Add main content and assignment for prob and stats

pull/49/head
Dmitri Soshnikov 3 years ago
parent 87d54575ba
commit c119d0b3a9

@ -55,7 +55,7 @@ Graphically we can represent relationship between median and quartiles in a diag
Here we also computer **inter-quartile range** IQR=Q3-Q1, and so-called **outliers** - values, that lie outside the boundaries [Q1-1.5*IQR,Q3+1.5*IQR]. Here we also computer **inter-quartile range** IQR=Q3-Q1, and so-called **outliers** - values, that lie outside the boundaries [Q1-1.5*IQR,Q3+1.5*IQR].
For finite distribution that contains small number of possible values, a good "typical" value is the one that appears the most frequently, which is called **mode**. It is often applied to categorical data, such as colors. Consider a situation when we have two groups of people - some that strongly prefer red, and others who prefer blue. If we code colors by numbers, the mean value for a favourite color would be somewhere in the orange-green spectrum, which does not indicate the actual preference on neither group. However, the mode would be either one of the colors, or both colors, if the number of people voting for them is equal (in this case we call the sample **multimodal**). For finite distribution that contains small number of possible values, a good "typical" value is the one that appears the most frequently, which is called **mode**. It is often applied to categorical data, such as colors. Consider a situation when we have two groups of people - some that strongly prefer red, and others who prefer blue. If we code colors by numbers, the mean value for a favorite color would be somewhere in the orange-green spectrum, which does not indicate the actual preference on neither group. However, the mode would be either one of the colors, or both colors, if the number of people voting for them is equal (in this case we call the sample **multimodal**).
## Real-world Data ## Real-world Data
When we analyze data from real life, they often are not random variables as such, in a sense that we do not perform experiments with unknown result. For example, consider a team of baseball players, and their body data, such as height, weight and age. Those numbers are not exactly random, but we can still apply the same mathematical concepts. For example, a sequence of people's weights can be considered to be a sequence of values drawn from some random variable. Below is the sequence of weights of actual baseball players from [Major League Baseball](http://mlb.mlb.com/index.jsp), taken from [this dataset](http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_MLB_HeightsWeights) (for your convenience, only first 20 values are shown): When we analyze data from real life, they often are not random variables as such, in a sense that we do not perform experiments with unknown result. For example, consider a team of baseball players, and their body data, such as height, weight and age. Those numbers are not exactly random, but we can still apply the same mathematical concepts. For example, a sequence of people's weights can be considered to be a sequence of values drawn from some random variable. Below is the sequence of weights of actual baseball players from [Major League Baseball](http://mlb.mlb.com/index.jsp), taken from [this dataset](http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_MLB_HeightsWeights) (for your convenience, only first 20 values are shown):
@ -64,6 +64,8 @@ When we analyze data from real life, they often are not random variables as such
[180.0, 215.0, 210.0, 210.0, 188.0, 176.0, 209.0, 200.0, 231.0, 180.0, 188.0, 180.0, 185.0, 160.0, 180.0, 185.0, 197.0, 189.0, 185.0, 219.0] [180.0, 215.0, 210.0, 210.0, 188.0, 176.0, 209.0, 200.0, 231.0, 180.0, 188.0, 180.0, 185.0, 160.0, 180.0, 185.0, 197.0, 189.0, 185.0, 219.0]
``` ```
> **Note**: To see the example of working with this dataset, have a look at the [accompanying notebook](notebook.ipynb). There is also a number of challenges throughout this lesson, and you may complete them by adding some code to that notebook. If you are not sure how to operate on data, do not worry - we will come back to working with data using Python at a later time.
Here is the box plot showing mean, median and quartiles for our data: Here is the box plot showing mean, median and quartiles for our data:
![Weight Box Plot](images/weight-boxplot.png) ![Weight Box Plot](images/weight-boxplot.png)
@ -94,13 +96,23 @@ If we plot the histogram of the generated samples we will see the picture very s
## Confidence Intervals ## Confidence Intervals
When we talk about weights of baseball players, we assume that there is certain **random variable W** that corresponds to ideal probability distribution of weights of all baseball players. Our sequence of weights corresponds to a subset of all baseball players that we call **population**. An interesting question is, can we know the parameters of distribution of W, i.e. mean and variance? When we talk about weights of baseball players, we assume that there is certain **random variable W** that corresponds to ideal probability distribution of weights of all baseball players (so-called **population**). Our sequence of weights corresponds to a subset of all baseball players that we call **sample**. An interesting question is, can we know the parameters of distribution of W, i.e. mean and variance of the population?
The easiest answer would be to calculate mean and variance of our sample. However, it could happen that our random sample does not accurately represent complete population. Thus it makes sense to talk about **confidence interval**.
The easiest answer would be to calculate mean and variance of our sample. However, it could happen that our random sample does not accurately represent complete population. Thus it makes sense to talk about **confidence interval**. > **Confidence interval** is the estimation of true mean of the population given our sample, which is accurate is a certain probability (or **level of confidence**).
Suppose we have a sample X<sub>1</sub>, ..., X<sub>n</sub> from our distribution. Each time we draw a sample from our distribution, we would end up with different mean value &mu;. Thus &mu; can be considered to be a random variable. A **confidence interval** with confidence p is a pair of values (L<sub>p</sub>,R<sub>p</sub>), such that **P**(L<sub>p</sub>&leq;&mu;&leq;R<sub>p</sub>) = p, i.e. a probability of measured mean value falling within the interval equals to p. Suppose we have a sample X<sub>1</sub>, ..., X<sub>n</sub> from our distribution. Each time we draw a sample from our distribution, we would end up with different mean value &mu;. Thus &mu; can be considered to be a random variable. A **confidence interval** with confidence p is a pair of values (L<sub>p</sub>,R<sub>p</sub>), such that **P**(L<sub>p</sub>&leq;&mu;&leq;R<sub>p</sub>) = p, i.e. a probability of measured mean value falling within the interval equals to p.
It does beyond our short intro to discuss how those confidence intervals are calculated. Some more details can be found [on Wikipedia](https://en.wikipedia.org/wiki/Confidence_interval). An example of calculating confidence interval for weights and heights is given in the [accompanying notebooks](notebook.ipynb). It does beyond our short intro to discuss in detail how those confidence intervals are calculated. Some more details can be found [on Wikipedia](https://en.wikipedia.org/wiki/Confidence_interval). In short, we define the distribution of computed sample mean relative to the true mean of the population, which is called **student distribution**.
> **Interesting fact**: Student distribution is named after mathematician William Sealy Gosset, who published his paper under pseudonym "Student". He worked in the Guinness brewery, and, according to one of the versions, his employer did not want general public to know that they were using statistical tests to determine the quality of raw materials.
If we want to estimate the mean &mu; of our population with confidence p, we need to take *(1-p)/2-th percentile* of a Student distribution A, which can either be taken from tables, or computer using some built-in functions of statistical software (eg. Python, R, etc.). Then the interval for &mu; would be given by X&pm;A*D/&radic;n, where X is the obtained mean of the sample, D is the standard deviation.
> **Note**: We also omit the discussion of an important concept of [degrees of freedom](https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)), which is important in relation to Student distribution. You can refer to more complete books on statistics to understand this concept deeper.
An example of calculating confidence interval for weights and heights is given in the [accompanying notebooks](notebook.ipynb).
| p | Weight mean | | p | Weight mean |
|-----|-----------| |-----|-----------|
@ -163,11 +175,10 @@ In our case, p-value is very low, meaning that there is strong evidence supporti
> **Challenge**: Use the sample code in the notebook to test other hypothesis that: (1) First basemen and older that second basemen; (2) First basemen and taller than third basemen; (3) Shortstops are taller than second basemen > **Challenge**: Use the sample code in the notebook to test other hypothesis that: (1) First basemen and older that second basemen; (2) First basemen and taller than third basemen; (3) Shortstops are taller than second basemen
There are also different other types of hypothesis that we might want to test, for example:
There are different types of hypothesis that we might want to test, for example:
* To prove that a given sample follows some distribution. In our case we have assumed that heights are normally distributed, but that needs formal statistical verification. * To prove that a given sample follows some distribution. In our case we have assumed that heights are normally distributed, but that needs formal statistical verification.
* To prove that a mean value of a sample corresponds to some predefined value * To prove that a mean value of a sample corresponds to some predefined value
* To prove that * To compare means of a number of samples (eg. what is the difference in happiness levels amond different age groups)
## Law of Large Numbers and Central Limit Theorem ## Law of Large Numbers and Central Limit Theorem
@ -205,9 +216,6 @@ In our case, the value 0.53 indicates that there is some correlation between wei
> More examples of correlation and covariance can be found in [accompanying notebook](notebook.ipynb). > More examples of correlation and covariance can be found in [accompanying notebook](notebook.ipynb).
## 🚀 Challenge ## 🚀 Challenge
@ -217,7 +225,12 @@ In our case, the value 0.53 indicates that there is some correlation between wei
## Review & Self Study ## Review & Self Study
Probability and statistics is such a broad topic that it deserves its own course. If you are interested to go deeper into theory, you may want to continue reading some of the following books:
1. [Carlos Fernanderz-Granda](https://cims.nyu.edu/~cfgranda/) from New York University has great lecture notes [Probability and Statistics for Data Science](https://cims.nyu.edu/~cfgranda/pages/stuff/probability_stats_for_DS.pdf) (available online)
1. [Peter and Andrew Bruce. Practical Statistics for Data Scientists.](https://www.oreilly.com/library/view/practical-statistics-for/9781491952955/) [[sample code in R](https://github.com/andrewgbruce/statistics-for-data-scientists)].
1. [James D. Miller. Statistics for Data Science](https://www.packtpub.com/product/statistics-for-data-science/9781788290678) [[sample code in R](https://github.com/PacktPublishing/Statistics-for-Data-Science)]
## Assignment ## Assignment
[Assignment Title](assignment.md) [Small Diabetes Study](assignment.md)

@ -0,0 +1,252 @@
{
"cells": [
{
"cell_type": "markdown",
"source": [
"## Introduction to Probability and Statistics\r\n",
"## Assignment\r\n",
"\r\n",
"In this assignment, we will use the dataset of diabetes patients taken [from here](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html)."
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 13,
"source": [
"import pandas as pd\r\n",
"import numpy as np\r\n",
"\r\n",
"df = pd.read_csv(\"../../data/diabetes.tsv\",sep='\\t')\r\n",
"df.head()"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" AGE SEX BMI BP S1 S2 S3 S4 S5 S6 Y\n",
"0 59 2 32.1 101.0 157 93.2 38.0 4.0 4.8598 87 151\n",
"1 48 1 21.6 87.0 183 103.2 70.0 3.0 3.8918 69 75\n",
"2 72 2 30.5 93.0 156 93.6 41.0 4.0 4.6728 85 141\n",
"3 24 1 25.3 84.0 198 131.4 40.0 5.0 4.8903 89 206\n",
"4 50 1 23.0 101.0 192 125.4 52.0 4.0 4.2905 80 135"
],
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>AGE</th>\n",
" <th>SEX</th>\n",
" <th>BMI</th>\n",
" <th>BP</th>\n",
" <th>S1</th>\n",
" <th>S2</th>\n",
" <th>S3</th>\n",
" <th>S4</th>\n",
" <th>S5</th>\n",
" <th>S6</th>\n",
" <th>Y</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>59</td>\n",
" <td>2</td>\n",
" <td>32.1</td>\n",
" <td>101.0</td>\n",
" <td>157</td>\n",
" <td>93.2</td>\n",
" <td>38.0</td>\n",
" <td>4.0</td>\n",
" <td>4.8598</td>\n",
" <td>87</td>\n",
" <td>151</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>48</td>\n",
" <td>1</td>\n",
" <td>21.6</td>\n",
" <td>87.0</td>\n",
" <td>183</td>\n",
" <td>103.2</td>\n",
" <td>70.0</td>\n",
" <td>3.0</td>\n",
" <td>3.8918</td>\n",
" <td>69</td>\n",
" <td>75</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>72</td>\n",
" <td>2</td>\n",
" <td>30.5</td>\n",
" <td>93.0</td>\n",
" <td>156</td>\n",
" <td>93.6</td>\n",
" <td>41.0</td>\n",
" <td>4.0</td>\n",
" <td>4.6728</td>\n",
" <td>85</td>\n",
" <td>141</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>24</td>\n",
" <td>1</td>\n",
" <td>25.3</td>\n",
" <td>84.0</td>\n",
" <td>198</td>\n",
" <td>131.4</td>\n",
" <td>40.0</td>\n",
" <td>5.0</td>\n",
" <td>4.8903</td>\n",
" <td>89</td>\n",
" <td>206</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>50</td>\n",
" <td>1</td>\n",
" <td>23.0</td>\n",
" <td>101.0</td>\n",
" <td>192</td>\n",
" <td>125.4</td>\n",
" <td>52.0</td>\n",
" <td>4.0</td>\n",
" <td>4.2905</td>\n",
" <td>80</td>\n",
" <td>135</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
]
},
"metadata": {},
"execution_count": 13
}
],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"\r\n",
"In this dataset, columns as the following:\r\n",
"* Age and sex are self-explanatory\r\n",
"* BMI is body mass index\r\n",
"* BP is average blood pressure\r\n",
"* S1 through S6 are different blood measurements\r\n",
"* Y is the qualitative measure of disease progression over one year\r\n",
"\r\n",
"Let's study this dataset using methods of probability and statistics.\r\n",
"\r\n",
"### Task 1: Compute mean values and variance for all values"
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [],
"outputs": [],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"### Task 2: Plot boxplots for BMI, BP and Y depending on gender"
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [],
"outputs": [],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"### Task 3: What is the the distribution of Age, Sex, BMI and Y variables?"
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [],
"outputs": [],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"### Task 4: Test the correlation between different variables and disease progression (Y)\r\n",
"\r\n",
"> **Hint** Correlation matrix would give you the most useful information on which values are dependent."
],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"### Task 5: Test the hypothesis that the degree of diabetes progression is different between men and women"
],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [],
"metadata": {}
}
],
"metadata": {
"orig_nbformat": 4,
"language_info": {
"name": "python",
"version": "3.8.8",
"mimetype": "text/x-python",
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"pygments_lexer": "ipython3",
"nbconvert_exporter": "python",
"file_extension": ".py"
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3.8.8 64-bit (conda)"
},
"interpreter": {
"hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

@ -1,8 +1,25 @@
# Title # Small Diabetes Study
In this assignment, we will work with a small dataset of diabetes patients taken from [here](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
| | AGE | SEX | BMI | BP | S1 | S2 | S3 | S4 | S5 | S6 | Y |
|---|-----|-----|-----|----|----|----|----|----|----|----|----|
| 0 | 59 | 2 | 32.1 | 101. | 157 | 93.2 | 38.0 | 4. | 4.8598 | 87 | 151 |
| 1 | 48 | 1 | 21.6 | 87.0 | 183 | 103.2 | 70. | 3. | 3.8918 | 69 | 75 |
| 2 | 72 | 2 | 30.5 | 93.0 | 156 | 93.6 | 41.0 | 4.0 | 4. | 85 | 141 |
| ... | ... | ... | ... | ...| ...| ...| ...| ...| ...| ...| ... |
## Instructions ## Instructions
* Open the [assignment notebook](assignment.ipynb) in a jupyter notebook environment
* Complete all tasks listed in the notebook, namely:
[ ] Compute mean values and variance for all values
[ ] Plot boxplots for BMI, BP and Y depending on gender
[ ] What is the the distribution of Age, Sex, BMI and Y variables?
[ ] Test the correlation between different variables and disease progression (Y)
[ ] Test the hypothesis that the degree of diabetes progression is different between men and women
## Rubric ## Rubric
Exemplary | Adequate | Needs Improvement Exemplary | Adequate | Needs Improvement
--- | --- | -- | --- | --- | -- |
All required tasks are complete, graphically illustrated and explained | Most of the tasks are complete, explanations or takeaways from graphs and/or obtained values are missing | Only basic tasks such as computation of mean/variance and basic plots are complete, no conclusions are made from the data

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

@ -0,0 +1,443 @@
AGE SEX BMI BP S1 S2 S3 S4 S5 S6 Y
59 2 32.1 101 157 93.2 38 4 4.8598 87 151
48 1 21.6 87 183 103.2 70 3 3.8918 69 75
72 2 30.5 93 156 93.6 41 4 4.6728 85 141
24 1 25.3 84 198 131.4 40 5 4.8903 89 206
50 1 23 101 192 125.4 52 4 4.2905 80 135
23 1 22.6 89 139 64.8 61 2 4.1897 68 97
36 2 22 90 160 99.6 50 3 3.9512 82 138
66 2 26.2 114 255 185 56 4.55 4.2485 92 63
60 2 32.1 83 179 119.4 42 4 4.4773 94 110
29 1 30 85 180 93.4 43 4 5.3845 88 310
22 1 18.6 97 114 57.6 46 2 3.9512 83 101
56 2 28 85 184 144.8 32 6 3.5835 77 69
53 1 23.7 92 186 109.2 62 3 4.3041 81 179
50 2 26.2 97 186 105.4 49 4 5.0626 88 185
61 1 24 91 202 115.4 72 3 4.2905 73 118
34 2 24.7 118 254 184.2 39 7 5.037 81 171
47 1 30.3 109 207 100.2 70 3 5.2149 98 166
68 2 27.5 111 214 147 39 5 4.9416 91 144
38 1 25.4 84 162 103 42 4 4.4427 87 97
41 1 24.7 83 187 108.2 60 3 4.5433 78 168
35 1 21.1 82 156 87.8 50 3 4.5109 95 68
25 2 24.3 95 162 98.6 54 3 3.8501 87 49
25 1 26 92 187 120.4 56 3 3.9703 88 68
61 2 32 103.67 210 85.2 35 6 6.107 124 245
31 1 29.7 88 167 103.4 48 4 4.3567 78 184
30 2 25.2 83 178 118.4 34 5 4.852 83 202
19 1 19.2 87 124 54 57 2 4.1744 90 137
42 1 31.9 83 158 87.6 53 3 4.4659 101 85
63 1 24.4 73 160 91.4 48 3 4.6347 78 131
67 2 25.8 113 158 54.2 64 2 5.2933 104 283
32 1 30.5 89 182 110.6 56 3 4.3438 89 129
42 1 20.3 71 161 81.2 66 2 4.2341 81 59
58 2 38 103 150 107.2 22 7 4.6444 98 341
57 1 21.7 94 157 58 82 2 4.4427 92 87
53 1 20.5 78 147 84.2 52 3 3.989 75 65
62 2 23.5 80.33 225 112.8 86 2.62 4.8752 96 102
52 1 28.5 110 195 97.2 60 3 5.2417 85 265
46 1 27.4 78 171 88 58 3 4.8283 90 276
48 2 33 123 253 163.6 44 6 5.425 97 252
48 2 27.7 73 191 119.4 46 4 4.852 92 90
50 2 25.6 101 229 162.2 43 5 4.7791 114 100
21 1 20.1 63 135 69 54 3 4.0943 89 55
32 2 25.4 90.33 153 100.4 34 4.5 4.5326 83 61
54 1 24.2 74 204 109 82 2 4.1744 109 92
61 2 32.7 97 177 118.4 29 6 4.9972 87 259
56 2 23.1 104 181 116.4 47 4 4.4773 79 53
33 1 25.3 85 155 85 51 3 4.5539 70 190
27 1 19.6 78 128 68 43 3 4.4427 71 142
67 2 22.5 98 191 119.2 61 3 3.989 86 75
37 2 27.7 93 180 119.4 30 6 5.0304 88 142
58 1 25.7 99 157 91.6 49 3 4.4067 93 155
65 2 27.9 103 159 96.8 42 4 4.6151 86 225
34 1 25.5 93 218 144 57 4 4.4427 88 59
46 1 24.9 115 198 129.6 54 4 4.2767 103 104
35 1 28.7 97 204 126.8 64 3 4.1897 93 182
37 1 21.8 84 184 101 73 3 3.912 93 128
37 1 30.2 87 166 96 40 4.15 5.0106 87 52
41 1 20.5 80 124 48.8 64 2 4.0254 75 37
60 1 20.4 105 198 78.4 99 2 4.6347 79 170
66 2 24 98 236 146.4 58 4 5.0626 96 170
29 1 26 83 141 65.2 64 2 4.0775 83 61
37 2 26.8 79 157 98 28 6 5.0434 96 144
41 2 25.7 83 181 106.6 66 3 3.7377 85 52
39 1 22.9 77 204 143.2 46 4 4.3041 74 128
67 2 24 83 143 77.2 49 3 4.4308 94 71
36 2 24.1 112 193 125 35 6 5.1059 95 163
46 2 24.7 85 174 123.2 30 6 4.6444 96 150
60 2 25 89.67 185 120.8 46 4.02 4.5109 92 97
59 2 23.6 83 165 100 47 4 4.4998 92 160
53 1 22.1 93 134 76.2 46 3 4.0775 96 178
48 1 19.9 91 189 109.6 69 3 3.9512 101 48
48 1 29.5 131 207 132.2 47 4 4.9345 106 270
66 2 26 91 264 146.6 65 4 5.5683 87 202
52 2 24.5 94 217 149.4 48 5 4.585 89 111
52 2 26.6 111 209 126.4 61 3 4.6821 109 85
46 2 23.5 87 181 114.8 44 4 4.7095 98 42
40 2 29 115 97 47.2 35 2.77 4.3041 95 170
22 1 23 73 161 97.8 54 3 3.8286 91 200
50 1 21 88 140 71.8 35 4 5.112 71 252
20 1 22.9 87 191 128.2 53 4 3.8918 85 113
68 1 27.5 107 241 149.6 64 4 4.92 90 143
52 2 24.3 86 197 133.6 44 5 4.5747 91 51
44 1 23.1 87 213 126.4 77 3 3.8712 72 52
38 1 27.3 81 146 81.6 47 3 4.4659 81 210
49 1 22.7 65.33 168 96.2 62 2.71 3.8918 60 65
61 1 33 95 182 114.8 54 3 4.1897 74 141
29 2 19.4 83 152 105.8 39 4 3.5835 83 55
61 1 25.8 98 235 125.8 76 3 5.112 82 134
34 2 22.6 75 166 91.8 60 3 4.2627 108 42
36 1 21.9 89 189 105.2 68 3 4.3694 96 111
52 1 24 83 167 86.6 71 2 3.8501 94 98
61 1 31.2 79 235 156.8 47 5 5.0499 96 164
43 1 26.8 123 193 102.2 67 3 4.7791 94 48
35 1 20.4 65 187 105.6 67 2.79 4.2767 78 96
27 1 24.8 91 189 106.8 69 3 4.1897 69 90
29 1 21 71 156 97 38 4 4.654 90 162
64 2 27.3 109 186 107.6 38 5 5.3083 99 150
41 1 34.6 87.33 205 142.6 41 5 4.6728 110 279
49 2 25.9 91 178 106.6 52 3 4.5747 75 92
48 1 20.4 98 209 139.4 46 5 4.7707 78 83
53 1 28 88 233 143.8 58 4 5.0499 91 128
53 2 22.2 113 197 115.2 67 3 4.3041 100 102
23 1 29 90 216 131.4 65 3 4.585 91 302
65 2 30.2 98 219 160.6 40 5 4.5218 84 198
41 1 32.4 94 171 104.4 56 3 3.9703 76 95
55 2 23.4 83 166 101.6 46 4 4.5218 96 53
22 1 19.3 82 156 93.2 52 3 3.989 71 134
56 1 31 78.67 187 141.4 34 5.5 4.0604 90 144
54 2 30.6 103.33 144 79.8 30 4.8 5.1417 101 232
59 2 25.5 95.33 190 139.4 35 5.43 4.3567 117 81
60 2 23.4 88 153 89.8 58 3 3.2581 95 104
54 1 26.8 87 206 122 68 3 4.382 80 59
25 1 28.3 87 193 128 49 4 4.382 92 246
54 2 27.7 113 200 128.4 37 5 5.1533 113 297
55 1 36.6 113 199 94.4 43 4.63 5.7301 97 258
40 2 26.5 93 236 147 37 7 5.5607 92 229
62 2 31.8 115 199 128.6 44 5 4.8828 98 275
65 1 24.4 120 222 135.6 37 6 5.5094 124 281
33 2 25.4 102 206 141 39 5 4.8675 105 179
53 1 22 94 175 88 59 3 4.9416 98 200
35 1 26.8 98 162 103.6 45 4 4.2047 86 200
66 1 28 101 195 129.2 40 5 4.8598 94 173
62 2 33.9 101 221 156.4 35 6 4.9972 103 180
50 2 29.6 94.33 300 242.4 33 9.09 4.8122 109 84
47 1 28.6 97 164 90.6 56 3 4.4659 88 121
47 2 25.6 94 165 74.8 40 4 5.5255 93 161
24 1 20.7 87 149 80.6 61 2 3.6109 78 99
58 2 26.2 91 217 124.2 71 3 4.6913 68 109
34 1 20.6 87 185 112.2 58 3 4.3041 74 115
51 1 27.9 96 196 122.2 42 5 5.0689 120 268
31 2 35.3 125 187 112.4 48 4 4.8903 109 274
22 1 19.9 75 175 108.6 54 3 4.1271 72 158
53 2 24.4 92 214 146 50 4 4.4998 97 107
37 2 21.4 83 128 69.6 49 3 3.8501 84 83
28 1 30.4 85 198 115.6 67 3 4.3438 80 103
47 1 31.6 84 154 88 30 5.1 5.1985 105 272
23 1 18.8 78 145 72 63 2 3.912 86 85
50 1 31 123 178 105 48 4 4.8283 88 280
58 2 36.7 117 166 93.8 44 4 4.9488 109 336
55 1 32.1 110 164 84.2 42 4 5.2417 90 281
60 2 27.7 107 167 114.6 38 4 4.2767 95 118
41 1 30.8 81 214 152 28 7.6 5.1358 123 317
60 2 27.5 106 229 143.8 51 4 5.1417 91 235
40 1 26.9 92 203 119.8 70 3 4.1897 81 60
57 2 30.7 90 204 147.8 34 6 4.7095 93 174
37 1 38.3 113 165 94.6 53 3 4.4659 79 259
40 2 31.9 95 198 135.6 38 5 4.804 93 178
33 1 35 89 200 130.4 42 4.76 4.9273 101 128
32 2 27.8 89 216 146.2 55 4 4.3041 91 96
35 2 25.9 81 174 102.4 31 6 5.3132 82 126
55 1 32.9 102 164 106.2 41 4 4.4308 89 288
49 1 26 93 183 100.2 64 3 4.5433 88 88
39 2 26.3 115 218 158.2 32 7 4.9345 109 292
60 2 22.3 113 186 125.8 46 4 4.2627 94 71
67 2 28.3 93 204 132.2 49 4 4.7362 92 197
41 2 32 109 251 170.6 49 5 5.0562 103 186
44 1 25.4 95 162 92.6 53 3 4.4067 83 25
48 2 23.3 89.33 212 142.8 46 4.61 4.7536 98 84
45 1 20.3 74.33 190 126.2 49 3.88 4.3041 79 96
47 1 30.4 120 199 120 46 4 5.1059 87 195
46 1 20.6 73 172 107 51 3 4.2485 80 53
36 2 32.3 115 286 199.4 39 7 5.4723 112 217
34 1 29.2 73 172 108.2 49 4 4.3041 91 172
53 2 33.1 117 183 119 48 4 4.382 106 131
61 1 24.6 101 209 106.8 77 3 4.8363 88 214
37 1 20.2 81 162 87.8 63 3 4.0254 88 59
33 2 20.8 84 125 70.2 46 3 3.7842 66 70
68 1 32.8 105.67 205 116.4 40 5.13 5.4931 117 220
49 2 31.9 94 234 155.8 34 7 5.3982 122 268
48 1 23.9 109 232 105.2 37 6 6.107 96 152
55 2 24.5 84 179 105.8 66 3 3.5835 87 47
43 1 22.1 66 134 77.2 45 3 4.0775 80 74
60 2 33 97 217 125.6 45 5 5.4467 112 295
31 2 19 93 137 73 47 3 4.4427 78 101
53 2 27.3 82 119 55 39 3 4.8283 93 151
67 1 22.8 87 166 98.6 52 3 4.3438 92 127
61 2 28.2 106 204 132 52 4 4.6052 96 237
62 1 28.9 87.33 206 127.2 33 6.24 5.4337 99 225
60 1 25.6 87 207 125.8 69 3 4.1109 84 81
42 1 24.9 91 204 141.8 38 5 4.7958 89 151
38 2 26.8 105 181 119.2 37 5 4.8203 91 107
62 1 22.4 79 222 147.4 59 4 4.3567 76 64
61 2 26.9 111 236 172.4 39 6 4.8122 89 138
61 2 23.1 113 186 114.4 47 4 4.8122 105 185
53 1 28.6 88 171 98.8 41 4 5.0499 99 265
28 2 24.7 97 175 99.6 32 5 5.3799 87 101
26 2 30.3 89 218 152.2 31 7 5.1591 82 137
30 1 21.3 87 134 63 63 2 3.6889 66 143
50 1 26.1 109 243 160.6 62 4 4.625 89 141
48 1 20.2 95 187 117.4 53 4 4.4188 85 79
51 1 25.2 103 176 112.2 37 5 4.8978 90 292
47 2 22.5 82 131 66.8 41 3 4.7536 89 178
64 2 23.5 97 203 129 59 3 4.3175 77 91
51 2 25.9 76 240 169 39 6 5.0752 96 116
30 1 20.9 104 152 83.8 47 3 4.6634 97 86
56 2 28.7 99 208 146.4 39 5 4.7274 97 122
42 1 22.1 85 213 138.6 60 4 4.2767 94 72
62 2 26.7 115 183 124 35 5 4.7875 100 129
34 1 31.4 87 149 93.8 46 3 3.8286 77 142
60 1 22.2 104.67 221 105.4 60 3.68 5.6276 93 90
64 1 21 92.33 227 146.8 65 3.49 4.3307 102 158
39 2 21.2 90 182 110.4 60 3 4.0604 98 39
71 2 26.5 105 281 173.6 55 5 5.5683 84 196
48 2 29.2 110 218 151.6 39 6 4.92 98 222
79 2 27 103 169 110.8 37 5 4.6634 110 277
40 1 30.7 99 177 85.4 50 4 5.3375 85 99
49 2 28.8 92 207 140 44 5 4.7449 92 196
51 1 30.6 103 198 106.6 57 3 5.1475 100 202
57 1 30.1 117 202 139.6 42 5 4.625 120 155
59 2 24.7 114 152 104.8 29 5 4.5109 88 77
51 1 27.7 99 229 145.6 69 3 4.2767 77 191
74 1 29.8 101 171 104.8 50 3 4.3944 86 70
67 1 26.7 105 225 135.4 69 3 4.6347 96 73
49 1 19.8 88 188 114.8 57 3 4.3944 93 49
57 1 23.3 88 155 63.6 78 2 4.2047 78 65
56 2 35.1 123 164 95 38 4 5.0434 117 263
52 2 29.7 109 228 162.8 31 8 5.1417 103 248
69 1 29.3 124 223 139 54 4 5.0106 102 296
37 1 20.3 83 185 124.6 38 5 4.7185 88 214
24 1 22.5 89 141 68 52 3 4.654 84 185
55 2 22.7 93 154 94.2 53 3 3.5264 75 78
36 1 22.8 87 178 116 41 4 4.654 82 93
42 2 24 107 150 85 44 3 4.654 96 252
21 1 24.2 76 147 77 53 3 4.4427 79 150
41 1 20.2 62 153 89 50 3 4.2485 89 77
57 2 29.4 109 160 87.6 31 5 5.3327 92 208
20 2 22.1 87 171 99.6 58 3 4.2047 78 77
67 2 23.6 111.33 189 105.4 70 2.7 4.2195 93 108
34 1 25.2 77 189 120.6 53 4 4.3438 79 160
41 2 24.9 86 192 115 61 3 4.382 94 53
38 2 33 78 301 215 50 6.02 5.193 108 220
51 1 23.5 101 195 121 51 4 4.7449 94 154
52 2 26.4 91.33 218 152 39 5.59 4.9053 99 259
67 1 29.8 80 172 93.4 63 3 4.3567 82 90
61 1 30 108 194 100 52 3.73 5.3471 105 246
67 2 25 111.67 146 93.4 33 4.42 4.585 103 124
56 1 27 105 247 160.6 54 5 5.0876 94 67
64 1 20 74.67 189 114.8 62 3.05 4.1109 91 72
58 2 25.5 112 163 110.6 29 6 4.7622 86 257
55 1 28.2 91 250 140.2 67 4 5.366 103 262
62 2 33.3 114 182 114 38 5 5.0106 96 275
57 2 25.6 96 200 133 52 3.85 4.3175 105 177
20 2 24.2 88 126 72.2 45 3 3.7842 74 71
53 2 22.1 98 165 105.2 47 4 4.1589 81 47
32 2 31.4 89 153 84.2 56 3 4.1589 90 187
41 1 23.1 86 148 78 58 3 4.0943 60 125
60 1 23.4 76.67 247 148 65 3.8 5.1358 77 78
26 1 18.8 83 191 103.6 69 3 4.5218 69 51
37 1 30.8 112 282 197.2 43 7 5.3423 101 258
45 1 32 110 224 134.2 45 5 5.4116 93 215
67 1 31.6 116 179 90.4 41 4 5.4723 100 303
34 2 35.5 120 233 146.6 34 7 5.5683 101 243
50 1 31.9 78.33 207 149.2 38 5.45 4.5951 84 91
71 1 29.5 97 227 151.6 45 5 5.0239 108 150
57 2 31.6 117 225 107.6 40 6 5.9584 113 310
49 1 20.3 93 184 103 61 3 4.6052 93 153
35 1 41.3 81 168 102.8 37 5 4.9488 94 346
41 2 21.2 102 184 100.4 64 3 4.585 79 63
70 2 24.1 82.33 194 149.2 31 6.26 4.2341 105 89
52 1 23 107 179 123.7 42.5 4.21 4.1589 93 50
60 1 25.6 78 195 95.4 91 2 3.7612 87 39
62 1 22.5 125 215 99 98 2 4.4998 95 103
44 2 38.2 123 201 126.6 44 5 5.0239 92 308
28 2 19.2 81 155 94.6 51 3 3.8501 87 116
58 2 29 85 156 109.2 36 4 3.989 86 145
39 2 24 89.67 190 113.6 52 3.65 4.804 101 74
34 2 20.6 98 183 92 83 2 3.6889 92 45
65 1 26.3 70 244 166.2 51 5 4.8978 98 115
66 2 34.6 115 204 139.4 36 6 4.9628 109 264
51 1 23.4 87 220 108.8 93 2 4.5109 82 87
50 2 29.2 119 162 85.2 54 3 4.7362 95 202
59 2 27.2 107 158 102 39 4 4.4427 93 127
52 1 27 78.33 134 73 44 3.05 4.4427 69 182
69 2 24.5 108 243 136.4 40 6 5.8081 100 241
53 1 24.1 105 184 113.4 46 4 4.8122 95 66
47 2 25.3 98 173 105.6 44 4 4.7622 108 94
52 1 28.8 113 280 174 67 4 5.273 86 283
39 1 20.9 95 150 65.6 68 2 4.4067 95 64
67 2 23 70 184 128 35 5 4.654 99 102
59 2 24.1 96 170 98.6 54 3 4.4659 85 200
51 2 28.1 106 202 122.2 55 4 4.8203 87 265
23 2 18 78 171 96 48 4 4.9053 92 94
68 1 25.9 93 253 181.2 53 5 4.5433 98 230
44 1 21.5 85 157 92.2 55 3 3.8918 84 181
60 2 24.3 103 141 86.6 33 4 4.6728 78 156
52 1 24.5 90 198 129 29 7 5.2983 86 233
38 1 21.3 72 165 60.2 88 2 4.4308 90 60
61 1 25.8 90 280 195.4 55 5 4.9972 90 219
68 2 24.8 101 221 151.4 60 4 3.8712 87 80
28 2 31.5 83 228 149.4 38 6 5.3132 83 68
65 2 33.5 102 190 126.2 35 5 4.9698 102 332
69 1 28.1 113 234 142.8 52 4 5.2781 77 248
51 1 24.3 85.33 153 71.6 71 2.15 3.9512 82 84
29 1 35 98.33 204 142.6 50 4.08 4.0431 91 200
55 2 23.5 93 177 126.8 41 4 3.8286 83 55
34 2 30 83 185 107.2 53 3 4.8203 92 85
67 1 20.7 83 170 99.8 59 3 4.0254 77 89
49 1 25.6 76 161 99.8 51 3 3.9318 78 31
55 2 22.9 81 123 67.2 41 3 4.3041 88 129
59 2 25.1 90 163 101.4 46 4 4.3567 91 83
53 1 33.2 82.67 186 106.8 46 4.04 5.112 102 275
48 2 24.1 110 209 134.6 58 4 4.4067 100 65
52 1 29.5 104.33 211 132.8 49 4.31 4.9836 98 198
69 1 29.6 122 231 128.4 56 4 5.451 86 236
60 2 22.8 110 245 189.8 39 6 4.3944 88 253
46 2 22.7 83 183 125.8 32 6 4.8363 75 124
51 2 26.2 101 161 99.6 48 3 4.2047 88 44
67 2 23.5 96 207 138.2 42 5 4.8978 111 172
49 1 22.1 85 136 63.4 62 2.19 3.9703 72 114
46 2 26.5 94 247 160.2 59 4 4.9345 111 142
47 1 32.4 105 188 125 46 4.09 4.4427 99 109
75 1 30.1 78 222 154.2 44 5.05 4.7791 97 180
28 1 24.2 93 174 106.4 54 3 4.2195 84 144
65 2 31.3 110 213 128 47 5 5.247 91 163
42 1 30.1 91 182 114.8 49 4 4.5109 82 147
51 1 24.5 79 212 128.6 65 3 4.5218 91 97
53 2 27.7 95 190 101.8 41 5 5.4638 101 220
54 1 23.2 110.67 238 162.8 48 4.96 4.9127 108 190
73 1 27 102 211 121 67 3 4.7449 99 109
54 1 26.8 108 176 80.6 67 3 4.9558 106 191
42 1 29.2 93 249 174.2 45 6 5.0039 92 122
75 1 31.2 117.67 229 138.8 29 7.9 5.7236 106 230
55 2 32.1 112.67 207 92.4 25 8.28 6.1048 111 242
68 2 25.7 109 233 112.6 35 7 6.0568 105 248
57 1 26.9 98 246 165.2 38 7 5.366 96 249
48 1 31.4 75.33 242 151.6 38 6.37 5.5683 103 192
61 2 25.6 85 184 116.2 39 5 4.9698 98 131
69 1 37 103 207 131.4 55 4 4.6347 90 237
38 1 32.6 77 168 100.6 47 4 4.625 96 78
45 2 21.2 94 169 96.8 55 3 4.4543 102 135
51 2 29.2 107 187 139 32 6 4.382 95 244
71 2 24 84 138 85.8 39 4 4.1897 90 199
57 1 36.1 117 181 108.2 34 5 5.2679 100 270
56 2 25.8 103 177 114.4 34 5 4.9628 99 164
32 2 22 88 137 78.6 48 3 3.9512 78 72
50 1 21.9 91 190 111.2 67 3 4.0775 77 96
43 1 34.3 84 256 172.6 33 8 5.5294 104 306
54 2 25.2 115 181 120 39 5 4.7005 92 91
31 1 23.3 85 190 130.8 43 4 4.3944 77 214
56 1 25.7 80 244 151.6 59 4 5.118 95 95
44 1 25.1 133 182 113 55 3 4.2485 84 216
57 2 31.9 111 173 116.2 41 4 4.3694 87 263
64 2 28.4 111 184 127 41 4 4.382 97 178
43 1 28.1 121 192 121 60 3 4.0073 93 113
19 1 25.3 83 225 156.6 46 5 4.7185 84 200
71 2 26.1 85 220 152.4 47 5 4.6347 91 139
50 2 28 104 282 196.8 44 6 5.3279 95 139
59 2 23.6 73 180 107.4 51 4 4.6821 84 88
57 1 24.5 93 186 96.6 71 3 4.5218 91 148
49 2 21 82 119 85.4 23 5 3.9703 74 88
41 2 32 126 198 104.2 49 4 5.4116 124 243
25 2 22.6 85 130 71 48 3 4.0073 81 71
52 2 19.7 81 152 53.4 82 2 4.4188 82 77
34 1 21.2 84 254 113.4 52 5 6.0936 92 109
42 2 30.6 101 269 172.2 50 5 5.4553 106 272
28 2 25.5 99 162 101.6 46 4 4.2767 94 60
47 2 23.3 90 195 125.8 54 4 4.3307 73 54
32 2 31 100 177 96.2 45 4 5.1874 77 221
43 1 18.5 87 163 93.6 61 2.67 3.7377 80 90
59 2 26.9 104 194 126.6 43 5 4.804 106 311
53 1 28.3 101 179 107 48 4 4.7875 101 281
60 1 25.7 103 158 84.6 64 2 3.8501 97 182
54 2 36.1 115 163 98.4 43 4 4.6821 101 321
35 2 24.1 94.67 155 97.4 32 4.84 4.852 94 58
49 2 25.8 89 182 118.6 39 5 4.804 115 262
58 1 22.8 91 196 118.8 48 4 4.9836 115 206
36 2 39.1 90 219 135.8 38 6 5.4205 103 233
46 2 42.2 99 211 137 44 5 5.0106 99 242
44 2 26.6 99 205 109 43 5 5.5797 111 123
46 1 29.9 83 171 113 38 4.5 4.585 98 167
54 1 21 78 188 107.4 70 3 3.9703 73 63
63 2 25.5 109 226 103.2 46 5 5.9506 87 197
41 2 24.2 90 199 123.6 57 4 4.5218 86 71
28 1 25.4 93 141 79 49 3 4.1744 91 168
19 1 23.2 75 143 70.4 52 3 4.6347 72 140
61 2 26.1 126 215 129.8 57 4 4.9488 96 217
48 1 32.7 93 276 198.6 43 6.42 5.1475 91 121
54 2 27.3 100 200 144 33 6 4.7449 76 235
53 2 26.6 93 185 122.4 36 5 4.8903 82 245
48 1 22.8 101 110 41.6 56 2 4.1271 97 40
53 1 28.8 111.67 145 87.2 46 3.15 4.0775 85 52
29 2 18.1 73 158 99 41 4 4.4998 78 104
62 1 32 88 172 69 38 4 5.7838 100 132
50 2 23.7 92 166 97 52 3 4.4427 93 88
58 2 23.6 96 257 171 59 4 4.9053 82 69
55 2 24.6 109 143 76.4 51 3 4.3567 88 219
54 1 22.6 90 183 104.2 64 3 4.3041 92 72
36 1 27.8 73 153 104.4 42 4 3.4965 73 201
63 2 24.1 111 184 112.2 44 4 4.9345 82 110
47 2 26.5 70 181 104.8 63 3 4.1897 70 51
51 2 32.8 112 202 100.6 37 5 5.7746 109 277
42 1 19.9 76 146 83.2 55 3 3.6636 79 63
37 2 23.6 94 205 138.8 53 4 4.1897 107 118
28 1 22.1 82 168 100.6 54 3 4.2047 86 69
58 1 28.1 111 198 80.6 31 6 6.0684 93 273
32 1 26.5 86 184 101.6 53 4 4.9904 78 258
25 2 23.5 88 143 80.8 55 3 3.5835 83 43
63 1 26 85.67 155 78.2 46 3.37 5.037 97 198
52 1 27.8 85 219 136 49 4 5.1358 75 242
65 2 28.5 109 201 123 46 4 5.0752 96 232
42 1 30.6 121 176 92.8 69 3 4.2627 89 175
53 1 22.2 78 164 81 70 2 4.1744 101 93
79 2 23.3 88 186 128.4 33 6 4.8122 102 168
43 1 35.4 93 185 100.2 44 4 5.3181 101 275
44 1 31.4 115 165 97.6 52 3 4.3438 89 293
62 2 37.8 119 113 51 31 4 5.0434 84 281
33 1 18.9 70 162 91.8 59 3 4.0254 58 72
56 1 35 79.33 195 140.8 42 4.64 4.1109 96 140
66 1 21.7 126 212 127.8 45 4.71 5.2781 101 189
34 2 25.3 111 230 162 39 6 4.9767 90 181
46 2 23.8 97 224 139.2 42 5 5.366 81 209
50 1 31.8 82 136 69.2 55 2 4.0775 85 136
69 1 34.3 113 200 123.8 54 4 4.7095 112 261
34 1 26.3 87 197 120 63 3 4.2485 96 113
71 2 27 93.33 269 190.2 41 6.56 5.2417 93 131
47 1 27.2 80 208 145.6 38 6 4.804 92 174
41 1 33.8 123.33 187 127 45 4.16 4.3175 100 257
34 1 33 73 178 114.6 51 3.49 4.1271 92 55
51 1 24.1 87 261 175.6 69 4 4.4067 93 84
43 1 21.3 79 141 78.8 53 3 3.8286 90 42
55 1 23 94.67 190 137.6 38 5 4.2767 106 146
59 2 27.9 101 218 144.2 38 6 5.1874 95 212
27 2 33.6 110 246 156.6 57 4 5.0876 89 233
51 2 22.7 103 217 162.4 30 7 4.8122 80 91
49 2 27.4 89 177 113 37 5 4.9053 97 111
27 1 22.6 71 116 43.4 56 2 4.4188 79 152
57 2 23.2 107.33 231 159.4 41 5.63 5.0304 112 120
39 2 26.9 93 136 75.4 48 3 4.1431 99 67
62 2 34.6 120 215 129.2 43 5 5.366 123 310
37 1 23.3 88 223 142 65 3.4 4.3567 82 94
46 1 21.1 80 205 144.4 42 5 4.5326 87 183
68 2 23.5 101 162 85.4 59 3 4.4773 91 66
51 1 31.5 93 231 144 49 4.7 5.2523 117 173
41 1 20.8 86 223 128.2 83 3 4.0775 89 72
53 1 26.5 97 193 122.4 58 3 4.1431 99 49
45 1 24.2 83 177 118.4 45 4 4.2195 82 64
33 1 19.5 80 171 85.4 75 2 3.9703 80 48
60 2 28.2 112 185 113.8 42 4 4.9836 93 178
47 2 24.9 75 225 166 42 5 4.4427 102 104
60 2 24.9 99.67 162 106.6 43 3.77 4.1271 95 132
36 1 30 95 201 125.2 42 4.79 5.1299 85 220
36 1 19.6 71 250 133.2 97 3 4.5951 92 57
1 AGE SEX BMI BP S1 S2 S3 S4 S5 S6 Y
2 59 2 32.1 101 157 93.2 38 4 4.8598 87 151
3 48 1 21.6 87 183 103.2 70 3 3.8918 69 75
4 72 2 30.5 93 156 93.6 41 4 4.6728 85 141
5 24 1 25.3 84 198 131.4 40 5 4.8903 89 206
6 50 1 23 101 192 125.4 52 4 4.2905 80 135
7 23 1 22.6 89 139 64.8 61 2 4.1897 68 97
8 36 2 22 90 160 99.6 50 3 3.9512 82 138
9 66 2 26.2 114 255 185 56 4.55 4.2485 92 63
10 60 2 32.1 83 179 119.4 42 4 4.4773 94 110
11 29 1 30 85 180 93.4 43 4 5.3845 88 310
12 22 1 18.6 97 114 57.6 46 2 3.9512 83 101
13 56 2 28 85 184 144.8 32 6 3.5835 77 69
14 53 1 23.7 92 186 109.2 62 3 4.3041 81 179
15 50 2 26.2 97 186 105.4 49 4 5.0626 88 185
16 61 1 24 91 202 115.4 72 3 4.2905 73 118
17 34 2 24.7 118 254 184.2 39 7 5.037 81 171
18 47 1 30.3 109 207 100.2 70 3 5.2149 98 166
19 68 2 27.5 111 214 147 39 5 4.9416 91 144
20 38 1 25.4 84 162 103 42 4 4.4427 87 97
21 41 1 24.7 83 187 108.2 60 3 4.5433 78 168
22 35 1 21.1 82 156 87.8 50 3 4.5109 95 68
23 25 2 24.3 95 162 98.6 54 3 3.8501 87 49
24 25 1 26 92 187 120.4 56 3 3.9703 88 68
25 61 2 32 103.67 210 85.2 35 6 6.107 124 245
26 31 1 29.7 88 167 103.4 48 4 4.3567 78 184
27 30 2 25.2 83 178 118.4 34 5 4.852 83 202
28 19 1 19.2 87 124 54 57 2 4.1744 90 137
29 42 1 31.9 83 158 87.6 53 3 4.4659 101 85
30 63 1 24.4 73 160 91.4 48 3 4.6347 78 131
31 67 2 25.8 113 158 54.2 64 2 5.2933 104 283
32 32 1 30.5 89 182 110.6 56 3 4.3438 89 129
33 42 1 20.3 71 161 81.2 66 2 4.2341 81 59
34 58 2 38 103 150 107.2 22 7 4.6444 98 341
35 57 1 21.7 94 157 58 82 2 4.4427 92 87
36 53 1 20.5 78 147 84.2 52 3 3.989 75 65
37 62 2 23.5 80.33 225 112.8 86 2.62 4.8752 96 102
38 52 1 28.5 110 195 97.2 60 3 5.2417 85 265
39 46 1 27.4 78 171 88 58 3 4.8283 90 276
40 48 2 33 123 253 163.6 44 6 5.425 97 252
41 48 2 27.7 73 191 119.4 46 4 4.852 92 90
42 50 2 25.6 101 229 162.2 43 5 4.7791 114 100
43 21 1 20.1 63 135 69 54 3 4.0943 89 55
44 32 2 25.4 90.33 153 100.4 34 4.5 4.5326 83 61
45 54 1 24.2 74 204 109 82 2 4.1744 109 92
46 61 2 32.7 97 177 118.4 29 6 4.9972 87 259
47 56 2 23.1 104 181 116.4 47 4 4.4773 79 53
48 33 1 25.3 85 155 85 51 3 4.5539 70 190
49 27 1 19.6 78 128 68 43 3 4.4427 71 142
50 67 2 22.5 98 191 119.2 61 3 3.989 86 75
51 37 2 27.7 93 180 119.4 30 6 5.0304 88 142
52 58 1 25.7 99 157 91.6 49 3 4.4067 93 155
53 65 2 27.9 103 159 96.8 42 4 4.6151 86 225
54 34 1 25.5 93 218 144 57 4 4.4427 88 59
55 46 1 24.9 115 198 129.6 54 4 4.2767 103 104
56 35 1 28.7 97 204 126.8 64 3 4.1897 93 182
57 37 1 21.8 84 184 101 73 3 3.912 93 128
58 37 1 30.2 87 166 96 40 4.15 5.0106 87 52
59 41 1 20.5 80 124 48.8 64 2 4.0254 75 37
60 60 1 20.4 105 198 78.4 99 2 4.6347 79 170
61 66 2 24 98 236 146.4 58 4 5.0626 96 170
62 29 1 26 83 141 65.2 64 2 4.0775 83 61
63 37 2 26.8 79 157 98 28 6 5.0434 96 144
64 41 2 25.7 83 181 106.6 66 3 3.7377 85 52
65 39 1 22.9 77 204 143.2 46 4 4.3041 74 128
66 67 2 24 83 143 77.2 49 3 4.4308 94 71
67 36 2 24.1 112 193 125 35 6 5.1059 95 163
68 46 2 24.7 85 174 123.2 30 6 4.6444 96 150
69 60 2 25 89.67 185 120.8 46 4.02 4.5109 92 97
70 59 2 23.6 83 165 100 47 4 4.4998 92 160
71 53 1 22.1 93 134 76.2 46 3 4.0775 96 178
72 48 1 19.9 91 189 109.6 69 3 3.9512 101 48
73 48 1 29.5 131 207 132.2 47 4 4.9345 106 270
74 66 2 26 91 264 146.6 65 4 5.5683 87 202
75 52 2 24.5 94 217 149.4 48 5 4.585 89 111
76 52 2 26.6 111 209 126.4 61 3 4.6821 109 85
77 46 2 23.5 87 181 114.8 44 4 4.7095 98 42
78 40 2 29 115 97 47.2 35 2.77 4.3041 95 170
79 22 1 23 73 161 97.8 54 3 3.8286 91 200
80 50 1 21 88 140 71.8 35 4 5.112 71 252
81 20 1 22.9 87 191 128.2 53 4 3.8918 85 113
82 68 1 27.5 107 241 149.6 64 4 4.92 90 143
83 52 2 24.3 86 197 133.6 44 5 4.5747 91 51
84 44 1 23.1 87 213 126.4 77 3 3.8712 72 52
85 38 1 27.3 81 146 81.6 47 3 4.4659 81 210
86 49 1 22.7 65.33 168 96.2 62 2.71 3.8918 60 65
87 61 1 33 95 182 114.8 54 3 4.1897 74 141
88 29 2 19.4 83 152 105.8 39 4 3.5835 83 55
89 61 1 25.8 98 235 125.8 76 3 5.112 82 134
90 34 2 22.6 75 166 91.8 60 3 4.2627 108 42
91 36 1 21.9 89 189 105.2 68 3 4.3694 96 111
92 52 1 24 83 167 86.6 71 2 3.8501 94 98
93 61 1 31.2 79 235 156.8 47 5 5.0499 96 164
94 43 1 26.8 123 193 102.2 67 3 4.7791 94 48
95 35 1 20.4 65 187 105.6 67 2.79 4.2767 78 96
96 27 1 24.8 91 189 106.8 69 3 4.1897 69 90
97 29 1 21 71 156 97 38 4 4.654 90 162
98 64 2 27.3 109 186 107.6 38 5 5.3083 99 150
99 41 1 34.6 87.33 205 142.6 41 5 4.6728 110 279
100 49 2 25.9 91 178 106.6 52 3 4.5747 75 92
101 48 1 20.4 98 209 139.4 46 5 4.7707 78 83
102 53 1 28 88 233 143.8 58 4 5.0499 91 128
103 53 2 22.2 113 197 115.2 67 3 4.3041 100 102
104 23 1 29 90 216 131.4 65 3 4.585 91 302
105 65 2 30.2 98 219 160.6 40 5 4.5218 84 198
106 41 1 32.4 94 171 104.4 56 3 3.9703 76 95
107 55 2 23.4 83 166 101.6 46 4 4.5218 96 53
108 22 1 19.3 82 156 93.2 52 3 3.989 71 134
109 56 1 31 78.67 187 141.4 34 5.5 4.0604 90 144
110 54 2 30.6 103.33 144 79.8 30 4.8 5.1417 101 232
111 59 2 25.5 95.33 190 139.4 35 5.43 4.3567 117 81
112 60 2 23.4 88 153 89.8 58 3 3.2581 95 104
113 54 1 26.8 87 206 122 68 3 4.382 80 59
114 25 1 28.3 87 193 128 49 4 4.382 92 246
115 54 2 27.7 113 200 128.4 37 5 5.1533 113 297
116 55 1 36.6 113 199 94.4 43 4.63 5.7301 97 258
117 40 2 26.5 93 236 147 37 7 5.5607 92 229
118 62 2 31.8 115 199 128.6 44 5 4.8828 98 275
119 65 1 24.4 120 222 135.6 37 6 5.5094 124 281
120 33 2 25.4 102 206 141 39 5 4.8675 105 179
121 53 1 22 94 175 88 59 3 4.9416 98 200
122 35 1 26.8 98 162 103.6 45 4 4.2047 86 200
123 66 1 28 101 195 129.2 40 5 4.8598 94 173
124 62 2 33.9 101 221 156.4 35 6 4.9972 103 180
125 50 2 29.6 94.33 300 242.4 33 9.09 4.8122 109 84
126 47 1 28.6 97 164 90.6 56 3 4.4659 88 121
127 47 2 25.6 94 165 74.8 40 4 5.5255 93 161
128 24 1 20.7 87 149 80.6 61 2 3.6109 78 99
129 58 2 26.2 91 217 124.2 71 3 4.6913 68 109
130 34 1 20.6 87 185 112.2 58 3 4.3041 74 115
131 51 1 27.9 96 196 122.2 42 5 5.0689 120 268
132 31 2 35.3 125 187 112.4 48 4 4.8903 109 274
133 22 1 19.9 75 175 108.6 54 3 4.1271 72 158
134 53 2 24.4 92 214 146 50 4 4.4998 97 107
135 37 2 21.4 83 128 69.6 49 3 3.8501 84 83
136 28 1 30.4 85 198 115.6 67 3 4.3438 80 103
137 47 1 31.6 84 154 88 30 5.1 5.1985 105 272
138 23 1 18.8 78 145 72 63 2 3.912 86 85
139 50 1 31 123 178 105 48 4 4.8283 88 280
140 58 2 36.7 117 166 93.8 44 4 4.9488 109 336
141 55 1 32.1 110 164 84.2 42 4 5.2417 90 281
142 60 2 27.7 107 167 114.6 38 4 4.2767 95 118
143 41 1 30.8 81 214 152 28 7.6 5.1358 123 317
144 60 2 27.5 106 229 143.8 51 4 5.1417 91 235
145 40 1 26.9 92 203 119.8 70 3 4.1897 81 60
146 57 2 30.7 90 204 147.8 34 6 4.7095 93 174
147 37 1 38.3 113 165 94.6 53 3 4.4659 79 259
148 40 2 31.9 95 198 135.6 38 5 4.804 93 178
149 33 1 35 89 200 130.4 42 4.76 4.9273 101 128
150 32 2 27.8 89 216 146.2 55 4 4.3041 91 96
151 35 2 25.9 81 174 102.4 31 6 5.3132 82 126
152 55 1 32.9 102 164 106.2 41 4 4.4308 89 288
153 49 1 26 93 183 100.2 64 3 4.5433 88 88
154 39 2 26.3 115 218 158.2 32 7 4.9345 109 292
155 60 2 22.3 113 186 125.8 46 4 4.2627 94 71
156 67 2 28.3 93 204 132.2 49 4 4.7362 92 197
157 41 2 32 109 251 170.6 49 5 5.0562 103 186
158 44 1 25.4 95 162 92.6 53 3 4.4067 83 25
159 48 2 23.3 89.33 212 142.8 46 4.61 4.7536 98 84
160 45 1 20.3 74.33 190 126.2 49 3.88 4.3041 79 96
161 47 1 30.4 120 199 120 46 4 5.1059 87 195
162 46 1 20.6 73 172 107 51 3 4.2485 80 53
163 36 2 32.3 115 286 199.4 39 7 5.4723 112 217
164 34 1 29.2 73 172 108.2 49 4 4.3041 91 172
165 53 2 33.1 117 183 119 48 4 4.382 106 131
166 61 1 24.6 101 209 106.8 77 3 4.8363 88 214
167 37 1 20.2 81 162 87.8 63 3 4.0254 88 59
168 33 2 20.8 84 125 70.2 46 3 3.7842 66 70
169 68 1 32.8 105.67 205 116.4 40 5.13 5.4931 117 220
170 49 2 31.9 94 234 155.8 34 7 5.3982 122 268
171 48 1 23.9 109 232 105.2 37 6 6.107 96 152
172 55 2 24.5 84 179 105.8 66 3 3.5835 87 47
173 43 1 22.1 66 134 77.2 45 3 4.0775 80 74
174 60 2 33 97 217 125.6 45 5 5.4467 112 295
175 31 2 19 93 137 73 47 3 4.4427 78 101
176 53 2 27.3 82 119 55 39 3 4.8283 93 151
177 67 1 22.8 87 166 98.6 52 3 4.3438 92 127
178 61 2 28.2 106 204 132 52 4 4.6052 96 237
179 62 1 28.9 87.33 206 127.2 33 6.24 5.4337 99 225
180 60 1 25.6 87 207 125.8 69 3 4.1109 84 81
181 42 1 24.9 91 204 141.8 38 5 4.7958 89 151
182 38 2 26.8 105 181 119.2 37 5 4.8203 91 107
183 62 1 22.4 79 222 147.4 59 4 4.3567 76 64
184 61 2 26.9 111 236 172.4 39 6 4.8122 89 138
185 61 2 23.1 113 186 114.4 47 4 4.8122 105 185
186 53 1 28.6 88 171 98.8 41 4 5.0499 99 265
187 28 2 24.7 97 175 99.6 32 5 5.3799 87 101
188 26 2 30.3 89 218 152.2 31 7 5.1591 82 137
189 30 1 21.3 87 134 63 63 2 3.6889 66 143
190 50 1 26.1 109 243 160.6 62 4 4.625 89 141
191 48 1 20.2 95 187 117.4 53 4 4.4188 85 79
192 51 1 25.2 103 176 112.2 37 5 4.8978 90 292
193 47 2 22.5 82 131 66.8 41 3 4.7536 89 178
194 64 2 23.5 97 203 129 59 3 4.3175 77 91
195 51 2 25.9 76 240 169 39 6 5.0752 96 116
196 30 1 20.9 104 152 83.8 47 3 4.6634 97 86
197 56 2 28.7 99 208 146.4 39 5 4.7274 97 122
198 42 1 22.1 85 213 138.6 60 4 4.2767 94 72
199 62 2 26.7 115 183 124 35 5 4.7875 100 129
200 34 1 31.4 87 149 93.8 46 3 3.8286 77 142
201 60 1 22.2 104.67 221 105.4 60 3.68 5.6276 93 90
202 64 1 21 92.33 227 146.8 65 3.49 4.3307 102 158
203 39 2 21.2 90 182 110.4 60 3 4.0604 98 39
204 71 2 26.5 105 281 173.6 55 5 5.5683 84 196
205 48 2 29.2 110 218 151.6 39 6 4.92 98 222
206 79 2 27 103 169 110.8 37 5 4.6634 110 277
207 40 1 30.7 99 177 85.4 50 4 5.3375 85 99
208 49 2 28.8 92 207 140 44 5 4.7449 92 196
209 51 1 30.6 103 198 106.6 57 3 5.1475 100 202
210 57 1 30.1 117 202 139.6 42 5 4.625 120 155
211 59 2 24.7 114 152 104.8 29 5 4.5109 88 77
212 51 1 27.7 99 229 145.6 69 3 4.2767 77 191
213 74 1 29.8 101 171 104.8 50 3 4.3944 86 70
214 67 1 26.7 105 225 135.4 69 3 4.6347 96 73
215 49 1 19.8 88 188 114.8 57 3 4.3944 93 49
216 57 1 23.3 88 155 63.6 78 2 4.2047 78 65
217 56 2 35.1 123 164 95 38 4 5.0434 117 263
218 52 2 29.7 109 228 162.8 31 8 5.1417 103 248
219 69 1 29.3 124 223 139 54 4 5.0106 102 296
220 37 1 20.3 83 185 124.6 38 5 4.7185 88 214
221 24 1 22.5 89 141 68 52 3 4.654 84 185
222 55 2 22.7 93 154 94.2 53 3 3.5264 75 78
223 36 1 22.8 87 178 116 41 4 4.654 82 93
224 42 2 24 107 150 85 44 3 4.654 96 252
225 21 1 24.2 76 147 77 53 3 4.4427 79 150
226 41 1 20.2 62 153 89 50 3 4.2485 89 77
227 57 2 29.4 109 160 87.6 31 5 5.3327 92 208
228 20 2 22.1 87 171 99.6 58 3 4.2047 78 77
229 67 2 23.6 111.33 189 105.4 70 2.7 4.2195 93 108
230 34 1 25.2 77 189 120.6 53 4 4.3438 79 160
231 41 2 24.9 86 192 115 61 3 4.382 94 53
232 38 2 33 78 301 215 50 6.02 5.193 108 220
233 51 1 23.5 101 195 121 51 4 4.7449 94 154
234 52 2 26.4 91.33 218 152 39 5.59 4.9053 99 259
235 67 1 29.8 80 172 93.4 63 3 4.3567 82 90
236 61 1 30 108 194 100 52 3.73 5.3471 105 246
237 67 2 25 111.67 146 93.4 33 4.42 4.585 103 124
238 56 1 27 105 247 160.6 54 5 5.0876 94 67
239 64 1 20 74.67 189 114.8 62 3.05 4.1109 91 72
240 58 2 25.5 112 163 110.6 29 6 4.7622 86 257
241 55 1 28.2 91 250 140.2 67 4 5.366 103 262
242 62 2 33.3 114 182 114 38 5 5.0106 96 275
243 57 2 25.6 96 200 133 52 3.85 4.3175 105 177
244 20 2 24.2 88 126 72.2 45 3 3.7842 74 71
245 53 2 22.1 98 165 105.2 47 4 4.1589 81 47
246 32 2 31.4 89 153 84.2 56 3 4.1589 90 187
247 41 1 23.1 86 148 78 58 3 4.0943 60 125
248 60 1 23.4 76.67 247 148 65 3.8 5.1358 77 78
249 26 1 18.8 83 191 103.6 69 3 4.5218 69 51
250 37 1 30.8 112 282 197.2 43 7 5.3423 101 258
251 45 1 32 110 224 134.2 45 5 5.4116 93 215
252 67 1 31.6 116 179 90.4 41 4 5.4723 100 303
253 34 2 35.5 120 233 146.6 34 7 5.5683 101 243
254 50 1 31.9 78.33 207 149.2 38 5.45 4.5951 84 91
255 71 1 29.5 97 227 151.6 45 5 5.0239 108 150
256 57 2 31.6 117 225 107.6 40 6 5.9584 113 310
257 49 1 20.3 93 184 103 61 3 4.6052 93 153
258 35 1 41.3 81 168 102.8 37 5 4.9488 94 346
259 41 2 21.2 102 184 100.4 64 3 4.585 79 63
260 70 2 24.1 82.33 194 149.2 31 6.26 4.2341 105 89
261 52 1 23 107 179 123.7 42.5 4.21 4.1589 93 50
262 60 1 25.6 78 195 95.4 91 2 3.7612 87 39
263 62 1 22.5 125 215 99 98 2 4.4998 95 103
264 44 2 38.2 123 201 126.6 44 5 5.0239 92 308
265 28 2 19.2 81 155 94.6 51 3 3.8501 87 116
266 58 2 29 85 156 109.2 36 4 3.989 86 145
267 39 2 24 89.67 190 113.6 52 3.65 4.804 101 74
268 34 2 20.6 98 183 92 83 2 3.6889 92 45
269 65 1 26.3 70 244 166.2 51 5 4.8978 98 115
270 66 2 34.6 115 204 139.4 36 6 4.9628 109 264
271 51 1 23.4 87 220 108.8 93 2 4.5109 82 87
272 50 2 29.2 119 162 85.2 54 3 4.7362 95 202
273 59 2 27.2 107 158 102 39 4 4.4427 93 127
274 52 1 27 78.33 134 73 44 3.05 4.4427 69 182
275 69 2 24.5 108 243 136.4 40 6 5.8081 100 241
276 53 1 24.1 105 184 113.4 46 4 4.8122 95 66
277 47 2 25.3 98 173 105.6 44 4 4.7622 108 94
278 52 1 28.8 113 280 174 67 4 5.273 86 283
279 39 1 20.9 95 150 65.6 68 2 4.4067 95 64
280 67 2 23 70 184 128 35 5 4.654 99 102
281 59 2 24.1 96 170 98.6 54 3 4.4659 85 200
282 51 2 28.1 106 202 122.2 55 4 4.8203 87 265
283 23 2 18 78 171 96 48 4 4.9053 92 94
284 68 1 25.9 93 253 181.2 53 5 4.5433 98 230
285 44 1 21.5 85 157 92.2 55 3 3.8918 84 181
286 60 2 24.3 103 141 86.6 33 4 4.6728 78 156
287 52 1 24.5 90 198 129 29 7 5.2983 86 233
288 38 1 21.3 72 165 60.2 88 2 4.4308 90 60
289 61 1 25.8 90 280 195.4 55 5 4.9972 90 219
290 68 2 24.8 101 221 151.4 60 4 3.8712 87 80
291 28 2 31.5 83 228 149.4 38 6 5.3132 83 68
292 65 2 33.5 102 190 126.2 35 5 4.9698 102 332
293 69 1 28.1 113 234 142.8 52 4 5.2781 77 248
294 51 1 24.3 85.33 153 71.6 71 2.15 3.9512 82 84
295 29 1 35 98.33 204 142.6 50 4.08 4.0431 91 200
296 55 2 23.5 93 177 126.8 41 4 3.8286 83 55
297 34 2 30 83 185 107.2 53 3 4.8203 92 85
298 67 1 20.7 83 170 99.8 59 3 4.0254 77 89
299 49 1 25.6 76 161 99.8 51 3 3.9318 78 31
300 55 2 22.9 81 123 67.2 41 3 4.3041 88 129
301 59 2 25.1 90 163 101.4 46 4 4.3567 91 83
302 53 1 33.2 82.67 186 106.8 46 4.04 5.112 102 275
303 48 2 24.1 110 209 134.6 58 4 4.4067 100 65
304 52 1 29.5 104.33 211 132.8 49 4.31 4.9836 98 198
305 69 1 29.6 122 231 128.4 56 4 5.451 86 236
306 60 2 22.8 110 245 189.8 39 6 4.3944 88 253
307 46 2 22.7 83 183 125.8 32 6 4.8363 75 124
308 51 2 26.2 101 161 99.6 48 3 4.2047 88 44
309 67 2 23.5 96 207 138.2 42 5 4.8978 111 172
310 49 1 22.1 85 136 63.4 62 2.19 3.9703 72 114
311 46 2 26.5 94 247 160.2 59 4 4.9345 111 142
312 47 1 32.4 105 188 125 46 4.09 4.4427 99 109
313 75 1 30.1 78 222 154.2 44 5.05 4.7791 97 180
314 28 1 24.2 93 174 106.4 54 3 4.2195 84 144
315 65 2 31.3 110 213 128 47 5 5.247 91 163
316 42 1 30.1 91 182 114.8 49 4 4.5109 82 147
317 51 1 24.5 79 212 128.6 65 3 4.5218 91 97
318 53 2 27.7 95 190 101.8 41 5 5.4638 101 220
319 54 1 23.2 110.67 238 162.8 48 4.96 4.9127 108 190
320 73 1 27 102 211 121 67 3 4.7449 99 109
321 54 1 26.8 108 176 80.6 67 3 4.9558 106 191
322 42 1 29.2 93 249 174.2 45 6 5.0039 92 122
323 75 1 31.2 117.67 229 138.8 29 7.9 5.7236 106 230
324 55 2 32.1 112.67 207 92.4 25 8.28 6.1048 111 242
325 68 2 25.7 109 233 112.6 35 7 6.0568 105 248
326 57 1 26.9 98 246 165.2 38 7 5.366 96 249
327 48 1 31.4 75.33 242 151.6 38 6.37 5.5683 103 192
328 61 2 25.6 85 184 116.2 39 5 4.9698 98 131
329 69 1 37 103 207 131.4 55 4 4.6347 90 237
330 38 1 32.6 77 168 100.6 47 4 4.625 96 78
331 45 2 21.2 94 169 96.8 55 3 4.4543 102 135
332 51 2 29.2 107 187 139 32 6 4.382 95 244
333 71 2 24 84 138 85.8 39 4 4.1897 90 199
334 57 1 36.1 117 181 108.2 34 5 5.2679 100 270
335 56 2 25.8 103 177 114.4 34 5 4.9628 99 164
336 32 2 22 88 137 78.6 48 3 3.9512 78 72
337 50 1 21.9 91 190 111.2 67 3 4.0775 77 96
338 43 1 34.3 84 256 172.6 33 8 5.5294 104 306
339 54 2 25.2 115 181 120 39 5 4.7005 92 91
340 31 1 23.3 85 190 130.8 43 4 4.3944 77 214
341 56 1 25.7 80 244 151.6 59 4 5.118 95 95
342 44 1 25.1 133 182 113 55 3 4.2485 84 216
343 57 2 31.9 111 173 116.2 41 4 4.3694 87 263
344 64 2 28.4 111 184 127 41 4 4.382 97 178
345 43 1 28.1 121 192 121 60 3 4.0073 93 113
346 19 1 25.3 83 225 156.6 46 5 4.7185 84 200
347 71 2 26.1 85 220 152.4 47 5 4.6347 91 139
348 50 2 28 104 282 196.8 44 6 5.3279 95 139
349 59 2 23.6 73 180 107.4 51 4 4.6821 84 88
350 57 1 24.5 93 186 96.6 71 3 4.5218 91 148
351 49 2 21 82 119 85.4 23 5 3.9703 74 88
352 41 2 32 126 198 104.2 49 4 5.4116 124 243
353 25 2 22.6 85 130 71 48 3 4.0073 81 71
354 52 2 19.7 81 152 53.4 82 2 4.4188 82 77
355 34 1 21.2 84 254 113.4 52 5 6.0936 92 109
356 42 2 30.6 101 269 172.2 50 5 5.4553 106 272
357 28 2 25.5 99 162 101.6 46 4 4.2767 94 60
358 47 2 23.3 90 195 125.8 54 4 4.3307 73 54
359 32 2 31 100 177 96.2 45 4 5.1874 77 221
360 43 1 18.5 87 163 93.6 61 2.67 3.7377 80 90
361 59 2 26.9 104 194 126.6 43 5 4.804 106 311
362 53 1 28.3 101 179 107 48 4 4.7875 101 281
363 60 1 25.7 103 158 84.6 64 2 3.8501 97 182
364 54 2 36.1 115 163 98.4 43 4 4.6821 101 321
365 35 2 24.1 94.67 155 97.4 32 4.84 4.852 94 58
366 49 2 25.8 89 182 118.6 39 5 4.804 115 262
367 58 1 22.8 91 196 118.8 48 4 4.9836 115 206
368 36 2 39.1 90 219 135.8 38 6 5.4205 103 233
369 46 2 42.2 99 211 137 44 5 5.0106 99 242
370 44 2 26.6 99 205 109 43 5 5.5797 111 123
371 46 1 29.9 83 171 113 38 4.5 4.585 98 167
372 54 1 21 78 188 107.4 70 3 3.9703 73 63
373 63 2 25.5 109 226 103.2 46 5 5.9506 87 197
374 41 2 24.2 90 199 123.6 57 4 4.5218 86 71
375 28 1 25.4 93 141 79 49 3 4.1744 91 168
376 19 1 23.2 75 143 70.4 52 3 4.6347 72 140
377 61 2 26.1 126 215 129.8 57 4 4.9488 96 217
378 48 1 32.7 93 276 198.6 43 6.42 5.1475 91 121
379 54 2 27.3 100 200 144 33 6 4.7449 76 235
380 53 2 26.6 93 185 122.4 36 5 4.8903 82 245
381 48 1 22.8 101 110 41.6 56 2 4.1271 97 40
382 53 1 28.8 111.67 145 87.2 46 3.15 4.0775 85 52
383 29 2 18.1 73 158 99 41 4 4.4998 78 104
384 62 1 32 88 172 69 38 4 5.7838 100 132
385 50 2 23.7 92 166 97 52 3 4.4427 93 88
386 58 2 23.6 96 257 171 59 4 4.9053 82 69
387 55 2 24.6 109 143 76.4 51 3 4.3567 88 219
388 54 1 22.6 90 183 104.2 64 3 4.3041 92 72
389 36 1 27.8 73 153 104.4 42 4 3.4965 73 201
390 63 2 24.1 111 184 112.2 44 4 4.9345 82 110
391 47 2 26.5 70 181 104.8 63 3 4.1897 70 51
392 51 2 32.8 112 202 100.6 37 5 5.7746 109 277
393 42 1 19.9 76 146 83.2 55 3 3.6636 79 63
394 37 2 23.6 94 205 138.8 53 4 4.1897 107 118
395 28 1 22.1 82 168 100.6 54 3 4.2047 86 69
396 58 1 28.1 111 198 80.6 31 6 6.0684 93 273
397 32 1 26.5 86 184 101.6 53 4 4.9904 78 258
398 25 2 23.5 88 143 80.8 55 3 3.5835 83 43
399 63 1 26 85.67 155 78.2 46 3.37 5.037 97 198
400 52 1 27.8 85 219 136 49 4 5.1358 75 242
401 65 2 28.5 109 201 123 46 4 5.0752 96 232
402 42 1 30.6 121 176 92.8 69 3 4.2627 89 175
403 53 1 22.2 78 164 81 70 2 4.1744 101 93
404 79 2 23.3 88 186 128.4 33 6 4.8122 102 168
405 43 1 35.4 93 185 100.2 44 4 5.3181 101 275
406 44 1 31.4 115 165 97.6 52 3 4.3438 89 293
407 62 2 37.8 119 113 51 31 4 5.0434 84 281
408 33 1 18.9 70 162 91.8 59 3 4.0254 58 72
409 56 1 35 79.33 195 140.8 42 4.64 4.1109 96 140
410 66 1 21.7 126 212 127.8 45 4.71 5.2781 101 189
411 34 2 25.3 111 230 162 39 6 4.9767 90 181
412 46 2 23.8 97 224 139.2 42 5 5.366 81 209
413 50 1 31.8 82 136 69.2 55 2 4.0775 85 136
414 69 1 34.3 113 200 123.8 54 4 4.7095 112 261
415 34 1 26.3 87 197 120 63 3 4.2485 96 113
416 71 2 27 93.33 269 190.2 41 6.56 5.2417 93 131
417 47 1 27.2 80 208 145.6 38 6 4.804 92 174
418 41 1 33.8 123.33 187 127 45 4.16 4.3175 100 257
419 34 1 33 73 178 114.6 51 3.49 4.1271 92 55
420 51 1 24.1 87 261 175.6 69 4 4.4067 93 84
421 43 1 21.3 79 141 78.8 53 3 3.8286 90 42
422 55 1 23 94.67 190 137.6 38 5 4.2767 106 146
423 59 2 27.9 101 218 144.2 38 6 5.1874 95 212
424 27 2 33.6 110 246 156.6 57 4 5.0876 89 233
425 51 2 22.7 103 217 162.4 30 7 4.8122 80 91
426 49 2 27.4 89 177 113 37 5 4.9053 97 111
427 27 1 22.6 71 116 43.4 56 2 4.4188 79 152
428 57 2 23.2 107.33 231 159.4 41 5.63 5.0304 112 120
429 39 2 26.9 93 136 75.4 48 3 4.1431 99 67
430 62 2 34.6 120 215 129.2 43 5 5.366 123 310
431 37 1 23.3 88 223 142 65 3.4 4.3567 82 94
432 46 1 21.1 80 205 144.4 42 5 4.5326 87 183
433 68 2 23.5 101 162 85.4 59 3 4.4773 91 66
434 51 1 31.5 93 231 144 49 4.7 5.2523 117 173
435 41 1 20.8 86 223 128.2 83 3 4.0775 89 72
436 53 1 26.5 97 193 122.4 58 3 4.1431 99 49
437 45 1 24.2 83 177 118.4 45 4 4.2195 82 64
438 33 1 19.5 80 171 85.4 75 2 3.9703 80 48
439 60 2 28.2 112 185 113.8 42 4 4.9836 93 178
440 47 2 24.9 75 225 166 42 5 4.4427 102 104
441 60 2 24.9 99.67 162 106.6 43 3.77 4.1271 95 132
442 36 1 30 95 201 125.2 42 4.79 5.1299 85 220
443 36 1 19.6 71 250 133.2 97 3 4.5951 92 57
Loading…
Cancel
Save