Фото <ahref="https://unsplash.com/@marcelalaskoski?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText"> Марсела Ласкоски </a> на <ahref="https://unsplash.com/s/photos/nigerian-music?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText"> Unsplash </a>
> Фото <ahref="https://unsplash.com/@marcelalaskoski?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText"> Марсела Ласкоски </a> на <ahref="https://unsplash.com/s/photos/nigerian-music?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText"> Unsplash </a>
В этой серии уроков вы откроете для себя новые способы анализа данных с помощью методов кластеризации. Кластеризация особенно полезна, когда в наборе данных отсутствуют метки. Если на нем есть ярлыки, тогда могут быть более полезными методы классификации, подобные тем, которые вы изучили на предыдущих уроках. Но в случаях, когда вы хотите сгруппировать немаркированные данные, кластеризация - отличный способ обнаружить закономерности.
В этой серии уроков вы откроете для себя новые способы анализа данных с помощью методов кластеризации. Кластеризация особенно полезна, когда в наборе данных отсутствуют метки. Если на нем есть ярлыки, тогда могут быть более полезными методы классификации, подобные тем, которые вы изучили на предыдущих уроках. Но в случаях, когда вы хотите сгруппировать немаркированные данные, кластеризация - отличный способ обнаружить закономерности.
@ -23,4 +23,4 @@
Набор данных [Нигерийские песни](https://www.kaggle.com/sootersaalu/nigerian-songs-spotify) был получен из Kaggle, как и из Spotify.
Набор данных [Нигерийские песни](https://www.kaggle.com/sootersaalu/nigerian-songs-spotify) был получен из Kaggle, как и из Spotify.
Полезные примеры K-Means, которые помогли в создании этого урока, включают [исследование радужной оболочки глаза](https://www.kaggle.com/bburns/iris-exploration-pca-k-means-and-gmm-clustering), [вводный блокнот](https://www.kaggle.com/prashant111/k-means-clustering-with-python) и [пример гипотетической НПО](https://www.kaggle.com/ankandash/pca-k-means-clustering-hierarchical-clustering).
Полезные примеры K-Means, которые помогли в создании этого урока, включают [исследование радужной оболочки глаза](https://www.kaggle.com/bburns/iris-exploration-pca-k-means-and-gmm-clustering), [вводный блокнот](https://www.kaggle.com/prashant111/k-means-clustering-with-python) и [пример гипотетической НПО](https://www.kaggle.com/ankandash/pca-k-means-clustering-hierarchical-clustering).