diff --git a/7-TimeSeries/3-SVR/README.md b/7-TimeSeries/3-SVR/README.md index 1496374a..78b01231 100644 --- a/7-TimeSeries/3-SVR/README.md +++ b/7-TimeSeries/3-SVR/README.md @@ -132,7 +132,7 @@ For this example, we take `timesteps = 5`. So, the inputs to the model are the d timesteps=5 ``` -Converting training data to 3D tensor using nested list comprehension: +Converting training data to 2D tensor using nested list comprehension: ```python train_data_timesteps=np.array([[j for j in train_data[i:i+timesteps]] for i in range(0,len(train_data)-timesteps+1)])[:,:,0] @@ -143,7 +143,7 @@ train_data_timesteps.shape (1412, 5) ``` -Converting testing data to 3D tensor: +Converting testing data to 2D tensor: ```python test_data_timesteps=np.array([[j for j in test_data[i:i+timesteps]] for i in range(0,len(test_data)-timesteps+1)])[:,:,0] @@ -302,7 +302,7 @@ data = energy.copy().values # Scaling data = scaler.transform(data) -# Transforming to 3D tensor as per model input requirement +# Transforming to 2D tensor as per model input requirement data_timesteps=np.array([[j for j in data[i:i+timesteps]] for i in range(0,len(data)-timesteps+1)])[:,:,0] print("Tensor shape: ", data_timesteps.shape)