36 KiB
การวิเคราะห์ความรู้สึกด้วยรีวิวโรงแรม
หลังจากที่คุณได้สำรวจชุดข้อมูลอย่างละเอียดแล้ว ถึงเวลาในการกรองคอลัมน์และใช้เทคนิค NLP กับชุดข้อมูลเพื่อค้นหาแนวคิดใหม่เกี่ยวกับโรงแรม
แบบทดสอบก่อนการบรรยาย
การกรองข้อมูลและการดำเนินการวิเคราะห์ความรู้สึก
คุณอาจสังเกตเห็นว่าชุดข้อมูลมีปัญหาบางอย่าง เช่น คอลัมน์บางคอลัมน์มีข้อมูลที่ไม่มีประโยชน์ บางคอลัมน์ดูเหมือนจะไม่ถูกต้อง หรือหากถูกต้อง ก็ไม่ชัดเจนว่าคำนวณมาอย่างไร และคำตอบไม่สามารถตรวจสอบได้ด้วยการคำนวณของคุณเอง
แบบฝึกหัด: การประมวลผลข้อมูลเพิ่มเติมเล็กน้อย
ทำความสะอาดข้อมูลเพิ่มเติมอีกเล็กน้อย เพิ่มคอลัมน์ที่มีประโยชน์ในภายหลัง เปลี่ยนค่าของคอลัมน์อื่น และลบคอลัมน์บางส่วนออกไป
-
การประมวลผลคอลัมน์เบื้องต้น
-
ลบ
lat
และlng
-
แทนที่ค่าของ
Hotel_Address
ด้วยค่าต่อไปนี้ (หากที่อยู่มีชื่อเมืองและประเทศเดียวกัน ให้เปลี่ยนเป็นแค่ชื่อเมืองและประเทศ)เมืองและประเทศในชุดข้อมูลมีดังนี้:
Amsterdam, Netherlands
Barcelona, Spain
London, United Kingdom
Milan, Italy
Paris, France
Vienna, Austria
def replace_address(row): if "Netherlands" in row["Hotel_Address"]: return "Amsterdam, Netherlands" elif "Barcelona" in row["Hotel_Address"]: return "Barcelona, Spain" elif "United Kingdom" in row["Hotel_Address"]: return "London, United Kingdom" elif "Milan" in row["Hotel_Address"]: return "Milan, Italy" elif "France" in row["Hotel_Address"]: return "Paris, France" elif "Vienna" in row["Hotel_Address"]: return "Vienna, Austria" # Replace all the addresses with a shortened, more useful form df["Hotel_Address"] = df.apply(replace_address, axis = 1) # The sum of the value_counts() should add up to the total number of reviews print(df["Hotel_Address"].value_counts())
ตอนนี้คุณสามารถเรียกดูข้อมูลระดับประเทศได้:
display(df.groupby("Hotel_Address").agg({"Hotel_Name": "nunique"}))
Hotel_Address Hotel_Name Amsterdam, Netherlands 105 Barcelona, Spain 211 London, United Kingdom 400 Milan, Italy 162 Paris, France 458 Vienna, Austria 158
-
-
การประมวลผลคอลัมน์รีวิวเมตาของโรงแรม
-
ลบ
Additional_Number_of_Scoring
-
แทนที่
Total_Number_of_Reviews
ด้วยจำนวนรีวิวทั้งหมดของโรงแรมที่มีอยู่จริงในชุดข้อมูล -
แทนที่
Average_Score
ด้วยคะแนนที่คำนวณขึ้นเอง
# Drop `Additional_Number_of_Scoring`
df.drop(["Additional_Number_of_Scoring"], axis = 1, inplace=True)
# Replace `Total_Number_of_Reviews` and `Average_Score` with our own calculated values
df.Total_Number_of_Reviews = df.groupby('Hotel_Name').transform('count')
df.Average_Score = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1)
-
การประมวลผลคอลัมน์รีวิว
-
ลบ
Review_Total_Negative_Word_Counts
,Review_Total_Positive_Word_Counts
,Review_Date
และdays_since_review
-
เก็บ
Reviewer_Score
,Negative_Review
และPositive_Review
ไว้ตามเดิม -
เก็บ
Tags
ไว้ชั่วคราว
- เราจะทำการกรองเพิ่มเติมในส่วนของแท็กในส่วนถัดไป และจากนั้นจะลบแท็กออก
-
-
การประมวลผลคอลัมน์ผู้รีวิว
-
ลบ
Total_Number_of_Reviews_Reviewer_Has_Given
-
เก็บ
Reviewer_Nationality
ไว้
คอลัมน์แท็ก
คอลัมน์ Tag
มีปัญหาเนื่องจากเป็นรายการ (ในรูปแบบข้อความ) ที่ถูกเก็บไว้ในคอลัมน์ น่าเสียดายที่ลำดับและจำนวนส่วนย่อยในคอลัมน์นี้ไม่เหมือนกันเสมอไป การระบุวลีที่น่าสนใจอาจเป็นเรื่องยากสำหรับมนุษย์ เนื่องจากมีแถว 515,000 แถว และโรงแรม 1427 แห่ง และแต่ละแห่งมีตัวเลือกที่แตกต่างกันเล็กน้อยที่ผู้รีวิวสามารถเลือกได้ นี่คือจุดที่ NLP มีประโยชน์ คุณสามารถสแกนข้อความและค้นหาวลีที่พบบ่อยที่สุดและนับจำนวนได้
น่าเสียดายที่เราไม่ได้สนใจคำเดี่ยว แต่สนใจวลีที่มีหลายคำ (เช่น Business trip) การรันอัลกอริธึมการแจกแจงความถี่ของวลีหลายคำในข้อมูลจำนวนมาก (6762646 คำ) อาจใช้เวลานานมาก แต่หากไม่ดูข้อมูล อาจดูเหมือนว่าเป็นสิ่งจำเป็น นี่คือจุดที่การวิเคราะห์ข้อมูลเชิงสำรวจมีประโยชน์ เพราะคุณได้เห็นตัวอย่างของแท็ก เช่น [' Business trip ', ' Solo traveler ', ' Single Room ', ' Stayed 5 nights ', ' Submitted from a mobile device ']
คุณสามารถเริ่มถามได้ว่ามันเป็นไปได้ที่จะลดการประมวลผลที่คุณต้องทำหรือไม่ โชคดีที่เป็นไปได้ แต่ก่อนอื่นคุณต้องทำตามขั้นตอนบางอย่างเพื่อระบุแท็กที่น่าสนใจ
การกรองแท็ก
จำไว้ว่าเป้าหมายของชุดข้อมูลคือการเพิ่มความรู้สึกและคอลัมน์ที่จะช่วยให้คุณเลือกโรงแรมที่ดีที่สุด (สำหรับตัวคุณเองหรืออาจเป็นงานที่ลูกค้าขอให้คุณสร้างบอทแนะนำโรงแรม) คุณต้องถามตัวเองว่าแท็กมีประโยชน์หรือไม่ในชุดข้อมูลสุดท้าย นี่คือการตีความหนึ่ง (หากคุณต้องการชุดข้อมูลด้วยเหตุผลอื่น แท็กที่เลือกอาจแตกต่างออกไป):
- ประเภทของการเดินทางมีความเกี่ยวข้อง และควรเก็บไว้
- ประเภทของกลุ่มผู้เข้าพักมีความสำคัญ และควรเก็บไว้
- ประเภทของห้อง สวีท หรือสตูดิโอที่ผู้เข้าพักพักอยู่ไม่มีความเกี่ยวข้อง (โรงแรมทั้งหมดมีห้องพื้นฐานเหมือนกัน)
- อุปกรณ์ที่ใช้ส่งรีวิวไม่มีความเกี่ยวข้อง
- จำนวนคืนที่ผู้รีวิวพัก อาจ มีความเกี่ยวข้องหากคุณเชื่อมโยงการพักนานขึ้นกับการชอบโรงแรมมากขึ้น แต่ก็เป็นการคาดเดา และอาจไม่มีความเกี่ยวข้อง
สรุปคือ เก็บแท็ก 2 ประเภทและลบประเภทอื่นออก
ก่อนอื่น คุณไม่ต้องการนับแท็กจนกว่าพวกมันจะอยู่ในรูปแบบที่ดีกว่า ซึ่งหมายถึงการลบวงเล็บเหลี่ยมและเครื่องหมายคำพูด คุณสามารถทำได้หลายวิธี แต่คุณต้องการวิธีที่เร็วที่สุดเนื่องจากอาจใช้เวลานานในการประมวลผลข้อมูลจำนวนมาก โชคดีที่ pandas มีวิธีง่าย ๆ ในการทำแต่ละขั้นตอนเหล่านี้
# Remove opening and closing brackets
df.Tags = df.Tags.str.strip("[']")
# remove all quotes too
df.Tags = df.Tags.str.replace(" ', '", ",", regex = False)
แต่ละแท็กจะกลายเป็นบางอย่างเช่น: Business trip, Solo traveler, Single Room, Stayed 5 nights, Submitted from a mobile device
.
จากนั้นเราพบปัญหา บางรีวิวหรือแถวมี 5 คอลัมน์ บางแถวมี 3 คอลัมน์ บางแถวมี 6 คอลัมน์ นี่เป็นผลมาจากวิธีการสร้างชุดข้อมูล และแก้ไขได้ยาก คุณต้องการนับความถี่ของแต่ละวลี แต่พวกมันอยู่ในลำดับที่แตกต่างกันในแต่ละรีวิว ดังนั้นการนับอาจผิดพลาด และโรงแรมอาจไม่ได้รับแท็กที่สมควรได้รับ
แทนที่จะใช้ลำดับที่แตกต่างกันให้เป็นประโยชน์ เพราะแต่ละแท็กมีหลายคำแต่ก็แยกกันด้วยเครื่องหมายจุลภาค! วิธีที่ง่ายที่สุดในการทำเช่นนี้คือการสร้างคอลัมน์ชั่วคราว 6 คอลัมน์ โดยแต่ละแท็กจะถูกแทรกลงในคอลัมน์ที่ตรงกับลำดับของมัน จากนั้นคุณสามารถรวมคอลัมน์ทั้ง 6 เข้าด้วยกันเป็นคอลัมน์ใหญ่หนึ่งคอลัมน์และรันเมธอด value_counts()
บนคอลัมน์ที่ได้ ผลลัพธ์ที่พิมพ์ออกมาจะแสดงว่ามีแท็กที่ไม่ซ้ำกัน 2428 รายการ นี่คือตัวอย่างเล็ก ๆ:
Tag | Count |
---|---|
Leisure trip | 417778 |
Submitted from a mobile device | 307640 |
Couple | 252294 |
Stayed 1 night | 193645 |
Stayed 2 nights | 133937 |
Solo traveler | 108545 |
Stayed 3 nights | 95821 |
Business trip | 82939 |
Group | 65392 |
Family with young children | 61015 |
Stayed 4 nights | 47817 |
Double Room | 35207 |
Standard Double Room | 32248 |
Superior Double Room | 31393 |
Family with older children | 26349 |
Deluxe Double Room | 24823 |
Double or Twin Room | 22393 |
Stayed 5 nights | 20845 |
Standard Double or Twin Room | 17483 |
Classic Double Room | 16989 |
Superior Double or Twin Room | 13570 |
2 rooms | 12393 |
แท็กทั่วไปบางอย่าง เช่น Submitted from a mobile device
ไม่มีประโยชน์สำหรับเรา ดังนั้นอาจเป็นความคิดที่ดีที่จะลบออกก่อนนับการเกิดของวลี แต่เนื่องจากเป็นการดำเนินการที่รวดเร็ว คุณสามารถปล่อยไว้และเพิกเฉยได้
การลบแท็กที่เกี่ยวกับระยะเวลาการเข้าพัก
การลบแท็กเหล่านี้เป็นขั้นตอนแรก ซึ่งช่วยลดจำนวนแท็กที่ต้องพิจารณาลงเล็กน้อย โปรดทราบว่าคุณไม่ได้ลบแท็กเหล่านี้ออกจากชุดข้อมูล เพียงแค่เลือกที่จะไม่พิจารณาเป็นค่าที่จะนับ/เก็บไว้ในชุดข้อมูลรีวิว
Length of stay | Count |
---|---|
Stayed 1 night | 193645 |
Stayed 2 nights | 133937 |
Stayed 3 nights | 95821 |
Stayed 4 nights | 47817 |
Stayed 5 nights | 20845 |
Stayed 6 nights | 9776 |
Stayed 7 nights | 7399 |
Stayed 8 nights | 2502 |
Stayed 9 nights | 1293 |
... | ... |
มีความหลากหลายของห้อง สวีท สตูดิโอ อพาร์ตเมนต์ และอื่น ๆ มากมาย ทั้งหมดนี้มีความหมายคล้ายกันและไม่มีความเกี่ยวข้องกับคุณ ดังนั้นให้ลบออกจากการพิจารณา
Type of room | Count |
---|---|
Double Room | 35207 |
Standard Double Room | 32248 |
Superior Double Room | 31393 |
Deluxe Double Room | 24823 |
Double or Twin Room | 22393 |
Standard Double or Twin Room | 17483 |
Classic Double Room | 16989 |
Superior Double or Twin Room | 13570 |
สุดท้าย และนี่เป็นเรื่องน่ายินดี (เพราะไม่ต้องใช้การประมวลผลมากนัก) คุณจะเหลือแท็กที่ มีประโยชน์ ดังนี้:
Tag | Count |
---|---|
Leisure trip | 417778 |
Couple | 252294 |
Solo traveler | 108545 |
Business trip | 82939 |
Group (combined with Travellers with friends) | 67535 |
Family with young children | 61015 |
Family with older children | 26349 |
With a pet | 1405 |
คุณอาจโต้แย้งว่า Travellers with friends
เหมือนกับ Group
มากหรือน้อย และนั่นจะเป็นการรวมทั้งสองเข้าด้วยกันตามที่แสดงไว้ด้านบน โค้ดสำหรับการระบุแท็กที่ถูกต้องอยู่ใน Tags notebook
ขั้นตอนสุดท้ายคือการสร้างคอลัมน์ใหม่สำหรับแต่ละแท็กเหล่านี้ จากนั้นสำหรับทุกแถวรีวิว หากคอลัมน์ Tag
ตรงกับหนึ่งในคอลัมน์ใหม่ ให้เพิ่มค่า 1 หากไม่ตรง ให้เพิ่มค่า 0 ผลลัพธ์สุดท้ายจะเป็นจำนวนผู้รีวิวที่เลือกโรงแรมนี้ (ในภาพรวม) สำหรับการเดินทางเพื่อธุรกิจหรือพักผ่อน หรือเพื่อพาสัตว์เลี้ยงมาด้วย และนี่เป็นข้อมูลที่มีประโยชน์เมื่อแนะนำโรงแรม
# Process the Tags into new columns
# The file Hotel_Reviews_Tags.py, identifies the most important tags
# Leisure trip, Couple, Solo traveler, Business trip, Group combined with Travelers with friends,
# Family with young children, Family with older children, With a pet
df["Leisure_trip"] = df.Tags.apply(lambda tag: 1 if "Leisure trip" in tag else 0)
df["Couple"] = df.Tags.apply(lambda tag: 1 if "Couple" in tag else 0)
df["Solo_traveler"] = df.Tags.apply(lambda tag: 1 if "Solo traveler" in tag else 0)
df["Business_trip"] = df.Tags.apply(lambda tag: 1 if "Business trip" in tag else 0)
df["Group"] = df.Tags.apply(lambda tag: 1 if "Group" in tag or "Travelers with friends" in tag else 0)
df["Family_with_young_children"] = df.Tags.apply(lambda tag: 1 if "Family with young children" in tag else 0)
df["Family_with_older_children"] = df.Tags.apply(lambda tag: 1 if "Family with older children" in tag else 0)
df["With_a_pet"] = df.Tags.apply(lambda tag: 1 if "With a pet" in tag else 0)
บันทึกไฟล์ของคุณ
สุดท้าย บันทึกชุดข้อมูลในรูปแบบปัจจุบันด้วยชื่อใหม่
df.drop(["Review_Total_Negative_Word_Counts", "Review_Total_Positive_Word_Counts", "days_since_review", "Total_Number_of_Reviews_Reviewer_Has_Given"], axis = 1, inplace=True)
# Saving new data file with calculated columns
print("Saving results to Hotel_Reviews_Filtered.csv")
df.to_csv(r'../data/Hotel_Reviews_Filtered.csv', index = False)
การดำเนินการวิเคราะห์ความรู้สึก
ในส่วนสุดท้ายนี้ คุณจะใช้การวิเคราะห์ความรู้สึกกับคอลัมน์รีวิวและบันทึกผลลัพธ์ในชุดข้อมูล
แบบฝึกหัด: โหลดและบันทึกข้อมูลที่กรองแล้ว
โปรดทราบว่าตอนนี้คุณกำลังโหลดชุดข้อมูลที่กรองแล้วซึ่งถูกบันทึกไว้ในส่วนก่อนหน้า ไม่ใช่ ชุดข้อมูลต้นฉบับ
import time
import pandas as pd
import nltk as nltk
from nltk.corpus import stopwords
from nltk.sentiment.vader import SentimentIntensityAnalyzer
nltk.download('vader_lexicon')
# Load the filtered hotel reviews from CSV
df = pd.read_csv('../../data/Hotel_Reviews_Filtered.csv')
# You code will be added here
# Finally remember to save the hotel reviews with new NLP data added
print("Saving results to Hotel_Reviews_NLP.csv")
df.to_csv(r'../data/Hotel_Reviews_NLP.csv', index = False)
การลบคำหยุด
หากคุณรันการวิเคราะห์ความรู้สึกในคอลัมน์รีวิวเชิงลบและเชิงบวก อาจใช้เวลานาน ทดสอบบนแล็ปท็อปที่มี CPU เร็ว ใช้เวลา 12 - 14 นาที ขึ้นอยู่กับไลบรารีการวิเคราะห์ความรู้สึกที่ใช้ นั่นเป็นเวลาที่ค่อนข้างนาน ดังนั้นจึงควรตรวจสอบว่ามีวิธีเร่งความเร็วหรือไม่
การลบคำหยุด หรือคำภาษาอังกฤษทั่วไปที่ไม่เปลี่ยนแปลงความรู้สึกของประโยค เป็นขั้นตอนแรก โดยการลบคำเหล่านี้ การวิเคราะห์ความรู้สึกควรทำงานเร็วขึ้น แต่ไม่ลดความแม่นยำ (เนื่องจากคำหยุดไม่ส่งผลต่อความรู้สึก แต่ทำให้การวิเคราะห์ช้าลง)
รีวิวเชิงลบที่ยาวที่สุดมี 395 คำ แต่หลังจากลบคำหยุดแล้ว เหลือ 195 คำ
การลบคำหยุดเป็นการดำเนินการที่รวดเร็ว การลบคำหยุดจาก 2 คอลัมน์รีวิวใน 515,000 แถวใช้เวลา 3.3 วินาทีบนอุปกรณ์ทดสอบ อาจใช้เวลามากหรือน้อยกว่านี้เล็กน้อยขึ้นอยู่กับความเร็ว CPU ของอุปกรณ์ RAM ว่ามี SSD หรือไม่ และปัจจัยอื่น ๆ ความสั้นของการดำเนินการนี้หมายความว่าหากมันช่วยปรับปรุงเวลาการวิเคราะห์ความรู้สึก ก็ถือว่าคุ้มค่าที่จะทำ
from nltk.corpus import stopwords
# Load the hotel reviews from CSV
df = pd.read_csv("../../data/Hotel_Reviews_Filtered.csv")
# Remove stop words - can be slow for a lot of text!
# Ryan Han (ryanxjhan on Kaggle) has a great post measuring performance of different stop words removal approaches
# https://www.kaggle.com/ryanxjhan/fast-stop-words-removal # using the approach that Ryan recommends
start = time.time()
cache = set(stopwords.words("english"))
def remove_stopwords(review):
text = " ".join([word for word in review.split() if word not in cache])
return text
# Remove the stop words from both columns
df.Negative_Review = df.Negative_Review.apply(remove_stopwords)
df.Positive_Review = df.Positive_Review.apply(remove_stopwords)
การดำเนินการวิเคราะห์ความรู้สึก
ตอนนี้คุณควรคำนวณการวิเคราะห์ความรู้สึกสำหรับทั้งคอลัมน์รีวิวเชิงลบและเชิงบวก และเก็บผลลัพธ์ไว้ในคอลัมน์ใหม่ 2 คอลัมน์ การทดสอบความรู้สึกจะเปรียบเทียบกับคะแนนของผู้รีวิวสำหรับรีวิวเดียวกัน ตัวอย่างเช่น หากการวิเคราะห์ความรู้สึกคิดว่าความรู้สึกของรีวิวเชิงลบมีค่า 1 (ความรู้สึกเชิงบวกอย่างมาก) และความรู้สึกของรีวิวเชิงบวกมีค่า 1 แต่ผู้รีวิวให้คะแนนโรงแรมต่ำที่สุดเท่าที่จะเป็นไปได้ นั่นหมายความว่าข้อความรีวิวไม่ตรงกับคะแนน หรือเครื่องมือวิเคราะห์ความรู้สึกไม่สามารถรับรู้ความรู้สึกได้อย่างถูกต้อง คุณควรคาดหวังว่าคะแนนความรู้สึกบางส่วนจะผิดพลาดอย่างสิ้นเชิง และมักจะสามารถอธิบายได้ เช่น รีวิวอาจมีการประชดประชันอย่างมาก "แน่นอนว่าฉันชอบนอนในห้องที่ไม่มีเครื่องทำความร้อน" และเครื่องมือวิเคราะห์ความรู้สึกคิดว่านั่นเป็นความรู้สึกเชิงบวก แม้ว่ามนุษย์ที่อ่านจะรู้ว่ามันเป็นการประชดประชัน NLTK มีตัววิเคราะห์ความรู้สึกหลายแบบให้เลือกใช้ และคุณสามารถเปลี่ยนไปใช้ตัวอื่นเพื่อดูว่าการวิเคราะห์ความรู้สึกนั้นแม่นยำมากขึ้นหรือน้อยลง ตัววิเคราะห์ความรู้สึก VADER ถูกนำมาใช้ในที่นี้
Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.
from nltk.sentiment.vader import SentimentIntensityAnalyzer
# Create the vader sentiment analyser (there are others in NLTK you can try too)
vader_sentiment = SentimentIntensityAnalyzer()
# Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.
# There are 3 possibilities of input for a review:
# It could be "No Negative", in which case, return 0
# It could be "No Positive", in which case, return 0
# It could be a review, in which case calculate the sentiment
def calc_sentiment(review):
if review == "No Negative" or review == "No Positive":
return 0
return vader_sentiment.polarity_scores(review)["compound"]
ในโปรแกรมของคุณ เมื่อคุณพร้อมที่จะคำนวณความรู้สึก คุณสามารถนำไปใช้กับแต่ละรีวิวได้ดังนี้:
# Add a negative sentiment and positive sentiment column
print("Calculating sentiment columns for both positive and negative reviews")
start = time.time()
df["Negative_Sentiment"] = df.Negative_Review.apply(calc_sentiment)
df["Positive_Sentiment"] = df.Positive_Review.apply(calc_sentiment)
end = time.time()
print("Calculating sentiment took " + str(round(end - start, 2)) + " seconds")
กระบวนการนี้ใช้เวลาประมาณ 120 วินาทีบนคอมพิวเตอร์ของฉัน แต่เวลาที่ใช้จะขึ้นอยู่กับแต่ละเครื่อง หากคุณต้องการพิมพ์ผลลัพธ์ออกมาและดูว่าความรู้สึกตรงกับรีวิวหรือไม่:
df = df.sort_values(by=["Negative_Sentiment"], ascending=True)
print(df[["Negative_Review", "Negative_Sentiment"]])
df = df.sort_values(by=["Positive_Sentiment"], ascending=True)
print(df[["Positive_Review", "Positive_Sentiment"]])
สิ่งสุดท้ายที่ต้องทำกับไฟล์ก่อนนำไปใช้ในความท้าทายคือการบันทึกไฟล์! คุณควรพิจารณาจัดเรียงคอลัมน์ใหม่ทั้งหมดเพื่อให้ง่ายต่อการใช้งาน (สำหรับมนุษย์ มันเป็นการเปลี่ยนแปลงเชิงความสวยงาม)
# Reorder the columns (This is cosmetic, but to make it easier to explore the data later)
df = df.reindex(["Hotel_Name", "Hotel_Address", "Total_Number_of_Reviews", "Average_Score", "Reviewer_Score", "Negative_Sentiment", "Positive_Sentiment", "Reviewer_Nationality", "Leisure_trip", "Couple", "Solo_traveler", "Business_trip", "Group", "Family_with_young_children", "Family_with_older_children", "With_a_pet", "Negative_Review", "Positive_Review"], axis=1)
print("Saving results to Hotel_Reviews_NLP.csv")
df.to_csv(r"../data/Hotel_Reviews_NLP.csv", index = False)
คุณควรเรียกใช้โค้ดทั้งหมดใน notebook การวิเคราะห์ (หลังจากที่คุณเรียกใช้ notebook การกรอง เพื่อสร้างไฟล์ Hotel_Reviews_Filtered.csv)
เพื่อสรุป ขั้นตอนคือ:
- ไฟล์ชุดข้อมูลต้นฉบับ Hotel_Reviews.csv ถูกสำรวจในบทเรียนก่อนหน้าด้วย notebook การสำรวจ
- Hotel_Reviews.csv ถูกกรองโดย notebook การกรอง และได้ผลลัพธ์เป็น Hotel_Reviews_Filtered.csv
- Hotel_Reviews_Filtered.csv ถูกประมวลผลโดย notebook การวิเคราะห์ความรู้สึก และได้ผลลัพธ์เป็น Hotel_Reviews_NLP.csv
- ใช้ Hotel_Reviews_NLP.csv ในความท้าทาย NLP ด้านล่าง
สรุป
เมื่อคุณเริ่มต้น คุณมีชุดข้อมูลที่มีคอลัมน์และข้อมูล แต่ไม่ใช่ทั้งหมดที่สามารถตรวจสอบหรือใช้งานได้ คุณได้สำรวจข้อมูล กรองสิ่งที่ไม่จำเป็น เปลี่ยนแท็กให้เป็นสิ่งที่มีประโยชน์ คำนวณค่าเฉลี่ยของคุณเอง เพิ่มคอลัมน์ความรู้สึก และหวังว่าคุณจะได้เรียนรู้สิ่งที่น่าสนใจเกี่ยวกับการประมวลผลข้อความธรรมชาติ
แบบทดสอบหลังการบรรยาย
ความท้าทาย
ตอนนี้คุณได้วิเคราะห์ชุดข้อมูลเพื่อความรู้สึกแล้ว ลองใช้กลยุทธ์ที่คุณได้เรียนรู้ในหลักสูตรนี้ (เช่น การจัดกลุ่ม) เพื่อค้นหารูปแบบเกี่ยวกับความรู้สึก
ทบทวนและศึกษาด้วยตนเอง
ลองเรียน โมดูลนี้ เพื่อเรียนรู้เพิ่มเติมและใช้เครื่องมือที่แตกต่างกันในการสำรวจความรู้สึกในข้อความ
งานที่ได้รับมอบหมาย
ข้อจำกัดความรับผิดชอบ:
เอกสารนี้ได้รับการแปลโดยใช้บริการแปลภาษา AI Co-op Translator แม้ว่าเราจะพยายามให้การแปลมีความถูกต้อง แต่โปรดทราบว่าการแปลอัตโนมัติอาจมีข้อผิดพลาดหรือความไม่แม่นยำ เอกสารต้นฉบับในภาษาดั้งเดิมควรถือเป็นแหล่งข้อมูลที่เชื่อถือได้ สำหรับข้อมูลที่สำคัญ ขอแนะนำให้ใช้บริการแปลภาษามนุษย์ที่เป็นมืออาชีพ เราไม่รับผิดชอบต่อความเข้าใจผิดหรือการตีความที่ผิดพลาดซึ่งเกิดจากการใช้การแปลนี้