You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Data-Science-For-Beginners/translations/zh/3-Data-Visualization/README.md

40 lines
4.3 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "1441550a0d789796b2821e04f7f4cc94",
"translation_date": "2025-08-25T17:56:53+00:00",
"source_file": "3-Data-Visualization/README.md",
"language_code": "zh"
}
-->
# 可视化
![一只蜜蜂停在薰衣草花上](../../../translated_images/bee.0aa1d91132b12e3a8994b9ca12816d05ce1642010d9b8be37f8d37365ba845cf.zh.jpg)
> 图片由 <a href="https://unsplash.com/@jenna2980?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Jenna Lee</a> 提供,来自 <a href="https://unsplash.com/s/photos/bees-in-a-meadow?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
数据可视化是数据科学家最重要的任务之一。图片胜过千言万语,可视化可以帮助你识别数据中的各种有趣部分,例如峰值、异常值、分组、趋势等,从而帮助你理解数据背后的故事。
在这五节课中,你将探索来自自然的数据,并使用各种技术创建有趣且美观的可视化。
| 主题编号 | 主题 | 相关课程 | 作者 |
| :-----------: | :--: | :-----------: | :----: |
| 1. | 可视化数量 | <ul> <li> [Python](09-visualization-quantities/README.md)</li> <li>[R](../../../3-Data-Visualization/R/09-visualization-quantities) </li> </ul>|<ul> <li> [Jen Looper](https://twitter.com/jenlooper)</li><li> [Vidushi Gupta](https://github.com/Vidushi-Gupta)</li> <li>[Jasleen Sondhi](https://github.com/jasleen101010)</li></ul> |
| 2. | 可视化分布 | <ul> <li> [Python](10-visualization-distributions/README.md)</li> <li>[R](../../../3-Data-Visualization/R/10-visualization-distributions) </li> </ul>|<ul> <li> [Jen Looper](https://twitter.com/jenlooper)</li><li> [Vidushi Gupta](https://github.com/Vidushi-Gupta)</li> <li>[Jasleen Sondhi](https://github.com/jasleen101010)</li></ul> |
| 3. | 可视化比例 | <ul> <li> [Python](11-visualization-proportions/README.md)</li> <li>[R](../../../3-Data-Visualization) </li> </ul>|<ul> <li> [Jen Looper](https://twitter.com/jenlooper)</li><li> [Vidushi Gupta](https://github.com/Vidushi-Gupta)</li> <li>[Jasleen Sondhi](https://github.com/jasleen101010)</li></ul> |
| 4. | 可视化关系 | <ul> <li> [Python](12-visualization-relationships/README.md)</li> <li>[R](../../../3-Data-Visualization) </li> </ul>|<ul> <li> [Jen Looper](https://twitter.com/jenlooper)</li><li> [Vidushi Gupta](https://github.com/Vidushi-Gupta)</li> <li>[Jasleen Sondhi](https://github.com/jasleen101010)</li></ul> |
| 5. | 创建有意义的可视化 | <ul> <li> [Python](13-meaningful-visualizations/README.md)</li> <li>[R](../../../3-Data-Visualization) </li> </ul>|<ul> <li> [Jen Looper](https://twitter.com/jenlooper)</li><li> [Vidushi Gupta](https://github.com/Vidushi-Gupta)</li> <li>[Jasleen Sondhi](https://github.com/jasleen101010)</li></ul> |
### 致谢
这些可视化课程由 [Jen Looper](https://twitter.com/jenlooper)、[Jasleen Sondhi](https://github.com/jasleen101010) 和 [Vidushi Gupta](https://github.com/Vidushi-Gupta) 🌸 编写。
🍯 美国蜂蜜生产数据来源于 Jessica Li 在 [Kaggle](https://www.kaggle.com/jessicali9530/honey-production) 上的项目。该 [数据](https://usda.library.cornell.edu/concern/publications/rn301137d) 来自 [美国农业部](https://www.nass.usda.gov/About_NASS/index.php)。
🍄 蘑菇数据同样来源于 [Kaggle](https://www.kaggle.com/hatterasdunton/mushroom-classification-updated-dataset),由 Hatteras Dunton 修订。该数据集包括对应于伞菌科和鳞伞科中23种有鳃蘑菇的假设样本描述。蘑菇信息摘自《奥杜邦协会北美蘑菇野外指南》1981年。该数据集于1987年捐赠给 UCI ML 27。
🦆 明尼苏达州鸟类数据来自 [Kaggle](https://www.kaggle.com/hannahcollins/minnesota-birds),由 Hannah Collins 从 [维基百科](https://en.wikipedia.org/wiki/List_of_birds_of_Minnesota) 抓取。
所有这些数据集均以 [CC0: Creative Commons](https://creativecommons.org/publicdomain/zero/1.0/) 授权。
**免责声明**
本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。