Update README.ru.md

pull/340/head
Flex Zhong 4 years ago committed by GitHub
parent f4cadf811d
commit aa86341deb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -8,7 +8,7 @@
![Поворотный стол](./images/turntable.jpg) ![Поворотный стол](./images/turntable.jpg)
Фото <a href="https://unsplash.com/@marcelalaskoski?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText"> Марсела Ласкоски </a> на <a href="https://unsplash.com/s/photos/nigerian-music?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText"> Unsplash </a> > Фото <a href="https://unsplash.com/@marcelalaskoski?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText"> Марсела Ласкоски </a> на <a href="https://unsplash.com/s/photos/nigerian-music?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText"> Unsplash </a>
В этой серии уроков вы откроете для себя новые способы анализа данных с помощью методов кластеризации. Кластеризация особенно полезна, когда в наборе данных отсутствуют метки. Если на нем есть ярлыки, тогда могут быть более полезными методы классификации, подобные тем, которые вы изучили на предыдущих уроках. Но в случаях, когда вы хотите сгруппировать немаркированные данные, кластеризация - отличный способ обнаружить закономерности. В этой серии уроков вы откроете для себя новые способы анализа данных с помощью методов кластеризации. Кластеризация особенно полезна, когда в наборе данных отсутствуют метки. Если на нем есть ярлыки, тогда могут быть более полезными методы классификации, подобные тем, которые вы изучили на предыдущих уроках. Но в случаях, когда вы хотите сгруппировать немаркированные данные, кластеризация - отличный способ обнаружить закономерности.

Loading…
Cancel
Save