You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "696a8474a01054281704cbfb09148949",
"translation_date": "2025-08-25T16:38:06+00:00",
"source_file": "1-Introduction/README.md",
"language_code": "tw"
}
-->
# 資料科學入門

> 照片由 <a href="https://unsplash.com/@dawson2406?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Stephen Dawson</a> 提供,來自 <a href="https://unsplash.com/s/photos/data?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
在這些課程中,您將了解資料科學的定義,並學習作為資料科學家必須考慮的倫理問題。您還將學習資料的定義,並簡單了解統計與機率,這些是資料科學的核心學術領域。
### 主題
1. [資料科學的定義 ](01-defining-data-science/README.md )
2. [資料科學倫理 ](02-ethics/README.md )
3. [資料的定義 ](03-defining-data/README.md )
4. [統計與機率入門 ](04-stats-and-probability/README.md )
### 致謝
這些課程由 [Nitya Narasimhan ](https://twitter.com/nitya ) 和 [Dmitry Soshnikov ](https://twitter.com/shwars ) 用 ❤️ 編寫。
** 免責聲明**:
本文件使用 AI 翻譯服務 [Co-op Translator ](https://github.com/Azure/co-op-translator ) 進行翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或誤讀概不負責。