Update README.md

pull/384/head
Anirban Mukherjee 4 years ago
parent c0dada9db4
commit ea06969a98

@ -132,7 +132,7 @@ For this example, we take `timesteps = 5`. So, the inputs to the model are the d
timesteps=5 timesteps=5
``` ```
Converting training data to 3D tensor using nested list comprehension: Converting training data to 2D tensor using nested list comprehension:
```python ```python
train_data_timesteps=np.array([[j for j in train_data[i:i+timesteps]] for i in range(0,len(train_data)-timesteps+1)])[:,:,0] train_data_timesteps=np.array([[j for j in train_data[i:i+timesteps]] for i in range(0,len(train_data)-timesteps+1)])[:,:,0]
@ -143,7 +143,7 @@ train_data_timesteps.shape
(1412, 5) (1412, 5)
``` ```
Converting testing data to 3D tensor: Converting testing data to 2D tensor:
```python ```python
test_data_timesteps=np.array([[j for j in test_data[i:i+timesteps]] for i in range(0,len(test_data)-timesteps+1)])[:,:,0] test_data_timesteps=np.array([[j for j in test_data[i:i+timesteps]] for i in range(0,len(test_data)-timesteps+1)])[:,:,0]
@ -302,7 +302,7 @@ data = energy.copy().values
# Scaling # Scaling
data = scaler.transform(data) data = scaler.transform(data)
# Transforming to 3D tensor as per model input requirement # Transforming to 2D tensor as per model input requirement
data_timesteps=np.array([[j for j in data[i:i+timesteps]] for i in range(0,len(data)-timesteps+1)])[:,:,0] data_timesteps=np.array([[j for j in data[i:i+timesteps]] for i in range(0,len(data)-timesteps+1)])[:,:,0]
print("Tensor shape: ", data_timesteps.shape) print("Tensor shape: ", data_timesteps.shape)

Loading…
Cancel
Save