.preprocess_args = {"train": False}
|
|
self.preprocessing = Transformation(self.preprocess_conf)
|
|
|
|
# frame window samples length and frame shift samples length
|
|
self.win_length = self.preprocess_conf.process[0]['win_length']
|
|
self.n_shift = self.preprocess_conf.process[0]['n_shift']
|
|
|
|
def extract_feat(self, samples):
|
|
|
|
# we compute the elapsed time of first char occuring
|
|
# and we record the start time at the first pcm sample arraving
|
|
# if self.first_char_occur_elapsed is not None:
|
|
# self.first_char_occur_elapsed = time.time()
|
|
|
|
if "deepspeech2online" in self.model_type:
|
|
# self.reamined_wav stores all the samples,
|
|
# include the original remained_wav and this package samples
|
|
samples = np.frombuffer(samples, dtype=np.int16)
|
|
assert samples.ndim == 1
|
|
|
|
# pcm16 -> pcm 32
|
|
# pcm2float will change the orignal samples,
|
|
# so we shoule do pcm2float before concatenate
|
|
samples = pcm2float(samples)
|
|
|
|
if self.remained_wav is None:
|
|
self.remained_wav = samples
|
|
else:
|
|
assert self.remained_wav.ndim == 1
|
|
self.remained_wav = np.concatenate([self.remained_wav, samples])
|
|
logger.info(
|
|
f"The connection remain the audio samples: {self.remained_wav.shape}"
|
|
)
|
|
|
|
# read audio
|
|
speech_segment = SpeechSegment.from_pcm(
|
|
self.remained_wav, self.sample_rate, transcript=" ")
|
|
# audio augment
|
|
self.collate_fn_test.augmentation.transform_audio(speech_segment)
|
|
|
|
# extract speech feature
|
|
spectrum, transcript_part = self.collate_fn_test._speech_featurizer.featurize(
|
|
speech_segment, self.collate_fn_test.keep_transcription_text)
|
|
# CMVN spectrum
|
|
if self.collate_fn_test._normalizer:
|
|
spectrum = self.collate_fn_test._normalizer.apply(spectrum)
|
|
|
|
# spectrum augment
|
|
audio = self.collate_fn_test.augmentation.transform_feature(
|
|
spectrum)
|
|
|
|
audio_len = audio.shape[0]
|
|
audio = paddle.to_tensor(audio, dtype='float32')
|
|
# audio_len = paddle.to_tensor(audio_len)
|
|
audio = paddle.unsqueeze(audio, axis=0)
|
|
|
|
if self.cached_feat is None:
|
|
self.cached_feat = audio
|
|
else:
|
|
assert (len(audio.shape) == 3)
|
|
assert (len(self.cached_feat.shape) == 3)
|
|
self.cached_feat = paddle.concat(
|
|
[self.cached_feat, audio], axis=1)
|
|
|
|
# set the feat device
|
|
if self.device is None:
|
|
self.device = self.cached_feat.place
|
|
|
|
self.num_frames += audio_len
|
|
self.remained_wav = self.remained_wav[self.n_shift * audio_len:]
|
|
|
|
logger.info(
|
|
f"process the audio feature success, the connection feat shape: {self.cached_feat.shape}"
|
|
)
|
|
logger.info(
|
|
f"After extract feat, the connection remain the audio samples: {self.remained_wav.shape}"
|
|
)
|
|
elif "conformer_online" in self.model_type:
|
|
logger.info("Online ASR extract the feat")
|
|
samples = np.frombuffer(samples, dtype=np.int16)
|
|
assert samples.ndim == 1
|
|
|
|
logger.info(f"This package receive {samples.shape[0]} pcm data")
|
|
self.num_samples += samples.shape[0]
|
|
|
|
# self.reamined_wav stores all the samples,
|
|
# include the original remained_wav and this package samples
|
|
if self.remained_wav is None:
|
|
self.remained_wav = samples
|
|
else:
|
|
assert self.remained_wav.ndim == 1
|
|
self.remained_wav = np.concatenate([self.remained_wav, samples])
|
|
logger.info(
|
|
f"The connection remain the audio samples: {self.remained_wav.shape}"
|
|
)
|
|
if len(self.remained_wav) < self.win_length:
|
|
return 0
|
|
|
|
# fbank
|
|
x_chunk = self.preprocessing(self.remained_wav,
|
|
**self.preprocess_args)
|
|
x_chunk = paddle.to_tensor(
|
|
x_chunk, dtype="float32").unsqueeze(axis=0)
|
|
if self.cached_feat is None:
|
|
self.cached_feat = x_chunk
|
|
else:
|
|
assert (len(x_chunk.shape) == 3)
|
|
assert (len(self.cached_feat.shape) == 3)
|
|
self.cached_feat = paddle.concat(
|
|
[self.cached_feat, x_chunk], axis=1)
|
|
|
|
# set the feat device
|
|
if self.device is None:
|
|
self.device = self.cached_feat.place
|
|
|
|
num_frames = x_chunk.shape[1]
|
|
self.num_frames += num_frames
|
|
self.remained_wav = self.remained_wav[self.n_shift * num_frames:]
|
|
|
|
logger.info(
|
|
f"process the audio feature success, the connection feat shape: {self.cached_feat.shape}"
|
|
)
|
|
logger.info(
|
|
f"After extract feat, the connection remain the audio samples: {self.remained_wav.shape}"
|
|
)
|
|
# logger.info(f"accumulate samples: {self.num_samples}")
|
|
|
|
def reset(self):
|
|
if "deepspeech2online" in self.model_type or "deepspeech2offline" in self.model_type:
|
|
# for deepspeech2
|
|
self.chunk_state_h_box = copy.deepcopy(
|
|
self.asr_engine.executor.chunk_state_h_box)
|
|
self.chunk_state_c_box = copy.deepcopy(
|
|
self.asr_engine.executor.chunk_state_c_box)
|
|
self.decoder.reset_decoder(batch_size=1)
|
|
|
|
# for conformer online
|
|
self.subsampling_cache = None
|
|
self.elayers_output_cache = None
|
|
self.conformer_cnn_cache = None
|
|
self.encoder_out = None
|
|
self.cached_feat = None
|
|
self.remained_wav = None
|
|
self.offset = 0
|
|
self.num_samples = 0
|
|
self.device = None
|
|
self.hyps = []
|
|
self.num_frames = 0
|
|
self.chunk_num = 0
|
|
self.global_frame_offset = 0
|
|
self.result_transcripts = ['']
|
|
self.word_time_stamp = []
|
|
self.time_stamp = []
|
|
self.first_char_occur_elapsed = None
|
|
|
|
def decode(self, is_finished=False):
|
|
if "deepspeech2online" in self.model_type:
|
|
# x_chunk 是特征数据
|
|
decoding_chunk_size = 1 # decoding_chunk_size=1 in deepspeech2 model
|
|
context = 7 # context=7 in deepspeech2 model
|
|
subsampling = 4 # subsampling=4 in deepspeech2 model
|
|
stride = subsampling * decoding_chunk_size
|
|
cached_feature_num = context - subsampling
|
|
# decoding window for model
|
|
decoding_window = (decoding_chunk_size - 1) * subsampling + context
|
|
|
|
if self.cached_feat is None:
|
|
logger.info("no audio feat, please input more pcm data")
|
|
return
|
|
|
|
num_frames = self.cached_feat.shape[1]
|
|
logger.info(
|
|
f"Required decoding window {decoding_window} frames, and the connection has {num_frames} frames"
|
|
)
|
|
# the cached feat must be larger decoding_window
|
|
if num_frames < decoding_window and not is_finished:
|
|
logger.info(
|
|
f"frame feat num is less than {decoding_window}, please input more pcm data"
|
|
)
|
|
return None, None
|
|
|
|
# if is_finished=True, we need at least context frames
|
|
if num_frames < context:
|
|
logger.info(
|
|
"flast {num_frames} is less than context {context} frames, and we cannot do model forward"
|
|
)
|
|
return None, None
|
|
logger.info("start to do model forward")
|
|
# num_frames - context + 1 ensure that current frame can get context window
|
|
if is_finished:
|
|
# if get the finished chunk, we need process the last context
|
|
left_frames = context
|
|
else:
|
|
# we only process decoding_window frames for one chunk
|
|
left_frames = decoding_window
|
|
|
|
for cur in range(0, num_frames - left_frames + 1, stride):
|
|
end = min(cur + decoding_window, num_frames)
|
|
# extract the audio
|
|
x_chunk = self.cached_feat[:, cur:end, :].numpy()
|
|
x_chunk_lens = np.array([x_chunk.shape[1]])
|
|
trans_best = self.decode_one_chunk(x_chunk, x_chunk_lens)
|
|
|
|
self.result_transcripts = [trans_best]
|
|
|
|
self.cached_feat = self.cached_feat[:, end - cached_feature_num:, :]
|
|
# return trans_best[0]
|
|
elif "conformer" in self.model_type or "transformer" in self.model_type:
|
|
try:
|
|
logger.info(
|
|
f"we will use the transformer like model : {self.model_type}"
|
|
)
|
|
self.advance_decoding(is_finished)
|
|
self.update_result()
|
|
|
|
except Exception as e:
|
|
logger.exception(e)
|
|
else:
|
|
raise Exception("invalid model name")
|
|
|
|
@paddle.no_grad()
|
|
def decode_one_chunk(self, x_chunk, x_chunk_lens):
|
|
logger.info("start to decoce one chunk with deepspeech2 model")
|
|
input_names = self.am_predictor.get_input_names()
|
|
audio_handle = self.am_predictor.get_input_handle(input_names[0])
|
|
audio_len_handle = self.am_predictor.get_input_handle(input_names[1])
|
|
h_box_handle = self.am_predictor.get_input_handle(input_names[2])
|
|
c_box_handle = self.am_predictor.get_input_handle(input_names[3])
|
|
|
|
audio_handle.reshape(x_chunk.shape)
|
|
audio_handle.copy_from_cpu(x_chunk)
|
|
|
|
audio_len_handle.reshape(x_chunk_lens.shape)
|
|
audio_len_handle.copy_from_cpu(x_chunk_lens)
|
|
|
|
h_box_handle.reshape(self.chunk_state_h_box.shape)
|
|
h_box_handle.copy_from_cpu(self.chunk_state_h_box)
|
|
|
|
c_box_handle.reshape(self.chunk_state_c_box.shape)
|
|
c_box_handle.copy_from_cpu(self.chunk_state_c_box)
|
|
|
|
output_names = self.am_predictor.get_output_names()
|
|
output_handle = self.am_predictor.get_output_handle(output_names[0])
|
|
output_lens_handle = self.am_predictor.get_output_handle(
|
|
output_names[1])
|
|
output_state_h_handle = self.am_predictor.get_output_handle(
|
|
output_names[2])
|
|
output_state_c_handle = self.am_predictor.get_output_handle(
|
|
output_names[3])
|
|
|
|
self.am_predictor.run()
|
|
|
|
output_chunk_probs = output_handle.copy_to_cpu()
|
|
output_chunk_lens = output_lens_handle.copy_to_cpu()
|
|
self.chunk_state_h_box = output_state_h_handle.copy_to_cpu()
|
|
self.chunk_state_c_box = output_state_c_handle.copy_to_cpu()
|
|
|
|
self.decoder.next(output_chunk_probs, output_chunk_lens)
|
|
trans_best, trans_beam = self.decoder.decode()
|
|
logger.info(f"decode one best result: {trans_best[0]}")
|
|
return trans_best[0]
|
|
|
|
@paddle.no_grad()
|
|
def advance_decoding(self, is_finished=False):
|
|
logger.info("start to decode with advanced_decoding method")
|
|
cfg = self.ctc_decode_config
|
|
decoding_chunk_size = cfg.decoding_chunk_size
|
|
num_decoding_left_chunks = cfg.num_decoding_left_chunks
|
|
|
|
assert decoding_chunk_size > 0
|
|
subsampling = self.model.encoder.embed.subsampling_rate
|
|
context = self.model.encoder.embed.right_context + 1
|
|
stride = subsampling * decoding_chunk_size
|
|
cached_feature_num = context - subsampling # processed chunk feature cached for next chunk
|
|
|
|
# decoding window for model
|
|
decoding_window = (decoding_chunk_size - 1) * subsampling + context
|
|
if self.cached_feat is None:
|
|
logger.info("no audio feat, please input more pcm data")
|
|
return
|
|
|
|
num_frames = self.cached_feat.shape[1]
|
|
logger.info(
|
|
f"Required decoding window {decoding_window} frames, and the connection has {num_frames} frames"
|
|
)
|
|
|
|
# the cached feat must be larger decoding_window
|
|
if num_frames < decoding_window and not is_finished:
|
|
logger.info(
|
|
f"frame feat num is less than {decoding_window}, please input more pcm data"
|
|
)
|
|
return None, None
|
|
|
|
# if is_finished=True, we need at least context frames
|
|
if num_frames < context:
|
|
logger.info(
|
|
"flast {num_frames} is less than context {context} frames, and we cannot do model forward"
|
|
)
|
|
return None, None
|
|
|
|
logger.info("start to do model forward")
|
|
required_cache_size = decoding_chunk_size * num_decoding_left_chunks
|
|
outputs = []
|
|
|
|
# num_frames - context + 1 ensure that current frame can get context window
|
|
if is_finished:
|
|
# if get the finished chunk, we need process the last context
|
|
left_frames = context
|
|
else:
|
|
# we only process decoding_window frames for one chunk
|
|
left_frames = decoding_window
|
|
|
|
# record the end for removing the processed feat
|
|
end = None
|
|
for cur in range(0, num_frames - left_frames + 1, stride):
|
|
end = min(cur + decoding_window, num_frames)
|
|
|
|
self.chunk_num += 1
|
|
chunk_xs = self.cached_feat[:, cur:end, :]
|
|
(y, self.subsampling_cache, self.elayers_output_cache,
|
|
self.conformer_cnn_cache) = self.model.encoder.forward_chunk(
|
|
chunk_xs, self.offset, required_cache_size,
|
|
self.subsampling_cache, self.elayers_output_cache,
|
|
self.conformer_cnn_cache)
|
|
outputs.append(y)
|
|
|
|
# update the offset
|
|
self.offset += y.shape[1]
|
|
|
|
ys = paddle.cat(outputs, 1)
|
|
if self.encoder_out is None:
|
|
self.encoder_out = ys
|
|
else:
|
|
self.encoder_out = paddle.concat([self.encoder_out, ys], axis=1)
|
|
|
|
# get the ctc probs
|
|
ctc_probs = self.model.ctc.log_softmax(ys) # (1, maxlen, vocab_size)
|
|
ctc_probs = ctc_probs.squeeze(0)
|
|
|
|
self.searcher.search(ctc_probs, self.cached_feat.place)
|
|
|
|
self.hyps = self.searcher.get_one_best_hyps()
|
|
assert self.cached_feat.shape[0] == 1
|
|
assert end >= cached_feature_num
|
|
|
|
self.cached_feat = self.cached_feat[0, end -
|
|
cached_feature_num:, :].unsqueeze(0)
|
|
assert len(
|
|
self.cached_feat.shape
|
|
) == 3, f"current cache feat shape is: {self.cached_feat.shape}"
|
|
|
|
logger.info(
|
|
f"This connection handler encoder out shape: {self.encoder_out.shape}"
|
|
)
|
|
|
|
def update_result(self):
|
|
logger.info("update the final result")
|
|
hyps = self.hyps
|
|
self.result_transcripts = [
|
|
self.text_feature.defeaturize(hyp) for hyp in hyps
|
|
]
|
|
self.result_tokenids = [hyp for hyp in hyps]
|
|
|
|
def get_result(self):
|
|
if len(self.result_transcripts) > 0:
|
|
return self.result_transcripts[0]
|
|
else:
|
|
return ''
|
|
|
|
def get_word_time_stamp(self):
|
|
return self.word_time_stamp
|
|
|
|
@paddle.no_grad()
|
|
def rescoring(self):
|
|
if "deepspeech2online" in self.model_type or "deepspeech2offline" in self.model_type:
|
|
return
|
|
|
|
logger.info("rescoring the final result")
|
|
if "attention_rescoring" != self.ctc_decode_config.decoding_method:
|
|
return
|
|
|
|
self.searcher.finalize_search()
|
|
self.update_result()
|
|
|
|
beam_size = self.ctc_decode_config.beam_size
|
|
hyps = self.searcher.get_hyps()
|
|
if hyps is None or len(hyps) == 0:
|
|
return
|
|
|
|
# assert len(hyps) == beam_size
|
|
hyp_list = []
|
|
for hyp in hyps:
|
|
hyp_content = hyp[0]
|
|
# Prevent the hyp is empty
|
|
if len(hyp_content) == 0:
|
|
hyp_content = (self.model.ctc.blank_id, )
|
|
hyp_content = paddle.to_tensor(
|
|
hyp_content, place=self.device, dtype=paddle.long)
|
|
hyp_list.append(hyp_content)
|
|
hyps_pad = pad_sequence(hyp_list, True, self.model.ignore_id)
|
|
hyps_lens = paddle.to_tensor(
|
|
[len(hyp[0]) for hyp in hyps], place=self.device,
|
|
dtype=paddle.long) # (beam_size,)
|
|
hyps_pad, _ = add_sos_eos(hyps_pad, self.model.sos, self.model.eos,
|
|
self.model.ignore_id)
|
|
hyps_lens = hyps_lens + 1 # Add <sos> at begining
|
|
|
|
encoder_out = self.encoder_out.repeat(beam_size, 1, 1)
|
|
encoder_mask = paddle.ones(
|
|
(beam_size, 1, encoder_out.shape[1]), dtype=paddle.bool)
|
|
decoder_out, _ = self.model.decoder(
|
|
encoder_out, encoder_mask, hyps_pad,
|
|
hyps_lens) # (beam_size, max_hyps_len, vocab_size)
|
|
# ctc score in ln domain
|
|
decoder_out = paddle.nn.functional.log_softmax(decoder_out, axis=-1)
|
|
decoder_out = decoder_out.numpy()
|
|
|
|
# Only use decoder score for rescoring
|
|
best_score = -float('inf')
|
|
best_index = 0
|
|
# hyps is List[(Text=List[int], Score=float)], len(hyps)=beam_size
|
|
for i, hyp in enumerate(hyps):
|
|
score = 0.0
|
|
for j, w in enumerate(hyp[0]):
|
|
score += decoder_out[i][j][w]
|
|
# last decoder output token is `eos`, for laste decoder input token.
|
|
score += decoder_out[i][len(hyp[0])][self.model.eos]
|
|
# add ctc score (which in ln domain)
|
|
score += hyp[1] * self.ctc_decode_config.ctc_weight
|
|
if score > best_score:
|
|
best_score = score
|
|
best_index = i
|
|
|
|
# update the one best result
|
|
# hyps stored the beam results and each fields is:
|
|
|
|
logger.info(f"best index: {best_index}")
|
|
# logger.info(f'best result: {hyps[best_index]}')
|
|
# the field of the hyps is:
|
|
# hyps[0][0]: the sentence word-id in the vocab with a tuple
|
|
# hyps[0][1]: the sentence decoding probability with all paths
|
|
# hyps[0][2]: viterbi_blank ending probability
|
|
# hyps[0][3]: viterbi_non_blank probability
|
|
# hyps[0][4]: current_token_prob,
|
|
# hyps[0][5]: times_viterbi_blank,
|
|
# hyps[0][6]: times_titerbi_non_blank
|
|
self.hyps = [hyps[best_index][0]]
|
|
|
|
# update the hyps time stamp
|
|
self.time_stamp = hyps[best_index][5] if hyps[best_index][2] > hyps[
|
|
best_index][3] else hyps[best_index][6]
|
|
logger.info(f"time stamp: {self.time_stamp}")
|
|
|
|
self.update_result()
|
|
|
|
# update each word start and end time stamp
|
|
frame_shift_in_ms = self.model.encoder.embed.subsampling_rate * self.n_shift / self.sample_rate
|
|
logger.info(f"frame shift ms: {frame_shift_in_ms}")
|
|
word_time_stamp = []
|
|
for idx, _ in enumerate(self.time_stamp):
|
|
start = (self.time_stamp[idx - 1] + self.time_stamp[idx]
|
|
) / 2.0 if idx > 0 else 0
|
|
start = start * frame_shift_in_ms
|
|
|
|
end = (self.time_stamp[idx] + self.time_stamp[idx + 1]
|
|
) / 2.0 if idx < len(self.time_stamp) - 1 else self.offset
|
|
end = end * frame_shift_in_ms
|
|
word_time_stamp.append({
|
|
"w": self.result_transcripts[0][idx],
|
|
"bg": start,
|
|
"ed": end
|
|
})
|
|
# logger.info(f"{self.result_transcripts[0][idx]}, start: {start}, end: {end}")
|
|
self.word_time_stamp = word_time_stamp
|
|
logger.info(f"word time stamp: {self.word_time_stamp}")
|
|
|
|
|
|
class ASRServerExecutor(ASRExecutor):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.pretrained_models = pretrained_models
|
|
|
|
def _init_from_path(self,
|
|
model_type: str='deepspeech2online_aishell',
|
|
am_model: Optional[os.PathLike]=None,
|
|
am_params: Optional[os.PathLike]=None,
|
|
lang: str='zh',
|
|
sample_rate: int=16000,
|
|
cfg_path: Optional[os.PathLike]=None,
|
|
decode_method: str='attention_rescoring',
|
|
am_predictor_conf: dict=None):
|
|
"""
|
|
Init model and other resources from a specific path.
|
|
"""
|
|
self.model_type = model_type
|
|
self.sample_rate = sample_rate
|
|
sample_rate_str = '16k' if sample_rate == 16000 else '8k'
|
|
tag = model_type + '-' + lang + '-' + sample_rate_str
|
|
if cfg_path is None or am_model is None or am_params is None:
|
|
logger.info(f"Load the pretrained model, tag = {tag}")
|
|
res_path = self._get_pretrained_path(tag) # wenetspeech_zh
|
|
self.res_path = res_path
|
|
|
|
self.cfg_path = os.path.join(
|
|
res_path, self.pretrained_models[tag]['cfg_path'])
|
|
|
|
self.am_model = os.path.join(res_path,
|
|
self.pretrained_models[tag]['model'])
|
|
self.am_params = os.path.join(res_path,
|
|
self.pretrained_models[tag]['params'])
|
|
logger.info(res_path)
|
|
else:
|
|
self.cfg_path = os.path.abspath(cfg_path)
|
|
self.am_model = os.path.abspath(am_model)
|
|
self.am_params = os.path.abspath(am_params)
|
|
self.res_path = os.path.dirname(
|
|
os.path.dirname(os.path.abspath(self.cfg_path)))
|
|
|
|
logger.info(self.cfg_path)
|
|
logger.info(self.am_model)
|
|
logger.info(self.am_params)
|
|
|
|
#Init body.
|
|
self.config = CfgNode(new_allowed=True)
|
|
self.config.merge_from_file(self.cfg_path)
|
|
|
|
with UpdateConfig(self.config):
|
|
if "deepspeech2online" in model_type or "deepspeech2offline" in model_type:
|
|
from paddlespeech.s2t.io.collator import SpeechCollator
|
|
self.vocab = self.config.vocab_filepath
|
|
self.config.decode.lang_model_path = os.path.join(
|
|
MODEL_HOME, 'language_model',
|
|
self.config.decode.lang_model_path)
|
|
self.collate_fn_test = SpeechCollator.from_config(self.config)
|
|
self.text_feature = TextFeaturizer(
|
|
unit_type=self.config.unit_type, vocab=self.vocab)
|
|
|
|
lm_url = self.pretrained_models[tag]['lm_url']
|
|
lm_md5 = self.pretrained_models[tag]['lm_md5']
|
|
logger.info(f"Start to load language model {lm_url}")
|
|
self.download_lm(
|
|
lm_url,
|
|
os.path.dirname(self.config.decode.lang_model_path), lm_md5)
|
|
elif "conformer" in model_type or "transformer" in model_type:
|
|
logger.info("start to create the stream conformer asr engine")
|
|
if self.config.spm_model_prefix:
|
|
self.config.spm_model_prefix = os.path.join(
|
|
self.res_path, self.config.spm_model_prefix)
|
|
self.vocab = self.config.vocab_filepath
|
|
self.text_feature = TextFeaturizer(
|
|
unit_type=self.config.unit_type,
|
|
vocab=self.config.vocab_filepath,
|
|
spm_model_prefix=self.config.spm_model_prefix)
|
|
# update the decoding method
|
|
if decode_method:
|
|
self.config.decode.decoding_method = decode_method
|
|
|
|
# we only support ctc_prefix_beam_search and attention_rescoring dedoding method
|
|
# Generally we set the decoding_method to attention_rescoring
|
|
if self.config.decode.decoding_method not in [
|
|
"ctc_prefix_beam_search", "attention_rescoring"
|
|
]:
|
|
logger.info(
|
|
"we set the decoding_method to attention_rescoring")
|
|
self.config.decode.decoding_method = "attention_rescoring"
|
|
assert self.config.decode.decoding_method in [
|
|
"ctc_prefix_beam_search", "attention_rescoring"
|
|
], f"we only support ctc_prefix_beam_search and attention_rescoring dedoding method, current decoding method is {self.config.decode.decoding_method}"
|
|
else:
|
|
raise Exception("wrong type")
|
|
if "deepspeech2online" in model_type or "deepspeech2offline" in model_type:
|
|
# AM predictor
|
|
logger.info("ASR engine start to init the am predictor")
|
|
self.am_predictor_conf = am_predictor_conf
|
|
self.am_predictor = init_predictor(
|
|
model_file=self.am_model,
|
|
params_file=self.am_params,
|
|
predictor_conf=self.am_predictor_conf)
|
|
|
|
# decoder
|
|
logger.info("ASR engine start to create the ctc decoder instance")
|
|
self.decoder = CTCDecoder(
|
|
odim=self.config.output_dim, # <blank> is in vocab
|
|
enc_n_units=self.config.rnn_layer_size * 2,
|
|
blank_id=self.config.blank_id,
|
|
dropout_rate=0.0,
|
|
reduction=True, # sum
|
|
batch_average=True, # sum / batch_size
|
|
grad_norm_type=self.config.get('ctc_grad_norm_type', None))
|
|
|
|
# init decoder
|
|
logger.info("ASR engine start to init the ctc decoder")
|
|
cfg = self.config.decode
|
|
decode_batch_size = 1 # for online
|
|
self.decoder.init_decoder(
|
|
decode_batch_size, self.text_feature.vocab_list,
|
|
cfg.decoding_method, cfg.lang_model_path, cfg.alpha, cfg.beta,
|
|
cfg.beam_size, cfg.cutoff_prob, cfg.cutoff_top_n,
|
|
cfg.num_proc_bsearch)
|
|
|
|
# init state box
|
|
self.chunk_state_h_box = np.zeros(
|
|
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
|
|
dtype=float32)
|
|
self.chunk_state_c_box = np.zeros(
|
|
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
|
|
dtype=float32)
|
|
elif "conformer" in model_type or "transformer" in model_type:
|
|
model_name = model_type[:model_type.rindex(
|
|
'_')] # model_type: {model_name}_{dataset}
|
|
logger.info(f"model name: {model_name}")
|
|
model_class = dynamic_import(model_name, self.model_alias)
|
|
model_conf = self.config
|
|
model = model_class.from_config(model_conf)
|
|
self.model = model
|
|
self.model.eval()
|
|
|
|
# load model
|
|
model_dict = paddle.load(self.am_model)
|
|
self.model.set_state_dict(model_dict)
|
|
logger.info("create the transformer like model success")
|
|
|
|
# update the ctc decoding
|
|
self.searcher = CTCPrefixBeamSearch(self.config.decode)
|
|
self.transformer_decode_reset()
|
|
|
|
def reset_decoder_and_chunk(self):
|
|
"""reset decoder and chunk state for an new audio
|
|
"""
|
|
if "deepspeech2online" in self.model_type or "deepspeech2offline" in self.model_type:
|
|
self.decoder.reset_decoder(batch_size=1)
|
|
# init state box, for new audio request
|
|
self.chunk_state_h_box = np.zeros(
|
|
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
|
|
dtype=float32)
|
|
self.chunk_state_c_box = np.zeros(
|
|
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
|
|
dtype=float32)
|
|
elif "conformer" in self.model_type or "transformer" in self.model_type:
|
|
self.transformer_decode_reset()
|
|
|
|
def decode_one_chunk(self, x_chunk, x_chunk_lens, model_type: str):
|
|
"""decode one chunk
|
|
|
|
Args:
|
|
x_chunk (numpy.array): shape[B, T, D]
|
|
x_chunk_lens (numpy.array): shape[B]
|
|
model_type (str): online model type
|
|
|
|
Returns:
|
|
str: one best result
|
|
"""
|
|
logger.info("start to decoce chunk by chunk")
|
|
if "deepspeech2online" in model_type:
|
|
input_names = self.am_predictor.get_input_names()
|
|
audio_handle = self.am_predictor.get_input_handle(input_names[0])
|
|
audio_len_handle = self.am_predictor.get_input_handle(
|
|
input_names[1])
|
|
h_box_handle = self.am_predictor.get_input_handle(input_names[2])
|
|
c_box_handle = self.am_predictor.get_input_handle(input_names[3])
|
|
|
|
audio_handle.reshape(x_chunk.shape)
|
|
audio_handle.copy_from_cpu(x_chunk)
|
|
|
|
audio_len_handle.reshape(x_chunk_lens.shape)
|
|
audio_len_handle.copy_from_cpu(x_chunk_lens)
|
|
|
|
h_box_handle.reshape(self.chunk_state_h_box.shape)
|
|
h_box_handle.copy_from_cpu(self.chunk_state_h_box)
|
|
|
|
c_box_handle.reshape(self.chunk_state_c_box.shape)
|
|
c_box_handle.copy_from_cpu(self.chunk_state_c_box)
|
|
|
|
output_names = self.am_predictor.get_output_names()
|
|
output_handle = self.am_predictor.get_output_handle(output_names[0])
|
|
output_lens_handle = self.am_predictor.get_output_handle(
|
|
output_names[1])
|
|
output_state_h_handle = self.am_predictor.get_output_handle(
|
|
output_names[2])
|
|
output_state_c_handle = self.am_predictor.get_output_handle(
|
|
output_names[3])
|
|
|
|
self.am_predictor.run()
|
|
|
|
output_chunk_probs = output_handle.copy_to_cpu()
|
|
output_chunk_lens = output_lens_handle.copy_to_cpu()
|
|
self.chunk_state_h_box = output_state_h_handle.copy_to_cpu()
|
|
self.chunk_state_c_box = output_state_c_handle.copy_to_cpu()
|
|
|
|
self.decoder.next(output_chunk_probs, output_chunk_lens)
|
|
trans_best, trans_beam = self.decoder.decode()
|
|
logger.info(f"decode one best result: {trans_best[0]}")
|
|
return trans_best[0]
|
|
|
|
elif "conformer" in model_type or "transformer" in model_type:
|
|
try:
|
|
logger.info(
|
|
f"we will use the transformer like model : {self.model_type}"
|
|
)
|
|
self.advanced_decoding(x_chunk, x_chunk_lens)
|
|
self.update_result()
|
|
|
|
return self.result_transcripts[0]
|
|
except Exception as e:
|
|
logger.exception(e)
|
|
else:
|
|
raise Exception("invalid model name")
|
|
|
|
def advanced_decoding(self, xs: paddle.Tensor, x_chunk_lens):
|
|
logger.info("start to decode with advanced_decoding method")
|
|
encoder_out, encoder_mask = self.encoder_forward(xs)
|
|
ctc_probs = self.model.ctc.log_softmax(
|
|
encoder_out) # (1, maxlen, vocab_size)
|
|
ctc_probs = ctc_probs.squeeze(0)
|
|
self.searcher.search(ctc_probs, xs.place)
|
|
# update the one best result
|
|
self.hyps = self.searcher.get_one_best_hyps()
|
|
|
|
# now we supprot ctc_prefix_beam_search and attention_rescoring
|
|
if "attention_rescoring" in self.config.decode.decoding_method:
|
|
self.rescoring(encoder_out, xs.place)
|
|
|
|
def encoder_forward(self, xs):
|
|
logger.info("get the model out from the feat")
|
|
cfg = self.config.decode
|
|
decoding_chunk_size = cfg.decoding_chunk_size
|
|
num_decoding_left_chunks = cfg.num_decoding_left_chunks
|
|
|
|
assert decoding_chunk_size > 0
|
|
subsampling = self.model.encoder.embed.subsampling_rate
|
|
context = self.model.encoder.embed.right_context + 1
|
|
stride = subsampling * decoding_chunk_size
|
|
|
|
# decoding window for model
|
|
decoding_window = (decoding_chunk_size - 1) * subsampling + context
|
|
num_frames = xs.shape[1]
|
|
required_cache_size = decoding_chunk_size * num_decoding_left_chunks
|
|
|
|
logger.info("start to do model forward")
|
|
outputs = []
|
|
|
|
# num_frames - context + 1 ensure that current frame can get context window
|
|
for cur in range(0, num_frames - context + 1, stride):
|
|
end = min(cur + decoding_window, num_frames)
|
|
chunk_xs = xs[:, cur:end, :]
|
|
(y, self.subsampling_cache, self.elayers_output_cache,
|
|
self.conformer_cnn_cache) = self.model.encoder.forward_chunk(
|
|
chunk_xs, self.offset, required_cache_size,
|
|
self.subsampling_cache, self.elayers_output_cache,
|
|
self.conformer_cnn_cache)
|
|
outputs.append(y)
|
|
self.offset += y.shape[1]
|
|
|
|
ys = paddle.cat(outputs, 1)
|
|
masks = paddle.ones([1, ys.shape[1]], dtype=paddle.bool)
|
|
masks = masks.unsqueeze(1)
|
|
return ys, masks
|
|
|
|
def rescoring(self, encoder_out, device):
|
|
logger.info("start to rescoring the hyps")
|
|
beam_size = self.config.decode.beam_size
|
|
hyps = self.searcher.get_hyps()
|
|
assert len(hyps) == beam_size
|
|
|
|
hyp_list = []
|
|
for hyp in hyps:
|
|
hyp_content = hyp[0]
|
|
# Prevent the hyp is empty
|
|
if len(hyp_content) == 0:
|
|
hyp_content = (self.model.ctc.blank_id, )
|
|
hyp_content = paddle.to_tensor(
|
|
hyp_content, place=device, dtype=paddle.long)
|
|
hyp_list.append(hyp_content)
|
|
hyps_pad = pad_sequence(hyp_list, True, self.model.ignore_id)
|
|
hyps_lens = paddle.to_tensor(
|
|
[len(hyp[0]) for hyp in hyps], place=device,
|
|
dtype=paddle.long) # (beam_size,)
|
|
hyps_pad, _ = add_sos_eos(hyps_pad, self.model.sos, self.model.eos,
|
|
self.model.ignore_id)
|
|
hyps_lens = hyps_lens + 1 # Add <sos> at begining
|
|
|
|
encoder_out = encoder_out.repeat(beam_size, 1, 1)
|
|
encoder_mask = paddle.ones(
|
|
(beam_size, 1, encoder_out.shape[1]), dtype=paddle.bool)
|
|
decoder_out, _ = self.model.decoder(
|
|
encoder_out, encoder_mask, hyps_pad,
|
|
hyps_lens) # (beam_size, max_hyps_len, vocab_size)
|
|
# ctc score in ln domain
|
|
decoder_out = paddle.nn.functional.log_softmax(decoder_out, axis=-1)
|
|
decoder_out = decoder_out.numpy()
|
|
|
|
# Only use decoder score for rescoring
|
|
best_score = -float('inf')
|
|
best_index = 0
|
|
# hyps is List[(Text=List[int], Score=float)], len(hyps)=beam_size
|
|
for i, hyp in enumerate(hyps):
|
|
score = 0.0
|
|
for j, w in enumerate(hyp[0]):
|
|
score += decoder_out[i][j][w]
|
|
# last decoder output token is `eos`, for laste decoder input token.
|
|
score += decoder_out[i][len(hyp[0])][self.model.eos]
|
|
# add ctc score (which in ln domain)
|
|
score += hyp[1] * self.config.decode.ctc_weight
|
|
if score > best_score:
|
|
best_score = score
|
|
best_index = i
|
|
|
|
# update the one best result
|
|
self.hyps = [hyps[best_index][0]]
|
|
return hyps[best_index][0]
|
|
|
|
def transformer_decode_reset(self):
|
|
self.subsampling_cache = None
|
|
self.elayers_output_cache = None
|
|
self.conformer_cnn_cache = None
|
|
self.offset = 0
|
|
# decoding reset
|
|
self.searcher.reset()
|
|
|
|
def update_result(self):
|
|
logger.info("update the final result")
|
|
hyps = self.hyps
|
|
self.result_transcripts = [
|
|
self.text_feature.defeaturize(hyp) for hyp in hyps
|
|
]
|
|
self.result_tokenids = [hyp for hyp in hyps]
|
|
|
|
def extract_feat(self, samples, sample_rate):
|
|
"""extract feat
|
|
|
|
Args:
|
|
samples (numpy.array): numpy.float32
|
|
sample_rate (int): sample rate
|
|
|
|
Returns:
|
|
x_chunk (numpy.array): shape[B, T, D]
|
|
x_chunk_lens (numpy.array): shape[B]
|
|
"""
|
|
|
|
if "deepspeech2online" in self.model_type:
|
|
# pcm16 -> pcm 32
|
|
samples = pcm2float(samples)
|
|
# read audio
|
|
speech_segment = SpeechSegment.from_pcm(
|
|
samples, sample_rate, transcript=" ")
|
|
# audio augment
|
|
self.collate_fn_test.augmentation.transform_audio(speech_segment)
|
|
|
|
# extract speech feature
|
|
spectrum, transcript_part = self.collate_fn_test._speech_featurizer.featurize(
|
|
speech_segment, self.collate_fn_test.keep_transcription_text)
|
|
# CMVN spectrum
|
|
if self.collate_fn_test._normalizer:
|
|
spectrum = self.collate_fn_test._normalizer.apply(spectrum)
|
|
|
|
# spectrum augment
|
|
audio = self.collate_fn_test.augmentation.transform_feature(
|
|
spectrum)
|
|
|
|
audio_len = audio.shape[0]
|
|
audio = paddle.to_tensor(audio, dtype='float32')
|
|
# audio_len = paddle.to_tensor(audio_len)
|
|
audio = paddle.unsqueeze(audio, axis=0)
|
|
|
|
x_chunk = audio.numpy()
|
|
x_chunk_lens = np.array([audio_len])
|
|
|
|
return x_chunk, x_chunk_lens
|
|
elif "conformer_online" in self.model_type:
|
|
|
|
if sample_rate != self.sample_rate:
|
|
logger.info(f"audio sample rate {sample_rate} is not match,"
|
|
"the model sample_rate is {self.sample_rate}")
|
|
logger.info(f"ASR Engine use the {self.model_type} to process")
|
|
logger.info("Create the preprocess instance")
|
|
preprocess_conf = self.config.preprocess_config
|
|
preprocess_args = {"train": False}
|
|
preprocessing = Transformation(preprocess_conf)
|
|
|
|
logger.info("Read the audio file")
|
|
logger.info(f"audio shape: {samples.shape}")
|
|
# fbank
|
|
x_chunk = preprocessing(samples, **preprocess_args)
|
|
x_chunk_lens = paddle.to_tensor(x_chunk.shape[0])
|
|
x_chunk = paddle.to_tensor(
|
|
x_chunk, dtype="float32").unsqueeze(axis=0)
|
|
logger.info(
|
|
f"process the audio feature success, feat shape: {x_chunk.shape}"
|
|
)
|
|
return x_chunk, x_chunk_lens
|
|
|
|
|
|
class ASREngine(BaseEngine):
|
|
"""ASR server engine
|
|
|
|
Args:
|
|
metaclass: Defaults to Singleton.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(ASREngine, self).__init__()
|
|
logger.info("create the online asr engine instance")
|
|
|
|
def init(self, config: dict) -> bool:
|
|
"""init engine resource
|
|
|
|
Args:
|
|
config_file (str): config file
|
|
|
|
Returns:
|
|
bool: init failed or success
|
|
"""
|
|
self.input = None
|
|
self.output = ""
|
|
self.executor = ASRServerExecutor()
|
|
self.config = config
|
|
try:
|
|
if self.config.get("device", None):
|
|
self.device = self.config.device
|
|
else:
|
|
self.device = paddle.get_device()
|
|
logger.info(f"paddlespeech_server set the device: {self.device}")
|
|
paddle.set_device(self.device)
|
|
except BaseException:
|
|
logger.error(
|
|
"Set device failed, please check if device is already used and the parameter 'device' in the yaml file"
|
|
)
|
|
|
|
self.executor._init_from_path(
|
|
model_type=self.config.model_type,
|
|
am_model=self.config.am_model,
|
|
am_params=self.config.am_params,
|
|
lang=self.config.lang,
|
|
sample_rate=self.config.sample_rate,
|
|
cfg_path=self.config.cfg_path,
|
|
decode_method=self.config.decode_method,
|
|
am_predictor_conf=self.config.am_predictor_conf)
|
|
|
|
logger.info("Initialize ASR server engine successfully.")
|
|
return True
|
|
|
|
def preprocess(self,
|
|
samples,
|
|
sample_rate,
|
|
model_type="deepspeech2online_aishell-zh-16k"):
|
|
"""preprocess
|
|
|
|
Args:
|
|
samples (numpy.array): numpy.float32
|
|
sample_rate (int): sample rate
|
|
|
|
Returns:
|
|
x_chunk (numpy.array): shape[B, T, D]
|
|
x_chunk_lens (numpy.array): shape[B]
|
|
"""
|
|
# if "deepspeech" in model_type:
|
|
x_chunk, x_chunk_lens = self.executor.extract_feat(samples, sample_rate)
|
|
return x_chunk, x_chunk_lens
|
|
|
|
def run(self, x_chunk, x_chunk_lens, decoder_chunk_size=1):
|
|
"""run online engine
|
|
|
|
Args:
|
|
x_chunk (numpy.array): shape[B, T, D]
|
|
x_chunk_lens (numpy.array): shape[B]
|
|
decoder_chunk_size(int)
|
|
"""
|
|
self.output = self.executor.decode_one_chunk(x_chunk, x_chunk_lens,
|
|
self.config.model_type)
|
|
|
|
def postprocess(self):
|
|
"""postprocess
|
|
"""
|
|
return self.output
|
|
|
|
def reset(self):
|
|
"""reset engine decoder and inference state
|
|
"""
|
|
self.executor.reset_decoder_and_chunk()
|
|
self.output = ""
|