Update README.md

pull/384/head
Anirban Mukherjee 4 years ago
parent c0dada9db4
commit ea06969a98

@ -132,7 +132,7 @@ For this example, we take `timesteps = 5`. So, the inputs to the model are the d
timesteps=5
```
Converting training data to 3D tensor using nested list comprehension:
Converting training data to 2D tensor using nested list comprehension:
```python
train_data_timesteps=np.array([[j for j in train_data[i:i+timesteps]] for i in range(0,len(train_data)-timesteps+1)])[:,:,0]
@ -143,7 +143,7 @@ train_data_timesteps.shape
(1412, 5)
```
Converting testing data to 3D tensor:
Converting testing data to 2D tensor:
```python
test_data_timesteps=np.array([[j for j in test_data[i:i+timesteps]] for i in range(0,len(test_data)-timesteps+1)])[:,:,0]
@ -302,7 +302,7 @@ data = energy.copy().values
# Scaling
data = scaler.transform(data)
# Transforming to 3D tensor as per model input requirement
# Transforming to 2D tensor as per model input requirement
data_timesteps=np.array([[j for j in data[i:i+timesteps]] for i in range(0,len(data)-timesteps+1)])[:,:,0]
print("Tensor shape: ", data_timesteps.shape)

Loading…
Cancel
Save