diff --git a/1-Introduction/04-stats-and-probability/README.md b/1-Introduction/04-stats-and-probability/README.md
index f2fa0c2..83e3959 100644
--- a/1-Introduction/04-stats-and-probability/README.md
+++ b/1-Introduction/04-stats-and-probability/README.md
@@ -55,7 +55,7 @@ Graphically we can represent relationship between median and quartiles in a diag
Here we also computer **inter-quartile range** IQR=Q3-Q1, and so-called **outliers** - values, that lie outside the boundaries [Q1-1.5*IQR,Q3+1.5*IQR].
-For finite distribution that contains small number of possible values, a good "typical" value is the one that appears the most frequently, which is called **mode**. It is often applied to categorical data, such as colors. Consider a situation when we have two groups of people - some that strongly prefer red, and others who prefer blue. If we code colors by numbers, the mean value for a favourite color would be somewhere in the orange-green spectrum, which does not indicate the actual preference on neither group. However, the mode would be either one of the colors, or both colors, if the number of people voting for them is equal (in this case we call the sample **multimodal**).
+For finite distribution that contains small number of possible values, a good "typical" value is the one that appears the most frequently, which is called **mode**. It is often applied to categorical data, such as colors. Consider a situation when we have two groups of people - some that strongly prefer red, and others who prefer blue. If we code colors by numbers, the mean value for a favorite color would be somewhere in the orange-green spectrum, which does not indicate the actual preference on neither group. However, the mode would be either one of the colors, or both colors, if the number of people voting for them is equal (in this case we call the sample **multimodal**).
## Real-world Data
When we analyze data from real life, they often are not random variables as such, in a sense that we do not perform experiments with unknown result. For example, consider a team of baseball players, and their body data, such as height, weight and age. Those numbers are not exactly random, but we can still apply the same mathematical concepts. For example, a sequence of people's weights can be considered to be a sequence of values drawn from some random variable. Below is the sequence of weights of actual baseball players from [Major League Baseball](http://mlb.mlb.com/index.jsp), taken from [this dataset](http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_MLB_HeightsWeights) (for your convenience, only first 20 values are shown):
@@ -64,6 +64,8 @@ When we analyze data from real life, they often are not random variables as such
[180.0, 215.0, 210.0, 210.0, 188.0, 176.0, 209.0, 200.0, 231.0, 180.0, 188.0, 180.0, 185.0, 160.0, 180.0, 185.0, 197.0, 189.0, 185.0, 219.0]
```
+> **Note**: To see the example of working with this dataset, have a look at the [accompanying notebook](notebook.ipynb). There is also a number of challenges throughout this lesson, and you may complete them by adding some code to that notebook. If you are not sure how to operate on data, do not worry - we will come back to working with data using Python at a later time.
+
Here is the box plot showing mean, median and quartiles for our data:
![Weight Box Plot](images/weight-boxplot.png)
@@ -94,13 +96,23 @@ If we plot the histogram of the generated samples we will see the picture very s
## Confidence Intervals
-When we talk about weights of baseball players, we assume that there is certain **random variable W** that corresponds to ideal probability distribution of weights of all baseball players. Our sequence of weights corresponds to a subset of all baseball players that we call **population**. An interesting question is, can we know the parameters of distribution of W, i.e. mean and variance?
+When we talk about weights of baseball players, we assume that there is certain **random variable W** that corresponds to ideal probability distribution of weights of all baseball players (so-called **population**). Our sequence of weights corresponds to a subset of all baseball players that we call **sample**. An interesting question is, can we know the parameters of distribution of W, i.e. mean and variance of the population?
+
+The easiest answer would be to calculate mean and variance of our sample. However, it could happen that our random sample does not accurately represent complete population. Thus it makes sense to talk about **confidence interval**.
-The easiest answer would be to calculate mean and variance of our sample. However, it could happen that our random sample does not accurately represent complete population. Thus it makes sense to talk about **confidence interval**.
+> **Confidence interval** is the estimation of true mean of the population given our sample, which is accurate is a certain probability (or **level of confidence**).
Suppose we have a sample X1, ..., Xn from our distribution. Each time we draw a sample from our distribution, we would end up with different mean value μ. Thus μ can be considered to be a random variable. A **confidence interval** with confidence p is a pair of values (Lp,Rp), such that **P**(Lp≤μ≤Rp) = p, i.e. a probability of measured mean value falling within the interval equals to p.
-It does beyond our short intro to discuss how those confidence intervals are calculated. Some more details can be found [on Wikipedia](https://en.wikipedia.org/wiki/Confidence_interval). An example of calculating confidence interval for weights and heights is given in the [accompanying notebooks](notebook.ipynb).
+It does beyond our short intro to discuss in detail how those confidence intervals are calculated. Some more details can be found [on Wikipedia](https://en.wikipedia.org/wiki/Confidence_interval). In short, we define the distribution of computed sample mean relative to the true mean of the population, which is called **student distribution**.
+
+> **Interesting fact**: Student distribution is named after mathematician William Sealy Gosset, who published his paper under pseudonym "Student". He worked in the Guinness brewery, and, according to one of the versions, his employer did not want general public to know that they were using statistical tests to determine the quality of raw materials.
+
+If we want to estimate the mean μ of our population with confidence p, we need to take *(1-p)/2-th percentile* of a Student distribution A, which can either be taken from tables, or computer using some built-in functions of statistical software (eg. Python, R, etc.). Then the interval for μ would be given by X±A*D/√n, where X is the obtained mean of the sample, D is the standard deviation.
+
+> **Note**: We also omit the discussion of an important concept of [degrees of freedom](https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)), which is important in relation to Student distribution. You can refer to more complete books on statistics to understand this concept deeper.
+
+An example of calculating confidence interval for weights and heights is given in the [accompanying notebooks](notebook.ipynb).
| p | Weight mean |
|-----|-----------|
@@ -163,11 +175,10 @@ In our case, p-value is very low, meaning that there is strong evidence supporti
> **Challenge**: Use the sample code in the notebook to test other hypothesis that: (1) First basemen and older that second basemen; (2) First basemen and taller than third basemen; (3) Shortstops are taller than second basemen
-
-There are different types of hypothesis that we might want to test, for example:
+There are also different other types of hypothesis that we might want to test, for example:
* To prove that a given sample follows some distribution. In our case we have assumed that heights are normally distributed, but that needs formal statistical verification.
* To prove that a mean value of a sample corresponds to some predefined value
-* To prove that
+* To compare means of a number of samples (eg. what is the difference in happiness levels amond different age groups)
## Law of Large Numbers and Central Limit Theorem
@@ -205,9 +216,6 @@ In our case, the value 0.53 indicates that there is some correlation between wei
> More examples of correlation and covariance can be found in [accompanying notebook](notebook.ipynb).
-
-
-
## 🚀 Challenge
@@ -217,7 +225,12 @@ In our case, the value 0.53 indicates that there is some correlation between wei
## Review & Self Study
+Probability and statistics is such a broad topic that it deserves its own course. If you are interested to go deeper into theory, you may want to continue reading some of the following books:
+
+1. [Carlos Fernanderz-Granda](https://cims.nyu.edu/~cfgranda/) from New York University has great lecture notes [Probability and Statistics for Data Science](https://cims.nyu.edu/~cfgranda/pages/stuff/probability_stats_for_DS.pdf) (available online)
+1. [Peter and Andrew Bruce. Practical Statistics for Data Scientists.](https://www.oreilly.com/library/view/practical-statistics-for/9781491952955/) [[sample code in R](https://github.com/andrewgbruce/statistics-for-data-scientists)].
+1. [James D. Miller. Statistics for Data Science](https://www.packtpub.com/product/statistics-for-data-science/9781788290678) [[sample code in R](https://github.com/PacktPublishing/Statistics-for-Data-Science)]
## Assignment
-[Assignment Title](assignment.md)
+[Small Diabetes Study](assignment.md)
diff --git a/1-Introduction/04-stats-and-probability/assignment.ipynb b/1-Introduction/04-stats-and-probability/assignment.ipynb
new file mode 100644
index 0000000..a6f8147
--- /dev/null
+++ b/1-Introduction/04-stats-and-probability/assignment.ipynb
@@ -0,0 +1,252 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## Introduction to Probability and Statistics\r\n",
+ "## Assignment\r\n",
+ "\r\n",
+ "In this assignment, we will use the dataset of diabetes patients taken [from here](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html)."
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "source": [
+ "import pandas as pd\r\n",
+ "import numpy as np\r\n",
+ "\r\n",
+ "df = pd.read_csv(\"../../data/diabetes.tsv\",sep='\\t')\r\n",
+ "df.head()"
+ ],
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " AGE SEX BMI BP S1 S2 S3 S4 S5 S6 Y\n",
+ "0 59 2 32.1 101.0 157 93.2 38.0 4.0 4.8598 87 151\n",
+ "1 48 1 21.6 87.0 183 103.2 70.0 3.0 3.8918 69 75\n",
+ "2 72 2 30.5 93.0 156 93.6 41.0 4.0 4.6728 85 141\n",
+ "3 24 1 25.3 84.0 198 131.4 40.0 5.0 4.8903 89 206\n",
+ "4 50 1 23.0 101.0 192 125.4 52.0 4.0 4.2905 80 135"
+ ],
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
AGE
\n",
+ "
SEX
\n",
+ "
BMI
\n",
+ "
BP
\n",
+ "
S1
\n",
+ "
S2
\n",
+ "
S3
\n",
+ "
S4
\n",
+ "
S5
\n",
+ "
S6
\n",
+ "
Y
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
59
\n",
+ "
2
\n",
+ "
32.1
\n",
+ "
101.0
\n",
+ "
157
\n",
+ "
93.2
\n",
+ "
38.0
\n",
+ "
4.0
\n",
+ "
4.8598
\n",
+ "
87
\n",
+ "
151
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
48
\n",
+ "
1
\n",
+ "
21.6
\n",
+ "
87.0
\n",
+ "
183
\n",
+ "
103.2
\n",
+ "
70.0
\n",
+ "
3.0
\n",
+ "
3.8918
\n",
+ "
69
\n",
+ "
75
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
72
\n",
+ "
2
\n",
+ "
30.5
\n",
+ "
93.0
\n",
+ "
156
\n",
+ "
93.6
\n",
+ "
41.0
\n",
+ "
4.0
\n",
+ "
4.6728
\n",
+ "
85
\n",
+ "
141
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
24
\n",
+ "
1
\n",
+ "
25.3
\n",
+ "
84.0
\n",
+ "
198
\n",
+ "
131.4
\n",
+ "
40.0
\n",
+ "
5.0
\n",
+ "
4.8903
\n",
+ "
89
\n",
+ "
206
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
50
\n",
+ "
1
\n",
+ "
23.0
\n",
+ "
101.0
\n",
+ "
192
\n",
+ "
125.4
\n",
+ "
52.0
\n",
+ "
4.0
\n",
+ "
4.2905
\n",
+ "
80
\n",
+ "
135
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 13
+ }
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "\r\n",
+ "In this dataset, columns as the following:\r\n",
+ "* Age and sex are self-explanatory\r\n",
+ "* BMI is body mass index\r\n",
+ "* BP is average blood pressure\r\n",
+ "* S1 through S6 are different blood measurements\r\n",
+ "* Y is the qualitative measure of disease progression over one year\r\n",
+ "\r\n",
+ "Let's study this dataset using methods of probability and statistics.\r\n",
+ "\r\n",
+ "### Task 1: Compute mean values and variance for all values"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [],
+ "outputs": [],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### Task 2: Plot boxplots for BMI, BP and Y depending on gender"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [],
+ "outputs": [],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### Task 3: What is the the distribution of Age, Sex, BMI and Y variables?"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [],
+ "outputs": [],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### Task 4: Test the correlation between different variables and disease progression (Y)\r\n",
+ "\r\n",
+ "> **Hint** Correlation matrix would give you the most useful information on which values are dependent."
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### Task 5: Test the hypothesis that the degree of diabetes progression is different between men and women"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [],
+ "metadata": {}
+ }
+ ],
+ "metadata": {
+ "orig_nbformat": 4,
+ "language_info": {
+ "name": "python",
+ "version": "3.8.8",
+ "mimetype": "text/x-python",
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "pygments_lexer": "ipython3",
+ "nbconvert_exporter": "python",
+ "file_extension": ".py"
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3.8.8 64-bit (conda)"
+ },
+ "interpreter": {
+ "hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/1-Introduction/04-stats-and-probability/assignment.md b/1-Introduction/04-stats-and-probability/assignment.md
index b7af641..08ac35a 100644
--- a/1-Introduction/04-stats-and-probability/assignment.md
+++ b/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,8 +1,25 @@
-# Title
+# Small Diabetes Study
+
+In this assignment, we will work with a small dataset of diabetes patients taken from [here](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
+
+| | AGE | SEX | BMI | BP | S1 | S2 | S3 | S4 | S5 | S6 | Y |
+|---|-----|-----|-----|----|----|----|----|----|----|----|----|
+| 0 | 59 | 2 | 32.1 | 101. | 157 | 93.2 | 38.0 | 4. | 4.8598 | 87 | 151 |
+| 1 | 48 | 1 | 21.6 | 87.0 | 183 | 103.2 | 70. | 3. | 3.8918 | 69 | 75 |
+| 2 | 72 | 2 | 30.5 | 93.0 | 156 | 93.6 | 41.0 | 4.0 | 4. | 85 | 141 |
+| ... | ... | ... | ... | ...| ...| ...| ...| ...| ...| ...| ... |
## Instructions
+* Open the [assignment notebook](assignment.ipynb) in a jupyter notebook environment
+* Complete all tasks listed in the notebook, namely:
+ [ ] Compute mean values and variance for all values
+ [ ] Plot boxplots for BMI, BP and Y depending on gender
+ [ ] What is the the distribution of Age, Sex, BMI and Y variables?
+ [ ] Test the correlation between different variables and disease progression (Y)
+ [ ] Test the hypothesis that the degree of diabetes progression is different between men and women
## Rubric
Exemplary | Adequate | Needs Improvement
--- | --- | -- |
+All required tasks are complete, graphically illustrated and explained | Most of the tasks are complete, explanations or takeaways from graphs and/or obtained values are missing | Only basic tasks such as computation of mean/variance and basic plots are complete, no conclusions are made from the data
\ No newline at end of file
diff --git a/1-Introduction/04-stats-and-probability/notebook.ipynb b/1-Introduction/04-stats-and-probability/notebook.ipynb
index 8b83ab7..5ecac5d 100644
--- a/1-Introduction/04-stats-and-probability/notebook.ipynb
+++ b/1-Introduction/04-stats-and-probability/notebook.ipynb
@@ -11,7 +11,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 212,
"source": [
"import numpy as np\r\n",
"import pandas as pd\r\n",
@@ -33,7 +33,7 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 213,
"source": [
"sample = [ random.randint(0,10) for _ in range(30) ]\r\n",
"print(f\"Sample: {sample}\")\r\n",
@@ -45,9 +45,9 @@
"output_type": "stream",
"name": "stdout",
"text": [
- "Sample: [4, 6, 3, 0, 3, 4, 7, 7, 9, 6, 8, 2, 0, 3, 10, 7, 2, 0, 2, 1, 1, 6, 5, 0, 9, 0, 1, 8, 2, 9]\n",
- "Mean = 4.166666666666667\n",
- "Variance = 10.272222222222222\n"
+ "Sample: [1, 1, 0, 5, 6, 3, 7, 5, 1, 6, 5, 6, 7, 0, 3, 6, 2, 4, 2, 8, 1, 5, 7, 10, 8, 5, 7, 10, 6, 8]\n",
+ "Mean = 4.833333333333333\n",
+ "Variance = 7.938888888888889\n"
]
}
],
@@ -62,7 +62,7 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 214,
"source": [
"plt.hist(sample)\r\n",
"plt.show()"
@@ -74,8 +74,8 @@
"text/plain": [
"
"
],
- "image/svg+xml": "\r\n\r\n\r\n",
+ "image/svg+xml": "\r\n\r\n\r\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAy0AAADFCAYAAABZ7x10AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAlCUlEQVR4nO3de3RV5Z3/8c+5JEEwwE9YLgwBRqGtFhkVZXTUepkqVP2Nsux1ZhRdXkYHrS22oDPjGvBSZLXViNgYEZZOG+soLVKGdkRsQRFwpEQcQZGr5Y6L8WcSRM5tf39/MMmYEG4m373PPr5fa2UlJseV57w5Z+88eZ59kjAzEwAAAAAUqWTUAwAAAACAQ2HSAgAAAKCoMWkBAAAAUNSYtAAAAAAoakxaAAAAABQ1Ji0AAAAAihqTFgAAAABFLR32NwyCQNu3b1dlZaUSiUTY3x4AAABAkTAzNTc3q6qqSsnkwddTQp+0bN++XQMGDAj72wIAAAAoUlu2bFF1dfVBvx76pKWyslLS/oH17Nkz7G8fa4VCQW+//baGDRumVCoV9XBKDn190dcXfX3R1xd9fdHXF307p6mpSQMGDGidIxxMwswspDFJ2j+wXr16qbGxkUkLAAAA8Dl2pHMDLsSPkWw2q5kzZyqbzUY9lJJEX1/09UVfX/T1RV9f9PVF33AwaYmRVCqlc845h6VHJ/T1RV9f9PVFX1/09UVfX/QNB9vDAAAAAESC7WElKJvNqra2luVHJ/T1RV9f9PVFX1/09UVfX/QNB5OWGEmn0xo5cqTS6dBf9O1zgb6+6OuLvr7o64u+vujri77hYHsYAAAAgEiwPawEZTIZPfzww8pkMlEPpSTR1xd9fdHXF3190dcXfX3RNxystMRIEATatm2b+vfvr2SS+WZXo68v+vqiry/6+qKvL/r6om/nHOncgEkLAAAAgEiwPawEZTIZPfjggyw/OqGvL/r6oq8v+vqiry/6+qJvOFhpiZEgCLR792717duX5UcH9PVFX1/09UVfX/T1RV9f9O0ctocBAAAAKGpsDytBmUxG9957L8uPTujri76+6OuLvr7o64u+vugbDlZaYsTM1NzcrMrKSiUSiaiHU3Lo64u+vujri76+6OuLvr7o2zmstJSoioqKqIdQ0ujri76+6OuLvr7o64u+vujrj0lLjGSzWU2ZMkXZbDbqoZQk+vqiry/6+qKvL/r6oq8v+oaD7WExYmbKZrMqLy9n+dEBfX3R1xd9fdHXF3190dcXfTuH7WEliou8fNHXF3190dcXfX3R1xd9fdHXH5OWGMlms6qpqWH50Ql9fdHXF3190dcXfX3R1xd9w8H2MAAAAACRYHtYCQqCQB988IGCIIh6KCWJvr7o64u+vujri76+6OuLvuFg0hIjuVxOM2fOVC6Xi3ooJYm+vujri76+6OuLvr7o64u+4WB7GAAAAIBIsD2sBAVBoC1btrD86IS+vujri76+6OuLvr7o64u+4WDSEiO5XE6zZs1i+dEJfX3R1xd9fdHXF3190dcXfcPB9jAAAAAAkWB7WAkKgkDr169n+dEJfX3R1xd9fdHXF3190dcXfcPBpCVG8vm8XnrpJeXz+aiHUpLo64u+vujri76+6OuLvr7oGw62hwEAAACIBNvDSlChUNDq1atVKBSiHkpJoq8v+vqiry/6+qKvL/r6om84mLTESKFQ0Ouvv86Twgl9fdHXF3190dcXfX3R1xd9w8H2MAAAAACRYHtYCSoUCmpoaGAm74S+vujri76+6OuLvr7o64u+4WDSEiOFQkHvvPMOTwon9PVFX1/09UVfX/T1RV9f9A0H28MAAAAARILtYSUon89r2bJlvA64E/r6oq8v+vqiry/6+qKvL/qGg0lLjJiZtm7dqpAXxz436OuLvr7o64u+vujri76+6BsOtocBAAAAiATbw0pQPp/XokWLWH50Ql9f9PVFX1/09UVfX/T1Rd9wMGmJETNTU1MTy49O6OuLvr7o64u+vujri76+6BsOtocBAAAAiATbw0pQPp/X/PnzWX50Ql9f9PVFX1/09UVfX/T1Rd9wMGkBAAAAUNTYHgYAAAAgEmwPK0G5XE5z585VLpeLeiglib6+6OuLvr7o64u+vujri77hYNISI4lEQj179lQikYh6KCWJvr7o64u+vujri76+6OuLvuFgexgAAACASLA9rATlcjnNmjWL5Ucn9PVFX1/09UVfX/T1RV9f9A0Hk5YYSSQSqq6uZvnRCX190dcXfX3R1xd9fdHXF33DwfYwAAAAAJFge1gJymazqq+vVzabjXooJYm+vujri76+6OuLvr7o64u+4WDSEiOpVEpf/vKXlUqloh5KSaKvL/r6oq8v+vqiry/6+qJvONgeBgAAACASbA8rQdlsVjNnzmT50Ql9fdHXF3190dcXfX3R1xd9w8GkJUZSqZTOOecclh+d0NcXfX3R1xd9fdHXF3190TccbA8DAAAAEAm2h5WgbDar2tpalh+d0NcXfX3R1xd9fdHXF3190TccTFpiJJ1Oa+TIkUqn01EPpSTR1xd9fdHXF3190dcXfX3RNxxsDwMAAAAQCbaHlaBMJqOHH35YmUwm6qGUJPr6oq8v+vqiry/6+qKvL/qGg5WWGAmCQNu2bVP//v2VTDLf7Gr09UVfX/T1RV9f9PVFX1/07ZwjnRswaQEAAAAQiSOdG3DFUIy0LD/eeeedqqioiHo4JYe+vjKZjP7pn/5J3/zmN1VeXh71cEpO/pMm/eH5J/RX37pF6WPi8QuhyspKfeELX4h6GEeE44Mv+vqiry/6hoOVlhgJgkC7d+9W3759WX50QF9f7733nk4++eSoh1GyzuiXVMMtx2r4E3v05s4g6uEcsbVr18Zi4sLxwRd9fdHXF307h5WWEpRMJnX88cdHPYySRV9fH3/8sSSpvr5ep5xySsSjKT3HfLRWevUWPfPMM/qk9xejHs5hvfvuu7rmmmvU3Nwc9VCOCMcHX/T1RV9f9A0Hk5YYyWQymjJliu6++26WHx3Q11fLH90aPHiwhg8fHvFoSk/2TwXp1f19ywfRt6txfPBFX1/09UXfcLCGFSPl5eUaN24c1wM4oa+vsrKyNu/RtcrK0m3eo2txfPBFX1/09UXfcDBpiRlm8L7oC+BgOD74oq8v+vqirz8mLTHy0Ucf6Y477tBHH30U9VBKUjab1ZQpU1q3MaFr5XK5Nu/RtXK5fJv36FocH3zFre/evXvV0NCgvXv3Rj2UIxK3vnFD33B8bict2WxWjzzyiL773e/qkUceicUDbePGjZo+fbo2btwY9VBKUnl5ue6++26Wd52wPcwX28N8cXzwFbe+a9as0Zlnnqk1a9ZEPZTDamxs1Fe/+lXNmDFDX/3qV9XY2Bj1kA4pbj+fZbNZ1dbWaufOnaqtrS368RYKBS1atEjPPvusFi1apEKhEPWQjtjnctIyYcIE9ejRQ+PGjdNjjz2mcePGqUePHpowYULUQ0PEMplM1EMAtGz7Ml015yot274s6qHgUzg++KJv1xsyZIh69+6tJUuWaOvWrVqyZIl69+6tIUOGRD20DsXt57OW8d55552qq6vTnXfeWdTjnT17toYMGaKLL75Yf/u3f6uLL75YQ4YM0ezZs6Me2hE56knLq6++qr/+679WVVWVEomE5syZ4zAsPxMmTNBPfvIT9enTR08++aR27NihJ598Un369NFPfvKTon2gSWyv8ZbNZlVTU1P0vyWJKx6/R8bMNLVhqjY2btTUhqk60j+lxfYwXxwffNG36w0ZMkQbNmyQJI0aNUo33HCDRo0aJUnasGFD0U1c4vbz2afHW1tbqx/84Aeqra0t2vHOnj1b3/jGNzRs2DAtW7ZMzc3NWrZsmYYNG6ZvfOMbsZi4HPUfl/yP//gPLVmyRMOHD9fXv/51vfDCCxo9evQR//9R/nHJbDarHj16qE+fPtq6davS6f/dRpHP51VdXa3//u//1scff1yUS9QNDQ0688wztWLFCl4yFrHD4/fILNm2RLe+fGvrf9ddUqfz+p93+P9x+0pp+oXS378iVZ3uNr6uwuMBcVbsj9/Gxkb17t1b0v6/kdW9e/fWr+3du1c9evSQtP9a2V69ekUxxDbi9vNZ3MZbKBQ0ZMgQDRs2THPmzGnzBzCDINDo0aO1atUqrVu3TqlUKvTxuf1xycsuu0yXXXbZEd8+k8m0WfJtamqS9L+/bc3n9/9WMJ1OK5fLKZFIHPBxNptVKpVSKpU64ON0Oq1kMqlMJqOysrIOP255wEydOlX5fF7333+/CoWC0um0giBQLpdTRUWF7r33Xt16662qra3VHXfcoXw+r/LychUKBRUKhQM+zufzMjOVlZUd8LHHfdqzZ48k6a233mr97Wsul2u9RiCXy6m8vFxBELSOvf3HhUJBZWVlKhQKCoLggI8/Pfaj/TiXyymZTCqVSh3wcSqVUjKZbHP/2n/86fsRxX0yMzU3N+vYY49VMpksiftUTP9Oq1atkiTt2bNH2Ww28udTR8eIlnG1fFxRUdHmGNH+464+RmSzWU1rmKZkIqnAAiUTSU17c5rO6nuW0un0Ie/TvkxG3SQFZsoV0X062L9Tyx+VfPfdd2PxfMpms2psbFSfPn0UBEHkz6dSO0bk83l9+OGH6tu3r8ys6O9Ty7Usn3zySVE8n9p/fPnll0vav8LSrVs3BUGg7du3q1+/furevbsuvfRSLViwQFdccYV+//vfR36MmDZtmvL5vCZNmqREItE6llQqpXQ6rX/5l3/RbbfdptraWv3DP/xD5MfylvHee++9kvb/4L9z50717dtX5eXlmjhxosaOHava2lqNHTs28vPTH/7wB73//vuqr69v85xruU/jx4/XBRdcoMWLF+v8888P/Zx7xOsn1gmS7IUXXjjkbSZOnGiSDnh79tlnzczsxRdftBdffNHMzH7zm9/YwoULzczs+eeft6VLl5qZ2S9+8QtbsWKFmZnNmDHDVq1aZWZmP/vZz2zdunVmZvbQQw/Z5s2bzcxs8uTJtmvXLjMzmzRpkjU2Ntq+ffvsL/7iL0ySrV271iZNmmRmZrt27bLJkyebmdny5ctNkt1+++22bt06+9nPfmZmZqtWrbIZM2aYmdmKFSvsF7/4hZmZLV261J5//nkzM1u4cKH95je/cb1Pjz76aIcteeMtTm+TJ08uiudTR8eISZMm2b59+6yxsbHDY8TmzZvtoYceMjNzOUZMfnaynfr0qQe83TPznsPep5kP3GE2sadl3n+jqO7Twf6dbrrppsgfi7zx1tm3+vr6ong+tT/u9evXzyTZd7/7Xdu8eXPrsWDLli1mZnb99debJKuuri6KY8TXv/51k2TTpk3r8D796Ec/Mmn/z2fFcCy//PLLTZL98pe/tBdffNH27dtn9913ny1YsMDMzOrq6lrHWwznp5tvvtkk2eLFizu8T7/97W/b3J+wz7lbtmwxSdbY2GiHctTbwz4tkUgcdntYRystAwYM0O7du9WnT59Qf4v605/+VBMmTND06dM1ZsyYA2amTzzxhG699VbV1NQU5UrL8uXL9ZWvfEVPP/20Tj31VEn8do77FJ/7tHr1al1//fV69dVXdfbZZ0f+fCq2lZZUKqXvzPuO1vy/NQosaD1mJhNJnfx/TtYzlz3Tel87uk/ZPy1X+VOXSH//ijJ9TimK+3Sof6dXXnlFF110kerr6zVkyBCeT9ynWN2nNWvW6JprrtFrr72mv/zLv4z8+dT+44svvlhLly7VqFGj9Lvf/e6A48XIkSO1YMECnXfeeUWx0vLoo4/qhz/8oR5//HHdfPPNB9yn2tpa3XbbbaqpqSmKlZapU6fqhz/8oerq6nTjjTcecJ8ef/xxjR07VjU1NUWz0jJy5Ei99tprGjFixAH3afHixbrgggu0cOHCSFZampqa1Lt378NuD3OftLTHNS2f3R//+EeNGDFCy5cv11lnnRX1cEpOEATatm2b+vfv32a/J7oGj99Da38tS3uHu7Yl2Pamkk9epODmRUr2P8NjiF2q2K8JaI/jg6+49S32x2/7a1q6devW2nffvn1c09JJ7cebTCZb+wZBUHTjLZVrWor/yNCFysvLNW7cOO3atUvV1dWaPn26tm/frunTp6u6ulq7du3SuHHjiuIB1pGW31K0vEfXyuVymjVrVuv1VuhaPH4Pzsw07c1pSijR4dcTSmjam9MOue+Xvr44Pviib9fq1auXBg8eLEnq0aOHvva1r2nKlCn62te+1jphGTx4cFFMWKT4/XzWfrx1dXWaMWOG6urqinK8qVRKDz30kObNm6fRo0e3efWw0aNHa968efrpT38ayYTlaHzu/grZj3/8Y0lSTU2NbrnlltbPp9NpjR8/vvXrxajlwV8sT4JSU1FRoTvvvDPqYZQsHr8Hlwty2vnxTpk6npSYTDs/3qlckFN5quN+5f+zfaXlPboWxwdf9O1669evb33Z4wULFmjBggWtXxs8eLDWr18f4egOFLefzz493ttuu63188U63quvvlq/+tWv9IMf/EDnnntu6+dPPPFE/epXv9LVV18d4eiOzFFPWvbs2dPmgb5p0yatXLlSxx13nAYOHNilg/Py4x//WA888IBqa2u1YcMGDR48WGPHji36H6ZaXrGm5T26VhAE2rhxo0466aRYbE+IGx6/B1eeKte//d9/04f7PjzobY7rdtxBJyzS/lcNS37qPboWxwdf9PWxfv16NTY26vLLL2/t+7vf/a5oVljai9vPZy3jfeyxx/Tmm2/qjDPO0O23316047366qt11VVXafHixdqxY4dOOOEEfeUrXyn6FZYWRz1p+eMf/6iLL7649b9bfjNy3XXX6emnn+6ygXkrLy/X97///aiHcVQKhUKb9+ha+XxeL730km666aaiPeDEGY/fQ+vXo5/69ej3mf//QiGv5Kfeo2txfPBFXz+9evXSwoULNWPGjFj0jdvPZ+Xl5br99ttj0zeVSumiiy6KehifSacuxP8sorwQP+727t2rNWvW6OSTT27zh6KAOCj2C1djjz8uCYSG8zHQdbgQvwRVVFS0vqHrFQoFrV69mpUAJ6y0+Cr8z7a7AtvvXHB88BW3vt27d9fw4cNjM2GJW9+4oW84mLTESKFQ0Ouvv86Twgl9fXFNi68gKLR5j67F8cEXfX3R1xd9w/G5e/WwOCsvL9eNN94Y9TBKFn19tfxxtjJe3cpFWbqszXt0LY4Pvujri76+6BsOJi0xUigU9NZbb+m0006LzSs9xAl9fTU3N0va/2Ie6HoVH67RUEmr33lHmZ3Fv5r17rvvRj2Eo8LxwRd9fdHXF33DwaQlRgqFgt555x2deuqpPCkc0NdXyw+pn379fXSdM/ol1XDLsbr22mv1ZgwmLS0qKyujHsIR4fjgi76+6OuLvuHg1cMAhGL37t2aM2cOr7bjJJHfp257NmvfsQNl6W5RD+eIVFZW6gtf+ELUwwAAROhI5wastMRIPp/X8uXLNWLECKXT/NN1Nfr66t27t4YOHUpfJ/sfvwmNGE5fDxwffNHXF3190TccvHpYjJiZtm7dqpAXxz436OuLvr7o64u+vujri76+6BsOtocBAAAAiAR/XLIE5fN5LVq0SPl8PuqhlCT6+qKvL/r6oq8v+vqiry/6hoNJS4yYmZqamlh+dEJfX/T1RV9f9PVFX1/09UXfcLA9DAAAAEAk2B5WgvL5vObPn8/yoxP6+qKvL/r6oq8v+vqiry/6hoNJCwAAAICixvYwAAAAAJFge1gJyuVymjt3rnK5XNRDKUn09UVfX/T1RV9f9PVFX1/0DQeTlhhJJBLq2bOnEolE1EMpSfT1RV9f9PVFX1/09UVfX/QNB9vDAAAAAESC7WElKJfLadasWSw/OqGvL/r6oq8v+vqiry/6+qJvOJi0xEgikVB1dTXLj07o64u+vujri76+6OuLvr7oGw62hwEAAACIBNvDSlA2m1V9fb2y2WzUQylJ9PVFX1/09UVfX/T1RV9f9A0Hk5YYSaVS+vKXv6xUKhX1UEoSfX3R1xd9fdHXF3190dcXfcPB9jAAAAAAkWB7WAnKZrOaOXMmy49O6OuLvr7o64u+vujri76+6BsOJi0xkkqldM4557D86IS+vujri76+6OuLvr7o64u+4WB7GAAAAIBIsD2sBGWzWdXW1rL86IS+vujri76+6OuLvr7o64u+4WDSEiPpdFojR45UOp2Oeiglib6+6OuLvr7o64u+vujri77hYHsYAAAAgEiwPawEZTIZPfzww8pkMlEPpSTR1xd9fdHXF3190dcXfX3RNxystMRIEATatm2b+vfvr2SS+WZXo68v+vqiry/6+qKvL/r6om/nHOncgEkLAAAAgEiwPawEZTIZPfjggyw/OqGvL/r6oq8v+vqiry/6+qJvOFhpiZEgCLR792717duX5UcH9PVFX1/09UVfX/T1RV9f9O0ctocBAAAAKGpsDytBmUxG9957L8uPTujri76+6OuLvr7o64u+vugbDlZaYsTM1NzcrMrKSiUSiaiHU3Lo64u+vujri76+6OuLvr7o2zmstJSoioqKqIdQ0ujri76+6OuLvr7o64u+vujrj0lLjGSzWU2ZMkXZbDbqoZQk+vqiry/6+qKvL/r6oq8v+oaD7WExYmbKZrMqLy9n+dEBfX3R1xd9fdHXF3190dcXfTuH7WEliou8fNHXF3190dcXfX3R1xd9fdHXH5OWGMlms6qpqWH50Ql9fdHXF3190dcXfX3R1xd9w8H2MAAAAACRYHtYCQqCQB988IGCIIh6KCWJvr7o64u+vujri76+6OuLvuFg0hIjuVxOM2fOVC6Xi3ooJYm+vujri76+6OuLvr7o64u+4WB7GAAAAIBIsD2sBAVBoC1btrD86IS+vujri76+6OuLvr7o64u+4WDSEiO5XE6zZs1i+dEJfX3R1xd9fdHXF3190dcXfcPB9jAAAAAAkWB7WAkKgkDr169n+dEJfX3R1xd9fdHXF3190dcXfcPBpCVG8vm8XnrpJeXz+aiHUpLo64u+vujri76+6OuLvr7oGw62hwEAAACIBNvDSlChUNDq1atVKBSiHkpJoq8v+vqiry/6+qKvL/r6om84mLTESKFQ0Ouvv86Twgl9fdHXF3190dcXfX3R1xd9w8H2MAAAAACRYHtYCSoUCmpoaGAm74S+vujri76+6OuLvr7o64u+4WDSEiOFQkHvvPMOTwon9PVFX1/09UVfX/T1RV9f9A0H28MAAAAARILtYSUon89r2bJlvA64E/r6oq8v+vqiry/6+qKvL/qGg0lLjJiZtm7dqpAXxz436OuLvr7o64u+vujri76+6BsOtocBAAAAiATbw0pQPp/XokWLWH50Ql9f9PVFX1/09UVfX/T1Rd9wMGmJETNTU1MTy49O6OuLvr7o64u+vujri76+6BsOtocBAAAAiATbw0pQPp/X/PnzWX50Ql9f9PVFX1/09UVfX/T1Rd9wMGkBAAAAUNTYHgYAAAAgEkc6N0iHOCZJar1IqampKexvHXu5XE4LFizQpZdeqrKysqiHU3Lo64u+vujri76+6OuLvr7o2zktc4LDraOEPmlpbm6WJA0YMCDsbw0AAACgCDU3N6tXr14H/Xro28OCIND27dtVWVmpRCIR5reOvaamJg0YMEBbtmxha50D+vqiry/6+qKvL/r6oq8v+naOmam5uVlVVVVKJg9+uX3oKy3JZFLV1dVhf9uS0rNnT54Ujujri76+6OuLvr7o64u+vuj72R1qhaUFrx4GAAAAoKgxaQEAAABQ1Ji0xEhFRYUmTpyoioqKqIdSkujri76+6OuLvr7o64u+vugbjtAvxAcAAACAo8FKCwAAAICixqQFAAAAQFFj0gIAAACgqDFpAQAAAFDUmLQAAAAAKGpMWorQtm3bdM0116hPnz7q3r27Tj/9dK1YsaL163v27NHtt9+u6upqHXPMMTrllFP0+OOPRzji+PizP/szJRKJA95uu+02SZKZadKkSaqqqtIxxxyjiy66SKtXr4541PFxqL65XE533XWXhg0bph49eqiqqkpjxozR9u3box52bBzu8ftpt9xyixKJhB555JHwBxpTR9L33Xff1ZVXXqlevXqpsrJS55xzjjZv3hzhqOPjcH05t3VOPp/XPffcoxNPPFHHHHOMTjrpJN13330KgqD1NpzjPrvD9eUcFwJDUfnwww9t0KBBdv3119t//ud/2qZNm+zll1+29evXt97mpptussGDB9vChQtt06ZN9sQTT1gqlbI5c+ZEOPJ4+OCDD2zHjh2tbwsWLDBJtnDhQjMzmzJlilVWVtqvf/1re/vtt+3b3/62nXDCCdbU1BTtwGPiUH0/+ugju+SSS+y5556zNWvW2LJly+zss8+2M888M+phx8bhHr8tXnjhBTvttNOsqqrKampqIhlrHB2u7/r16+24446z8ePHW0NDg23YsMHmzZtnu3btinbgMXG4vpzbOueBBx6wPn362Lx582zTpk02a9YsO/bYY+2RRx5pvQ3nuM/ucH05x/lj0lJk7rrrLjv//PMPeZuhQ4fafffd1+Zzw4cPt3vuucdzaCXpe9/7ng0ePNiCILAgCKxfv342ZcqU1q/v27fPevXqZXV1dRGOMr4+3bcjb7zxhkmyP/3pTyGPrDR01Hfr1q3Wv39/W7VqlQ0aNIhJSye07/vtb3/brrnmmohHVTra9+Xc1jlXXHGF3XDDDW0+d/XVV7c+ZjnHdc7h+naEc1zXYntYkZk7d67OOussffOb39Txxx+vM844Q08++WSb25x//vmaO3eutm3bJjPTwoULtXbtWo0aNSqiUcdTNptVfX29brjhBiUSCW3atEk7d+7UyJEjW29TUVGhCy+8UEuXLo1wpPHUvm9HGhsblUgk1Lt373AHVwI66hsEga699lqNHz9eQ4cOjXiE8da+bxAE+u1vf6svfvGLGjVqlI4//nidffbZmjNnTtRDjaWOHr+c2zrn/PPP1+9//3utXbtWkvTWW2/ptdde0+WXXy5JnOM66XB9O8I5rotFPWtCWxUVFVZRUWH/+I//aA0NDVZXV2fdunWzf/3Xf229TSaTsTFjxpgkS6fTVl5ebj//+c8jHHU8Pffcc5ZKpWzbtm1mZrZkyRKT1PrfLW6++WYbOXJkFEOMtfZ92/vkk0/szDPPtL/7u78LeWSloaO+kydPtksvvbT1N9estHx27fvu2LHDJFn37t3t4YcftjfffNMefPBBSyQStmjRoohHGz8dPX45t3VOEAR29913WyKRsHQ6bYlEwiZPntz6dc5xnXO4vu1xjut66UhnTDhAEAQ666yzNHnyZEnSGWecodWrV+vxxx/XmDFjJEmPPvqoXn/9dc2dO1eDBg3Sq6++qrFjx+qEE07QJZdcEuXwY2XmzJm67LLLVFVV1ebz7VcFzOygKwU4uIP1lfZfsPid73xHQRCotrY2gtHFX/u+K1as0NSpU9XQ0MDjtQu079tyse1VV12lcePGSZJOP/10LV26VHV1dbrwwgsjG2scdXR84NzWOc8995zq6+v1y1/+UkOHDtXKlSv1/e9/X1VVVbruuutab8c57rM50r4S5zg3Uc+a0NbAgQPtxhtvbPO52tpaq6qqMjOzvXv3WllZmc2bN6/NbW688UYbNWpUaOOMu/fff9+SyWSbCzw3bNhgkqyhoaHNba+88kobM2ZM2EOMtY76tshmszZ69Gj78z//c9u9e3cEo4u/jvrW1NRYIpGwVCrV+ibJksmkDRo0KLrBxlBHfTOZjKXTabv//vvb3HbChAl27rnnhj3EWOuoL+e2zquurrbHHnuszefuv/9++9KXvmRmnOM663B9W3CO88M1LUXmvPPO03vvvdfmc2vXrtWgQYMk7Z+953I5JZNt/+lSqVSblzXEoT311FM6/vjjdcUVV7R+7sQTT1S/fv20YMGC1s9ls1m98sorOvfcc6MYZmx11Ffa//j91re+pXXr1unll19Wnz59IhphvHXU99prr9V//dd/aeXKla1vVVVVGj9+vObPnx/haOOno77l5eUaMWLEIY/PODId9eXc1nl79+49ZD/OcZ1zuL4S5zh3Uc+a0NYbb7xh6XTafvSjH9m6devsmWeese7du1t9fX3rbS688EIbOnSoLVy40DZu3GhPPfWUdevWzWprayMceXwUCgUbOHCg3XXXXQd8bcqUKdarVy+bPXu2vf322/Y3f/M3vBzkUTpY31wuZ1deeaVVV1fbypUr27z0aSaTiWi08XOox297XNNy9A7Vd/bs2VZWVmbTp0+3devW2bRp0yyVStnixYsjGGk8Haov57bOue6666x///6tL8k7e/Zs69u3r02YMKH1NpzjPrvD9eUc549JSxH693//dzv11FOtoqLCTj75ZJs+fXqbr+/YscOuv/56q6qqsm7dutmXvvQle+ihhw76srJoa/78+SbJ3nvvvQO+FgSBTZw40fr162cVFRV2wQUX2Ntvvx3BKOPrYH03bdpkkjp8a/93RnBwh3r8tsek5egdru/MmTNtyJAh1q1bNzvttNP4GyJH6VB9Obd1TlNTk33ve9+zgQMHWrdu3eykk06yf/7nf27zAzPnuM/ucH05x/lLmJmFvrwDAAAAAEeIa1oAAAAAFDUmLQAAAACKGpMWAAAAAEWNSQsAAACAosakBQAAAEBRY9ICAAAAoKgxaQEAAABQ1Ji0AAAAAChqTFoAAAAAFDUmLQAAAACKGpMWAAAAAEXt/wNU43GrtGZYZQAAAABJRU5ErkJggg=="
},
"metadata": {}
@@ -323,18 +369,16 @@
{
"cell_type": "markdown",
"source": [
- "Age, height and weight are all continuous random variables. What do you think their distribution is? A good way to find out is to plot the histogram of values: "
+ "We can also make box plots of subsets of our dataset, for example, grouped by player role."
],
"metadata": {}
},
{
"cell_type": "code",
- "execution_count": 40,
+ "execution_count": 210,
"source": [
- "df['Weight'].hist(bins=15)\r\n",
- "plt.suptitle('Weight distribution of MLB Players')\r\n",
- "plt.xlabel('Weight')\r\n",
- "plt.ylabel('Count')\r\n",
+ "df.boxplot(column='Height',by='Role')\r\n",
+ "plt.xticks(rotation='vertical')\r\n",
"plt.show()"
],
"outputs": [
@@ -344,8 +388,8 @@
"text/plain": [
"
"
],
- "image/svg+xml": "\r\n\r\n\r\n",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHgCAYAAABDx6wqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGB0lEQVR4nO3de3xU1b3///fkNhBIAiHmVkJAFFqBolzEA2gSIdxBRCtKVbBYORVoEdB6KRKsCsWKKBRse7gpRqj+AKl4wAAJF4EKQSpQi6gBFIKUiwkQHIZk/f7wmzkMuYckk6y8no/HPGDWXnvv9VnJbN7s2XvGYYwxAgAAsJSfrwcAAABQnQg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDuoNd599105HA4tX768yLKOHTvK4XBo3bp1RZa1bt1anTp1qtC+Ro0apZYtW1ZqnCkpKXI4HDp58mSZfV988UWtWrWqUvspdOjQITkcDi1evLjIGCoiLy9PKSkpysjIqNB6xe2rZcuWGjRoUIW2U5bU1FTNnj272GUOh0MpKSlVur+qtmHDBnXp0kWNGjWSw+Eo8ede+PMsraZf/OIXnj6XS0xMVPv27UsdR+HPq/Dh5+enmJgYDRgwQB999FG5amnZsqXXNho3bqxu3brpjTfeKDKexMTEcm0T8CXCDmqNxMREORwOpaene7WfPn1ae/fuVaNGjYos++abb/TVV18pKSmpQvuaMmWKVq5cedVjLktVhJ3iPPzww9q+fXuF1snLy9O0adMqHHYqs6/KKC3sbN++XQ8//HC1j6GyjDG65557FBgYqNWrV2v79u1KSEgodZ2QkBAtXrxYBQUFXu3nzp3TO++8o9DQ0Ksa09q1a7V9+3Zt3bpVr7zyio4fP67ExETt3r27XOv36NFD27dv1/bt27V48WI5HA6NHDlS8+fPv6pxAb4Q4OsBAIUiIiLUvn37Iv8Yb9q0SQEBARo9enSRsFP4vKJhp3Xr1lc1Vl9r3ry5mjdvXq37yMvLU3BwcI3sqyy33HKLT/dflmPHjun06dO688471atXr3KtM3z4cP3P//yPNmzYoOTkZE/78uXLlZ+fr6FDh2rp0qWVHlPnzp0VEREhSerevbtuvvlmtW7dWu+++265zoQ2adLEa9579+6t+Ph4zZo1S7/61a8qPa6aVPg7DHBmB7VKUlKSDhw4oOzsbE9bRkaGunbtqgEDBigzM1Nnz571Wubv769bb71V0g//w543b55uvPFGNWzYUE2bNtXdd9+tr776yms/xb2N9d1332n06NEKDw9X48aNNXDgQH311Vclvt3w7bff6r777lNYWJiioqL0i1/8Qjk5OZ7lDodD58+f15IlSzxvB5R1yv/YsWO65557FBISorCwMA0fPlzHjx8v0q+4t5Y2btyoxMRENWvWTA0bNlSLFi101113KS8vT4cOHdI111wjSZo2bZpnPKNGjfLa3u7du3X33XeradOmnkBY2ltmK1eu1E9/+lM1aNBA1157rV577TWv5YVnBA4dOuTVnpGRIYfD4Qm2iYmJWrNmjQ4fPuz19snlc3nlz2Dfvn2644471LRpUzVo0EA33nijlixZUux+3n77bT3zzDOKjY1VaGioevfurQMHDhRb05W2bt2qXr16KSQkRMHBwerevbvWrFnjWZ6SkuIJg7/97W/lcDjK9RZp27Zt1b17dy1cuNCrfeHChRo2bJjCwsLKNb7yKtxeYGBgpdZv0qSJ2rZtq8OHD5fab9q0aerWrZvCw8MVGhqqTp06acGCBbr8O6cLX2d5eXlF1r/99tvVrl07z/PyvqYL3+LbvHmzunfvruDgYP3iF7+QVPprA/UDYQe1SuEZmsvP7qSnpyshIUE9evSQw+HQli1bvJZ16tTJcyAfM2aMJkyYoN69e2vVqlWaN2+e9u/fr+7du+vbb78tcb8FBQUaPHiwUlNT9dvf/lYrV65Ut27d1K9fvxLXueuuu9SmTRv9f//f/6cnn3xSqampeuyxxzzLt2/froYNG2rAgAGetwPmzZtX4vYuXLig3r1768MPP9T06dP1zjvvKDo6WsOHDy9z3g4dOqSBAwcqKChICxcu1Nq1azVjxgw1atRIFy9eVExMjNauXSvph39oCsczZcoUr+0MGzZM1113nd555x29/vrrpe5zz549mjBhgh577DGtXLlS3bt3129+8xv98Y9/LHO8V5o3b5569Oih6Ohoz9hKe+vswIED6t69u/bv36/XXntNK1as0A033KBRo0Zp5syZRfo//fTTOnz4sP7nf/5Hf/nLX3Tw4EENHjxY+fn5pY5r06ZNuv3225WTk6MFCxbo7bffVkhIiAYPHuy5tuzhhx/WihUrJEnjx4/X9u3by/0W6ejRo7Vq1SqdOXPGU9e2bds0evTocq1fmvz8fF26dEkXL17UF198obFjx8rpdOruu++u1PbcbrcOHz7sCc0lOXTokMaMGaO//e1vWrFihYYNG6bx48fr97//vafPb37zG505c0apqale6/7rX/9Senq6xo4d62mryGs6Oztb999/v0aMGKEPPvhAjz76aJmvDdQTBqhFTp8+bfz8/MwjjzxijDHm5MmTxuFwmLVr1xpjjLn55pvN5MmTjTHGHDlyxEgyTzzxhDHGmO3btxtJ5uWXX/ba5tdff20aNmzo6WeMMSNHjjTx8fGe52vWrDGSzPz5873WnT59upFkpk6d6mmbOnWqkWRmzpzp1ffRRx81DRo0MAUFBZ62Ro0amZEjR5ar9vnz5xtJ5r333vNq/+Uvf2kkmUWLFhUZQ6F3333XSDJ79uwpcfv/+c9/itRy5faeffbZEpddLj4+3jgcjiL7S05ONqGhoeb8+fPGGGMWLVpkJJmsrCyvfunp6UaSSU9P97QNHDjQ62dyuSvHfe+99xqn02mOHDni1a9///4mODjYfPfdd177GTBggFe/v/3tb0aS2b59e7H7K3TLLbeYyMhIc/bsWU/bpUuXTPv27U3z5s09P+usrCwjybz00kulbu/KvmfPnjWNGzc2c+fONcYY8/jjj5tWrVqZgoICM3bs2CLznpCQYNq1a1fq9gt/Xlc+QkNDzYoVK8ocnzE//HwHDBhg3G63cbvdJisry4wcOdJIMo8//rjXeBISEkrcTn5+vnG73ea5554zzZo183ptJCQkmBtvvNGr/69+9SsTGhrqme+KvKYTEhKMJLNhwwavvuV5bcB+nNlBrdK0aVN17NjRc2Zn06ZN8vf3V48ePSRJCQkJnut0rrxe5/3335fD4dD999+vS5cueR7R0dFe2yzOpk2bJEn33HOPV/t9991X4jpDhgzxev7Tn/5U33//vU6cOFH+gi+Tnp6ukJCQItsdMWJEmeveeOONCgoK0iOPPKIlS5YUOcVfXnfddVe5+7Zr104dO3b0ahsxYoRyc3PLfRFsZW3cuFG9evVSXFycV/uoUaOUl5dX5KxQcT8rSaW+JXP+/Hn94x//0N13363GjRt72v39/fXAAw/om2++KfdbYSVp3Lixfvazn2nhwoW6dOmS3njjDT300EMVvtOuOOvXr9fOnTv18ccf6/3331fv3r117733lvus0wcffKDAwEAFBgaqVatW+tvf/qbx48fr+eefL3W9jRs3qnfv3goLC5O/v78CAwP17LPP6tSpU16vjd/85jfas2eP5w6x3Nxcvfnmmxo5cqRnviv6mm7atKluv/12r7aqem2gbiPsoNZJSkrS559/rmPHjik9PV2dO3f2HPwSEhL0ySefKCcnR+np6QoICFDPnj0l/XANjTFGUVFRnoN04WPHjh2l3ip+6tQpBQQEKDw83Ks9KiqqxHWaNWvm9dzpdEr64e2oyjh16lSx+4uOji5z3datW2v9+vWKjIzU2LFj1bp1a7Vu3VqvvvpqhcYQExNT7r7Fjauw7dSpUxXab0WdOnWq2LHGxsYWu//K/KzOnDkjY0yF9lMZo0eP1u7du/XCCy/oP//5j+c6qqvVsWNHdenSRV27dtXAgQP1zjvv6LrrrvN6i6g0PXv21M6dO7Vr1y7961//0nfffafXXntNQUFBJa7z8ccfq0+fPpKkv/71r/roo4+0c+dOPfPMM5K85/uOO+5Qy5Yt9ac//UnSD9d3nT9/3mt8FX1NF/ezqqrXBuo27sZCrZOUlKRZs2YpIyNDGRkZGjBggGdZYbDZvHmz58LlwiAUERHhuaan8B+zyxXXVqhZs2a6dOmSTp8+7RV4irs4uLo0a9ZMH3/8cZH28o7h1ltv1a233qr8/Hzt2rVLc+bM0YQJExQVFaV77723XNuoyBmF4sZV2FYYLho0aCBJcrlcXv3K8xlFpWnWrJnXReyFjh07Jkmeu5CuRtOmTeXn51ft++nRo4fatm2r5557TsnJyUXOVlUVPz8/tWvXTu+8845OnDihyMjIUvuHhYWpS5cuFdrHsmXLFBgYqPfff9/zs5dU7Mcv+Pn5aezYsXr66af18ssva968eerVq5fatm3r6VPR13RJv79V8dpA3caZHdQ6t912m/z9/fXuu+9q//79XncwhYWFee66OXTokNct54MGDZIxRkePHlWXLl2KPDp06FDiPgs/E+XKDzRctmzZVdXidDrLfaYnKSlJZ8+e1erVq73ar7yIsyz+/v7q1q2b53/MhW8pXe2Zpyvt379f//znP73aUlNTFRIS4rm1ufCupE8//dSr35U1Fo6vvGPr1auXNm7c6Akdhd544w0FBwdXya3qjRo1Urdu3bRixQqvcRUUFGjp0qVq3ry52rRpc9X7kaTf/e53Gjx4sCZNmlQl2ytOfn6+9u7dK6fTedWf4VMSh8OhgIAA+fv7e9ouXLigN998s9j+Dz/8sIKCgvTzn/9cBw4c0Lhx47yWX81rujglvTZgP87soNYpvF111apV8vPz81yvUyghIcHz4XOXh50ePXrokUce0UMPPaRdu3bptttuU6NGjZSdna2tW7eqQ4cOJX4+SL9+/dSjRw9NmjRJubm56ty5s7Zv3+75xFg/v8r9v6BDhw7KyMjQ3//+d8XExCgkJMTrf66Xe/DBB/XKK6/owQcf1AsvvKDrr79eH3zwQbGfGn2l119/XRs3btTAgQPVokULff/9955bmnv37i3phw+xi4+P13vvvadevXopPDxcERERlf4k6djYWA0ZMkQpKSmKiYnR0qVLlZaWpj/84Q+ezzbp2rWr2rZtq8mTJ+vSpUtq2rSpVq5cqa1btxY7VytWrND8+fPVuXNn+fn5lXhmYerUqXr//feVlJSkZ599VuHh4Xrrrbe0Zs0azZw5s8pu254+fbqSk5OVlJSkyZMnKygoSPPmzdO+ffv09ttvV8m1NZJ0//336/777y9X39zcXL377rtF2q+55hqvDzLMzMz0zMO3336rhQsX6t///rcee+wxr7MuVWngwIGaNWuWRowYoUceeUSnTp3SH//4xxLPqjZp0kQPPvig5s+fr/j4eA0ePNhr+dW8pguV57WBesCnl0cDJXjiiSeMJNOlS5ciy1atWmUkmaCgIM9dP5dbuHCh6datm2nUqJFp2LChad26tXnwwQfNrl27PH2uvBvLmB/uBHvooYdMkyZNTHBwsElOTjY7duwwksyrr77q6Vd4t8t//vMfr/WLu/Noz549pkePHiY4ONhIKvXOFWOM+eabb8xdd91lGjdubEJCQsxdd91ltm3bVubdWNu3bzd33nmniY+PN06n0zRr1swkJCSY1atXe21//fr15qabbjJOp9NI8twpVlJNxe3LmB/u1hk4cKB59913Tbt27UxQUJBp2bKlmTVrVpH1P//8c9OnTx8TGhpqrrnmGjN+/HjP3W+X3411+vRpc/fdd5smTZoYh8PhtU8VcxfZ3r17zeDBg01YWJgJCgoyHTt29JojY/7vbqx33nnHq73wjqgr+xdny5Yt5vbbb/f8Pt1yyy3m73//e7Hbq+jdWKUp6W4sFXOn1eW/W8XdjRUeHm66detmFi5caPLz88scY+HPtyzF3Y21cOFC07ZtW+N0Os21115rpk+fbhYsWFDsXXnGGJORkWEkmRkzZpS4n/K8pku6U628rw3YzWHMZZ/0BMBLamqqfv7zn+ujjz5S9+7dfT0cwDqTJk3S/Pnz9fXXXxe5kByoKryNBfw/b7/9to4ePaoOHTrIz89PO3bs0EsvvaTbbruNoANUsR07dujzzz/XvHnzNGbMGIIOqhVndoD/5/3331dKSoq++OILnT9/XjExMRo6dKief/75arugE6ivHA6HgoODNWDAAC1atMjrs4yAqkbYAQAAVuPWcwAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqwX4egC1QUFBgY4dO6aQkBA5HA5fDwcAAJSDMUZnz55VbGys/PxKPn9D2JF07NgxxcXF+XoYAACgEr7++ms1b968xOWEHUkhISGSfpis0NBQH4+marndbn344Yfq06ePAgMDfT2cGkf99bt+iTmo7/VLzIHN9efm5iouLs7z73hJCDuS562r0NBQK8NOcHCwQkNDrfslLw/qr9/1S8xBfa9fYg7qQ/1lXYLCBcoAAMBqhB0AAGA1n4ad6dOnq2vXrgoJCVFkZKSGDh2qAwcOePUxxiglJUWxsbFq2LChEhMTtX//fq8+LpdL48ePV0REhBo1aqQhQ4bom2++qclSAABALeXTsLNp0yaNHTtWO3bsUFpami5duqQ+ffro/Pnznj4zZ87UrFmzNHfuXO3cuVPR0dFKTk7W2bNnPX0mTJiglStXatmyZdq6davOnTunQYMGKT8/3xdlAQCAWsSnFyivXbvW6/miRYsUGRmpzMxM3XbbbTLGaPbs2XrmmWc0bNgwSdKSJUsUFRWl1NRUjRkzRjk5OVqwYIHefPNN9e7dW5K0dOlSxcXFaf369erbt2+N1wUAAGqPWnU3Vk5OjiQpPDxckpSVlaXjx4+rT58+nj5Op1MJCQnatm2bxowZo8zMTLndbq8+sbGxat++vbZt21Zs2HG5XHK5XJ7nubm5kn64Yt3tdldLbb5SWI9tdZUX9dfv+iXmoL7XLzEHNtdf3ppqTdgxxmjixInq2bOn2rdvL0k6fvy4JCkqKsqrb1RUlA4fPuzpExQUpKZNmxbpU7j+laZPn65p06YVaf/www8VHBx81bXURmlpab4egk9Rf/2uX2IO6nv9EnNgY/15eXnl6ldrws64ceP06aefauvWrUWWXXn/vDGmzHvqS+vz1FNPaeLEiZ7nhR9K1KdPHys/ZyctLU3JycnWfr5Caai/ftcvMQf1vX6JObC5/sJ3ZspSK8LO+PHjtXr1am3evNnr456jo6Ml/XD2JiYmxtN+4sQJz9me6OhoXbx4UWfOnPE6u3PixAl179692P05nU45nc4i7YGBgdb9IhSyubbyoP76Xb/EHNT3+iXmwMb6y1uPT+/GMsZo3LhxWrFihTZu3KhWrVp5LW/VqpWio6O9Tr1dvHhRmzZt8gSZzp07KzAw0KtPdna29u3bV2LYAQAA9YdPz+yMHTtWqampeu+99xQSEuK5xiYsLEwNGzaUw+HQhAkT9OKLL+r666/X9ddfrxdffFHBwcEaMWKEp+/o0aM1adIkNWvWTOHh4Zo8ebI6dOjguTsLAADUXz4NO/Pnz5ckJSYmerUvWrRIo0aNkiQ98cQTunDhgh599FGdOXNG3bp104cffuj1pV+vvPKKAgICdM899+jChQvq1auXFi9eLH9//5oqBQAA1FI+DTvGmDL7OBwOpaSkKCUlpcQ+DRo00Jw5czRnzpwqHB0AALAB340FAACsRtgBAABWqxW3ngOouJZPrimzj9PfaObNUvuUdXLll/7ZVOV1aMbAKtkOANQUzuwAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKwW4Mudb968WS+99JIyMzOVnZ2tlStXaujQoZ7lDoej2PVmzpypxx9/XJKUmJioTZs2eS0fPny4li1bVm3jBi7X8sk1vh4CAKAUPj2zc/78eXXs2FFz584tdnl2drbXY+HChXI4HLrrrru8+v3yl7/06vfnP/+5JoYPAADqAJ+e2enfv7/69+9f4vLo6Giv5++9956SkpJ07bXXerUHBwcX6QsAACD5OOxUxLfffqs1a9ZoyZIlRZa99dZbWrp0qaKiotS/f39NnTpVISEhJW7L5XLJ5XJ5nufm5kqS3G633G531Q/ehwrrsa2u8qqJ+p3+ptq2fbWcfsbrz6pQ136XeA3U7/ol5sDm+stbk8MYUyuO1A6Ho8g1O5ebOXOmZsyYoWPHjqlBgwae9r/+9a9q1aqVoqOjtW/fPj311FO67rrrlJaWVuK+UlJSNG3atCLtqampCg4OvupaAABA9cvLy9OIESOUk5Oj0NDQEvvVmbDz4x//WMnJyZozZ06p28nMzFSXLl2UmZmpTp06FdunuDM7cXFxOnnyZKmTVRe53W6lpaUpOTlZgYGBvh5OjauJ+tunrKuW7VYFp5/R77sUaMouP7kKir/gv6L2pfStku3UFF4D9bt+iTmwuf7c3FxFRESUGXbqxNtYW7Zs0YEDB7R8+fIy+3bq1EmBgYE6ePBgiWHH6XTK6XQWaQ8MDLTuF6GQzbWVR3XW78qvmhBRnVwFjiobZ139PeI1UL/rl5gDG+svbz114nN2FixYoM6dO6tjx45l9t2/f7/cbrdiYmJqYGQAAKC28+mZnXPnzumLL77wPM/KytKePXsUHh6uFi1aSPrhFNU777yjl19+ucj6X375pd566y0NGDBAERER+te//qVJkybppptuUo8ePWqsDgAAUHv5NOzs2rVLSUlJnucTJ06UJI0cOVKLFy+WJC1btkzGGN13331F1g8KCtKGDRv06quv6ty5c4qLi9PAgQM1depU+fv710gNAACgdvNp2ElMTFRZ10c/8sgjeuSRR4pdFhcXV+TTkwEAAC5XJ67ZAQAAqCzCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwWoAvd75582a99NJLyszMVHZ2tlauXKmhQ4d6lo8aNUpLlizxWqdbt27asWOH57nL5dLkyZP19ttv68KFC+rVq5fmzZun5s2b11QZQL3S8sk1PtnvoRkDfbJfAHWfT8/snD9/Xh07dtTcuXNL7NOvXz9lZ2d7Hh988IHX8gkTJmjlypVatmyZtm7dqnPnzmnQoEHKz8+v7uEDAIA6wKdndvr376/+/fuX2sfpdCo6OrrYZTk5OVqwYIHefPNN9e7dW5K0dOlSxcXFaf369erbt2+VjxkAANQtPg075ZGRkaHIyEg1adJECQkJeuGFFxQZGSlJyszMlNvtVp8+fTz9Y2Nj1b59e23btq3EsONyueRyuTzPc3NzJUlut1tut7saq6l5hfXYVld51UT9Tn9Tbdu+Wk4/4/VnXVbZnyGvgfpdv8Qc2Fx/eWtyGGNqxVHQ4XAUuWZn+fLlaty4seLj45WVlaUpU6bo0qVLyszMlNPpVGpqqh566CGv4CJJffr0UatWrfTnP/+52H2lpKRo2rRpRdpTU1MVHBxcpXUBAIDqkZeXpxEjRignJ0ehoaEl9qvVZ3aGDx/u+Xv79u3VpUsXxcfHa82aNRo2bFiJ6xlj5HA4Slz+1FNPaeLEiZ7nubm5iouLU58+fUqdrLrI7XYrLS1NycnJCgwM9PVwalxN1N8+ZV21bLcqOP2Mft+lQFN2+clVUPJroi7Yl1K5t6V5DdTv+iXmwOb6C9+ZKUutDjtXiomJUXx8vA4ePChJio6O1sWLF3XmzBk1bdrU0+/EiRPq3r17idtxOp1yOp1F2gMDA637RShkc22FirtLyOlvNPNm6aYXNsqVX13/2Nf+EOEqcFRj/TXjan9/68NroDT1vX6JObCx/vLWU6c+Z+fUqVP6+uuvFRMTI0nq3LmzAgMDlZaW5umTnZ2tffv2lRp2AABA/eHTMzvnzp3TF1984XmelZWlPXv2KDw8XOHh4UpJSdFdd92lmJgYHTp0SE8//bQiIiJ05513SpLCwsI0evRoTZo0Sc2aNVN4eLgmT56sDh06eO7OAgAA9ZtPw86uXbuUlJTkeV54Hc3IkSM1f/587d27V2+88Ya+++47xcTEKCkpScuXL1dISIhnnVdeeUUBAQG65557PB8quHjxYvn7+9d4PQAAoPbxadhJTExUaTeDrVtX9oWfDRo00Jw5czRnzpyqHBoAALBEnbpmBwAAoKIIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaj4NO5s3b9bgwYMVGxsrh8OhVatWeZa53W799re/VYcOHdSoUSPFxsbqwQcf1LFjx7y2kZiYKIfD4fW49957a7gSAABQW/k07Jw/f14dO3bU3LlziyzLy8vT7t27NWXKFO3evVsrVqzQ559/riFDhhTp+8tf/lLZ2dmex5///OeaGD4AAKgDAny58/79+6t///7FLgsLC1NaWppX25w5c3TzzTfryJEjatGihac9ODhY0dHR1TpWAABQN/k07FRUTk6OHA6HmjRp4tX+1ltvaenSpYqKilL//v01depUhYSElLgdl8sll8vleZ6bmyvph7fO3G53tYzdVwrrsa2u4jj9TdE2P+P1Z31jU/2V/R2uT6+B4tT3+iXmwOb6y1uTwxhTK46CDodDK1eu1NChQ4td/v3336tnz5768Y9/rKVLl3ra//rXv6pVq1aKjo7Wvn379NRTT+m6664rclbocikpKZo2bVqR9tTUVAUHB191LQAAoPrl5eVpxIgRysnJUWhoaIn96kTYcbvd+tnPfqYjR44oIyOj1IIyMzPVpUsXZWZmqlOnTsX2Ke7MTlxcnE6ePFnqtusit9uttLQ0JScnKzAw0NfDqVbtU9YVaXP6Gf2+S4Gm7PKTq8Dhg1H5lk3170vpW6n16tNroDj1vX6JObC5/tzcXEVERJQZdmr921hut1v33HOPsrKytHHjxjLDSKdOnRQYGKiDBw+WGHacTqecTmeR9sDAQOt+EQrZXFshV37J/5i7ChylLredDfVf7e9vfXgNlKa+1y8xBzbWX956anXYKQw6Bw8eVHp6upo1a1bmOvv375fb7VZMTEwNjBAAANR2Pg07586d0xdffOF5npWVpT179ig8PFyxsbG6++67tXv3br3//vvKz8/X8ePHJUnh4eEKCgrSl19+qbfeeksDBgxQRESE/vWvf2nSpEm66aab1KNHD1+VBQAAahGfhp1du3YpKSnJ83zixImSpJEjRyolJUWrV6+WJN14441e66WnpysxMVFBQUHasGGDXn31VZ07d05xcXEaOHCgpk6dKn9//xqrAwAA1F4+DTuJiYkq7frosq6djouL06ZNm6p6WAAAwCJ8NxYAALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgtUqFnWuvvVanTp0q0v7dd9/p2muvvepBAQAAVJVKhZ1Dhw4pPz+/SLvL5dLRo0evelAAAABVJaAinVevXu35+7p16xQWFuZ5np+frw0bNqhly5ZVNjgAAICrVaGwM3ToUEmSw+HQyJEjvZYFBgaqZcuWevnll6tscAAAAFerQmGnoKBAktSqVSvt3LlTERER1TIoAACAqlKhsFMoKyurqscBAABQLSoVdiRpw4YN2rBhg06cOOE541No4cKFVz0wAACAqlCpsDNt2jQ999xz6tKli2JiYuRwOKp6XAAAAFWiUmHn9ddf1+LFi/XAAw9U9XgAAACqVKU+Z+fixYvq3r17VY8FAACgylUq7Dz88MNKTU2t6rEAAABUuUq9jfX999/rL3/5i9avX6+f/vSnCgwM9Fo+a9asKhkcAADA1apU2Pn000914403SpL27dvntYyLlQEAQG1SqbCTnp5e1eMAAACoFpW6ZgcAAKCuqNSZnaSkpFLfrtq4cWOlBwQAAFCVKhV2Cq/XKeR2u7Vnzx7t27evyBeEAgAA+FKlws4rr7xSbHtKSorOnTt3VQMCAACoSlV6zc7999/P92IBAIBapUrDzvbt29WgQYNy99+8ebMGDx6s2NhYORwOrVq1ymu5MUYpKSmKjY1Vw4YNlZiYqP3793v1cblcGj9+vCIiItSoUSMNGTJE33zzTVWUAwAALFCpt7GGDRvm9dwYo+zsbO3atUtTpkwp93bOnz+vjh076qGHHtJdd91VZPnMmTM1a9YsLV68WG3atNHzzz+v5ORkHThwQCEhIZKkCRMm6O9//7uWLVumZs2aadKkSRo0aJAyMzPl7+9fmfIA1EItn1xTqfWc/kYzb5bap6yTK7/inwN2aMbASu0XQO1RqbATFhbm9dzPz09t27bVc889pz59+pR7O/3791f//v2LXWaM0ezZs/XMM894wtWSJUsUFRWl1NRUjRkzRjk5OVqwYIHefPNN9e7dW5K0dOlSxcXFaf369erbt2+x23a5XHK5XJ7nubm5kn640Nrtdpd7/HVBYT221VUcp78p2uZnvP6sb+p7/dLVz0Fdf+3Up2NASer7HNhcf3lrchhjasVR0OFwaOXKlRo6dKgk6auvvlLr1q21e/du3XTTTZ5+d9xxh5o0aaIlS5Zo48aN6tWrl06fPq2mTZt6+nTs2FFDhw7VtGnTit1XSkpKsctSU1MVHBxctYUBAIBqkZeXpxEjRignJ0ehoaEl9qvUmZ1CmZmZ+uyzz+RwOHTDDTd4hZKrdfz4cUlSVFSUV3tUVJQOHz7s6RMUFOQVdAr7FK5fnKeeekoTJ070PM/NzVVcXJz69OlT6mTVRW63W2lpaUpOTi7yHWa2aZ+yrkib08/o910KNGWXn1wF9e+rTOp7/dLVz8G+lOLPENcV9ekYUJL6Pgc211/4zkxZKhV2Tpw4oXvvvVcZGRlq0qSJjDHKyclRUlKSli1bpmuuuaYymy3WlR9eaIwp8/u3yurjdDrldDqLtAcGBlr3i1DI5toKlXY9hqvAUanrNWxR3+uXKj8Htrxu6sMxoCz1fQ5srL+89VTqbqzx48crNzdX+/fv1+nTp3XmzBnt27dPubm5+vWvf12ZTRYRHR0tSUXO0Jw4ccJztic6OloXL17UmTNnSuwDAADqt0qFnbVr12r+/Pn6yU9+4mm74YYb9Kc//Un/+7//WyUDa9WqlaKjo5WWluZpu3jxojZt2qTu3btLkjp37qzAwECvPtnZ2dq3b5+nDwAAqN8q9TZWQUFBsaeOAgMDVVBQUO7tnDt3Tl988YXneVZWlvbs2aPw8HC1aNFCEyZM0Isvvqjrr79e119/vV588UUFBwdrxIgRkn64K2z06NGaNGmSmjVrpvDwcE2ePFkdOnTw3J0FAADqt0qFndtvv12/+c1v9Pbbbys2NlaSdPToUT322GPq1atXubeza9cuJSUleZ4XXjQ8cuRILV68WE888YQuXLigRx99VGfOnFG3bt304Ycfej5jR/rhqysCAgJ0zz336MKFC+rVq5cWL17MZ+wAAABJlQw7c+fO1R133KGWLVsqLi5ODodDR44cUYcOHbR06dJybycxMVGl3fnucDiUkpKilJSUEvs0aNBAc+bM0Zw5cypSAgAAqCcqFXbi4uK0e/dupaWl6d///reMMbrhhht46wgAANQ6FbpAeePGjbrhhhs897UnJydr/Pjx+vWvf62uXbuqXbt22rJlS7UMFAAAoDIqFHZmz56tX/7yl8V+8F5YWJjGjBmjWbNmVdngAAAArlaFws4///lP9evXr8Tlffr0UWZm5lUPCgAAoKpUKOx8++23pX5aYUBAgP7zn/9c9aAAAACqSoXCzo9+9CPt3bu3xOWffvqpYmJirnpQAAAAVaVCYWfAgAF69tln9f333xdZduHCBU2dOlWDBg2qssEBAABcrQrdev673/1OK1asUJs2bTRu3Di1bdtWDodDn332mf70pz8pPz9fzzzzTHWNFQAAoMIqFHaioqK0bds2/epXv9JTTz3l+UBAh8Ohvn37at68eXwBJwAAqFUq/KGC8fHx+uCDD3TmzBl98cUXMsbo+uuvV9OmTatjfAAAAFelUp+gLElNmzZV165dq3IsAAAAVa5CFygDAADUNYQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAq9X6sNOyZUs5HI4ij7Fjx0qSRo0aVWTZLbfc4uNRAwCA2iLA1wMoy86dO5Wfn+95vm/fPiUnJ+tnP/uZp61fv35atGiR53lQUFCNjhEAANRetT7sXHPNNV7PZ8yYodatWyshIcHT5nQ6FR0dXe5tulwuuVwuz/Pc3FxJktvtltvtvsoR1y6F9dhWV3Gc/qZom5/x+rO+qe/1S1c/B3X9tVOfjgElqe9zYHP95a3JYYypM0fBixcvKjY2VhMnTtTTTz8t6Ye3sVatWqWgoCA1adJECQkJeuGFFxQZGVnidlJSUjRt2rQi7ampqQoODq628QMAgKqTl5enESNGKCcnR6GhoSX2q1Nh529/+5tGjBihI0eOKDY2VpK0fPlyNW7cWPHx8crKytKUKVN06dIlZWZmyul0Frud4s7sxMXF6eTJk6VOVl3kdruVlpam5ORkBQYG+no41ap9yroibU4/o993KdCUXX5yFTh8MCrfqu/1S1c/B/tS+lbDqGpOfToGlKS+z4HN9efm5ioiIqLMsFPr38a63IIFC9S/f39P0JGk4cOHe/7evn17denSRfHx8VqzZo2GDRtW7HacTmexQSgwMNC6X4RCNtdWyJVf8j9krgJHqcttV9/rlyo/B9dP+bAaRlO2QzMGVun26sMxoCz1fQ5srL+89dSZsHP48GGtX79eK1asKLVfTEyM4uPjdfDgwRoaGQAAqM3qTNhZtGiRIiMjNXBg6f/bOXXqlL7++mvFxMTU0MhwpZZPrvH1EAAA8Kj1n7MjSQUFBVq0aJFGjhypgID/y2fnzp3T5MmTtX37dh06dEgZGRkaPHiwIiIidOedd/pwxAAAoLaoE2d21q9fryNHjugXv/iFV7u/v7/27t2rN954Q999951iYmKUlJSk5cuXKyQkxEejBQAAtUmdCDt9+vRRcTeNNWzYUOvWFb0DBwAAoFCdeBsLAACgsgg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqtTrspKSkyOFweD2io6M9y40xSklJUWxsrBo2bKjExETt37/fhyMGAAC1Ta0OO5LUrl07ZWdnex579+71LJs5c6ZmzZqluXPnaufOnYqOjlZycrLOnj3rwxEDAIDaJMDXAyhLQECA19mcQsYYzZ49W88884yGDRsmSVqyZImioqKUmpqqMWPGlLhNl8sll8vleZ6bmytJcrvdcrvdVVyBbxXWU5N1Of1Nje2rLE4/4/VnfVPf65fq7hxU1WvWF8eA2qa+z4HN9Ze3JocxptYeAVJSUvTSSy8pLCxMTqdT3bp104svvqhrr71WX331lVq3bq3du3frpptu8qxzxx13qEmTJlqyZEmp2502bVqR9tTUVAUHB1dLLQAAoGrl5eVpxIgRysnJUWhoaIn9anXY+d///V/l5eWpTZs2+vbbb/X888/r3//+t/bv368DBw6oR48eOnr0qGJjYz3rPPLIIzp8+LDWrVtX4naLO7MTFxenkydPljpZdZHb7VZaWpqSk5MVGBhYI/tsn1Ly3Nc0p5/R77sUaMouP7kKHL4eTo2r7/VLdXcO9qX0rZLt+OIYUNvU9zmwuf7c3FxFRESUGXZq9dtY/fv39/y9Q4cO+q//+i+1bt1aS5Ys0S233CJJcji8D17GmCJtV3I6nXI6nUXaAwMDrftFKFSTtbnya98/KK4CR60cV02p7/VLdW8Oqvr1avPxrbzq+xzYWH9566n1FyhfrlGjRurQoYMOHjzouY7n+PHjXn1OnDihqKgoXwwPAADUQnUq7LhcLn322WeKiYlRq1atFB0drbS0NM/yixcvatOmTerevbsPRwkAAGqTWv021uTJkzV48GC1aNFCJ06c0PPPP6/c3FyNHDlSDodDEyZM0Isvvqjrr79e119/vV588UUFBwdrxIgRvh46AACoJWp12Pnmm29033336eTJk7rmmmt0yy23aMeOHYqPj5ckPfHEE7pw4YIeffRRnTlzRt26ddOHH36okJAQH48cAADUFrU67CxbtqzU5Q6HQykpKUpJSamZAQEAgDqnTl2zAwAAUFGEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwWq3+biwAqK9aPrmmSrbj9DeaebPUPmWdXPmOMvsfmjGwSvYL1Cac2QEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWC/D1AFB9Wj65Rk5/o5k3S+1T1smV7/D1kAAAqHGc2QEAAFYj7AAAAKsRdgAAgNUIOwAAwGq1OuxMnz5dXbt2VUhIiCIjIzV06FAdOHDAq8+oUaPkcDi8HrfccouPRgwAAGqbWh12Nm3apLFjx2rHjh1KS0vTpUuX1KdPH50/f96rX79+/ZSdne15fPDBBz4aMQAAqG1q9a3na9eu9Xq+aNEiRUZGKjMzU7fddpun3el0Kjo6uqaHBwAA6oBaHXaulJOTI0kKDw/3as/IyFBkZKSaNGmihIQEvfDCC4qMjCxxOy6XSy6Xy/M8NzdXkuR2u+V2u6th5L7h9Ddy+pkf/v7//qxvqL9+1y8xBxWt36ZjYKHCmmysrTxsrr+8NTmMMXXiCGCM0R133KEzZ85oy5Ytnvbly5ercePGio+PV1ZWlqZMmaJLly4pMzNTTqez2G2lpKRo2rRpRdpTU1MVHBxcbTUAAICqk5eXpxEjRignJ0ehoaEl9qszYWfs2LFas2aNtm7dqubNm5fYLzs7W/Hx8Vq2bJmGDRtWbJ/izuzExcXp5MmTpU5WXdM+ZZ2cfka/71KgKbv85Cqof5+gTP31u36JOaho/ftS+tbAqGqW2+1WWlqakpOTFRgY6Ovh1Dib68/NzVVERESZYadOvI01fvx4rV69Wps3by416EhSTEyM4uPjdfDgwRL7OJ3OYs/6BAYGWvWLcPnXQ7gKHPX66yKov37XLzEH5a3fpmPglWw7xleUjfWXt55aHXaMMRo/frxWrlypjIwMtWrVqsx1Tp06pa+//loxMTE1MEIAsEvLJ9f4ZL+HZgz0yX5RP9TqW8/Hjh2rpUuXKjU1VSEhITp+/LiOHz+uCxcuSJLOnTunyZMna/v27Tp06JAyMjI0ePBgRURE6M477/Tx6AEAQG1Qq8/szJ8/X5KUmJjo1b5o0SKNGjVK/v7+2rt3r9544w199913iomJUVJSkpYvX66QkBAfjBgAANQ2tTrslHXtdMOGDbVu3boaGg0AAKiLavXbWAAAAFeLsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGC1AF8PwHYtn1zj6yEAAFCvcWYHAABYjTM7AACfq86z4E5/o5k3S+1T1smV7/BadmjGwGrbL2oPzuwAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFaz5kMF582bp5deeknZ2dlq166dZs+erVtvvdXXwwIAoIia/Cqhyz9U8cALg2psv7WJFWd2li9frgkTJuiZZ57RJ598oltvvVX9+/fXkSNHfD00AADgY1ac2Zk1a5ZGjx6thx9+WJI0e/ZsrVu3TvPnz9f06dN9PDoAQG1V376s2Vf1+vprOep82Ll48aIyMzP15JNPerX36dNH27ZtK3Ydl8sll8vleZ6TkyNJOn36tNxud5WOL+DS+SrdXoX3X2CUl1egALef8gscZa9gGeqv3/VLzEF9r19iDmpD/adOnaqW7Z49e1aSZIwpvaOp444ePWokmY8++sir/YUXXjBt2rQpdp2pU6caSTx48ODBgwcPCx5ff/11qVmhzp/ZKeRweKdVY0yRtkJPPfWUJk6c6HleUFCg06dPq1mzZiWuU1fl5uYqLi5OX3/9tUJDQ309nBpH/fW7fok5qO/1S8yBzfUbY3T27FnFxsaW2q/Oh52IiAj5+/vr+PHjXu0nTpxQVFRUses4nU45nU6vtiZNmlTXEGuF0NBQ637JK4L663f9EnNQ3+uXmANb6w8LCyuzT52/GysoKEidO3dWWlqaV3taWpq6d+/uo1EBAIDaos6f2ZGkiRMn6oEHHlCXLl30X//1X/rLX/6iI0eO6L//+799PTQAAOBjVoSd4cOH69SpU3ruueeUnZ2t9u3b64MPPlB8fLyvh+ZzTqdTU6dOLfK2XX1B/fW7fok5qO/1S8xBfa9fkhzGlHW/FgAAQN1V56/ZAQAAKA1hBwAAWI2wAwAArEbYAQAAViPs1EGbN2/W4MGDFRsbK4fDoVWrVhXp89lnn2nIkCEKCwtTSEiIbrnlFq9vgXe5XBo/frwiIiLUqFEjDRkyRN98800NVlF5ZdV/7tw5jRs3Ts2bN1fDhg31k5/8RPPnz/fqU5frnz59urp27aqQkBBFRkZq6NChOnDggFcfY4xSUlIUGxurhg0bKjExUfv37/fqY/McuN1u/fa3v1WHDh3UqFEjxcbG6sEHH9SxY8e8tlNX56A8vwOXGzNmjBwOh2bPnu3Vbnv9Nh8HyzMHth8LK4KwUwedP39eHTt21Ny5c4td/uWXX6pnz5768Y9/rIyMDP3zn//UlClT1KBBA0+fCRMmaOXKlVq2bJm2bt2qc+fOadCgQcrPz6+pMiqtrPofe+wxrV27VkuXLtVnn32mxx57TOPHj9d7773n6VOX69+0aZPGjh2rHTt2KC0tTZcuXVKfPn10/vz/fenszJkzNWvWLM2dO1c7d+5UdHS0kpOTPV+aJ9k9B3l5edq9e7emTJmi3bt3a8WKFfr88881ZMgQr+3U1Tkoz+9AoVWrVukf//hHsR+nb3P9th8HyzMHth8LK6QqvowTviPJrFy50qtt+PDh5v777y9xne+++84EBgaaZcuWedqOHj1q/Pz8zNq1a6trqNWiuPrbtWtnnnvuOa+2Tp06md/97nfGGLvqN8aYEydOGElm06ZNxhhjCgoKTHR0tJkxY4anz/fff2/CwsLM66+/boyxfw6K8/HHHxtJ5vDhw8YYu+agpPq/+eYb86Mf/cjs27fPxMfHm1deecWzzPb669Nx0Jji56C+HQtLw5kdyxQUFGjNmjVq06aN+vbtq8jISHXr1s3rrZ7MzEy53W716dPH0xYbG6v27dtr27ZtPhh11erZs6dWr16to0ePyhij9PR0ff755+rbt68k++rPycmRJIWHh0uSsrKydPz4ca/6nE6nEhISPPXZPgcl9XE4HJ7vwbNpDoqrv6CgQA888IAef/xxtWvXrsg6NtdfH4+Dxf0O1LdjYWkIO5Y5ceKEzp07pxkzZqhfv3768MMPdeedd2rYsGHatGmTJOn48eMKCgpS06ZNvdaNiooq8oWqddFrr72mG264Qc2bN1dQUJD69eunefPmqWfPnpLsqt8Yo4kTJ6pnz55q3769JHlquPKLcC+vz/Y5uNL333+vJ598UiNGjPB8EaItc1BS/X/4wx8UEBCgX//618WuZ3P99e04WNLvQH06FpbFiq+LwP8pKCiQJN1xxx167LHHJEk33nijtm3bptdff10JCQklrmuMkcPhqJFxVqfXXntNO3bs0OrVqxUfH6/Nmzfr0UcfVUxMjHr37l3ienWx/nHjxunTTz/V1q1biyy7spby1GfbHEg/XKx87733qqCgQPPmzStze3VtDoqrPzMzU6+++qp2795d4VpsqL++HQdLeg3Up2NhWTizY5mIiAgFBATohhtu8Gr/yU9+4rkLITo6WhcvXtSZM2e8+pw4caLI2YC65sKFC3r66ac1a9YsDR48WD/96U81btw4DR8+XH/84x8l2VP/+PHjtXr1aqWnp6t58+ae9ujoaEkq8j+zy+uzfQ4Kud1u3XPPPcrKylJaWprnrI5kxxyUVP+WLVt04sQJtWjRQgEBAQoICNDhw4c1adIktWzZUpLd9den42BJc1CfjoXlQdixTFBQkLp27VrkFsTPP//c88WonTt3VmBgoNLS0jzLs7OztW/fPnXv3r1Gx1vV3G633G63/Py8f7X9/f09/9ur6/UbYzRu3DitWLFCGzduVKtWrbyWt2rVStHR0V71Xbx4UZs2bfLUZ/scSP8XdA4ePKj169erWbNmXsvr8hyUVf8DDzygTz/9VHv27PE8YmNj9fjjj2vdunWS7K6/PhwHy5qD+nAsrJCavR4aVeHs2bPmk08+MZ988omRZGbNmmU++eQTz10mK1asMIGBgeYvf/mLOXjwoJkzZ47x9/c3W7Zs8Wzjv//7v03z5s3N+vXrze7du83tt99uOnbsaC5duuSrssqtrPoTEhJMu3btTHp6uvnqq6/MokWLTIMGDcy8efM826jL9f/qV78yYWFhJiMjw2RnZ3seeXl5nj4zZswwYWFhZsWKFWbv3r3mvvvuMzExMSY3N9fTx+Y5cLvdZsiQIaZ58+Zmz549Xn1cLpdnO3V1DsrzO3ClK+/GMsbu+m0/DpZnDmw/FlYEYacOSk9PN5KKPEaOHOnps2DBAnPdddeZBg0amI4dO5pVq1Z5bePChQtm3LhxJjw83DRs2NAMGjTIHDlypIYrqZyy6s/OzjajRo0ysbGxpkGDBqZt27bm5ZdfNgUFBZ5t1OX6i6tdklm0aJGnT0FBgZk6daqJjo42TqfT3HbbbWbv3r1e27F5DrKyskrsk56e7tlOXZ2D8vwOXKm4sGN7/TYfB8szB7YfCyvCYYwxVX++CAAAoHbgmh0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQBWWrx4sZo0aVKhdUaNGqWhQ4dWy3gA+A5hB4DPvf766woJCdGlS5c8befOnVNgYKBuvfVWr75btmyRw+HQ559/Xuo2hw8fXmafymjZsqVmz55d5dsFUH0IOwB8LikpSefOndOuXbs8bVu2bFF0dLR27typvLw8T3tGRoZiY2PVpk2bUrfZsGFDRUZGVtuYAdQdhB0APte2bVvFxsYqIyPD05aRkaE77rhDrVu31rZt27zak5KSdPHiRT3xxBP60Y9+pEaNGqlbt25e6xf3Ntbzzz+vyMhIhYSE6OGHH9aTTz6pG2+8sch4/vjHPyomJkbNmjXT2LFj5Xa7JUmJiYk6fPiwHnvsMTkcDjkcjqqcBgDVhLADoFZITExUenq653l6eroSExOVkJDgab948aK2b9+upKQkPfTQQ/roo4+0bNkyffrpp/rZz36mfv366eDBg8Vu/6233tILL7ygP/zhD8rMzFSLFi00f/78Iv3S09P15ZdfKj09XUuWLNHixYu1ePFiSdKKFSvUvHlzPffcc8rOzlZ2dnbVTwSAKkfYAVArJCYm6qOPPtKlS5d09uxZffLJJ7rtttuUkJDgOWOzY8cOXbhwQYmJiXr77bf1zjvv6NZbb1Xr1q01efJk9ezZU4sWLSp2+3PmzNHo0aP10EMPqU2bNnr22WfVoUOHIv2aNm2quXPn6sc//rEGDRqkgQMHasOGDZKk8PBw+fv7KyQkRNHR0YqOjq62+QBQdQg7AGqFpKQknT9/Xjt37tSWLVvUpk0bRUZGKiEhQTt37tT58+eVkZGhFi1aaPfu3TLGqE2bNmrcuLHnsWnTJn355ZfFbv/AgQO6+eabvdqufC5J7dq1k7+/v+d5TEyMTpw4UbXFAqhRAb4eAABI0nXXXafmzZsrPT1dZ86cUUJCgiQpOjparVq10kcffaT09HTdfvvtKigokL+/vzIzM72CiSQ1bty4xH1ceY2NMaZIn8DAwCLrFBQUVLYsALUAZ3YA1BpJSUnKyMhQRkaGEhMTPe0JCQlat26dduzYoaSkJN10003Kz8/XiRMndN1113k9SnprqW3btvr444+92i6/+6u8goKClJ+fX+H1APgOYQdArZGUlKStW7dqz549njM70g9h569//au+//57JSUlqU2bNvr5z3+uBx98UCtWrFBWVpZ27typP/zhD/rggw+K3fb48eO1YMECLVmyRAcPHtTzzz+vTz/9tMJ3VLVs2VKbN2/W0aNHdfLkyauqF0DNIOwAqDWSkpJ04cIFXXfddYqKivK0JyQk6OzZs2rdurXi4uIkSYsWLdKDDz6oSZMmqW3bthoyZIj+8Y9/eJZf6ec//7meeuopTZ48WZ06dVJWVpZGjRqlBg0aVGiMzz33nA4dOqTWrVvrmmuuqXyxAGqMwxT3pjUA1APJycmKjo7Wm2++6euhAKhGXKAMoF7Iy8vT66+/rr59+8rf319vv/221q9fr7S0NF8PDUA148wOgHrhwoULGjx4sHbv3i2Xy6W2bdvqd7/7nYYNG+broQGoZoQdAABgNS5QBgAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACs9v8D3R0KHIuDgGgAAAAASUVORK5CYII="
+ "image/svg+xml": "\r\n\r\n\r\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAI9CAYAAADyypjUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOEElEQVR4nOzdd1hT5/s/8HeAMAVEBAFFplvUuutCVHDWQe1Q625ddVRRq7YW8ePeo3VUraNWbWuRWvcAERXq3hNUcGtdKBvy/P7wR75GUAmEHE54v66LS3NGzv3knCR3nvMMhRBCgIiIiEgmjKQOgIiIiEgbTF6IiIhIVpi8EBERkawweSEiIiJZYfJCREREssLkhYiIiGSFyQsRERHJCpMXIiIikhUmL0RERCQrTF6oWFuzZg0UCoXGn4ODA5o3b45t27ZJHZ6au7s7+vTpo/V+ycnJmDRpEg4cOKDzmAxV8+bN0bx58/dup1AoMHTo0EKN5ebNmxrXppGREezs7NCyZUvs2bOnQM+5Zs0a3QZLpEdMXogArF69GtHR0Thy5Ah+/vlnGBsb46OPPsI///wjdWgFkpycjJCQECYvMjds2DBER0cjKioKc+bMwbVr19CuXTscPHhQ6tCIJGEidQBERUH16tVRt25d9eM2bdrAzs4OGzduxEcffSRhZPKSnJwMS0tLqcMwOOXLl0fDhg0BAI0bN0aFChXg6+uLVatWoVmzZhJHR6R/rHkhyoW5uTlMTU2hVCo1lj958gRDhgxB2bJlYWpqCk9PT3z33XdIS0sDAKSmpuKDDz6At7c3nj9/rt7v/v37cHJyQvPmzZGVlQUA6NOnD0qUKIELFy6gZcuWsLKygoODA4YOHYrk5OT3xpiQkIAvvvgCjo6OMDMzQ5UqVTB37lyoVCoAr24PODg4AABCQkLUtx7ed/vpwoULCAgIgKWlJRwcHPD1119j+/btUCgUGjU4zZs3R/Xq1XHw4EE0atQIlpaW6NevX55iA4ADBw7keM7suN+8raHNayWEwJIlS1CrVi1YWFjAzs4OXbt2xfXr13NsN2vWLLi5ucHc3By1a9fGzp073/u6v2n58uWoWLEizMzMULVqVWzatEmjLCYmJpg+fXqO/Q4ePAiFQoE///xT62NmJ9oPHjzQWH7+/Hl06tQJdnZ2MDc3R61atbB27do8Pee1a9fQvXt3jXP2008/aR0bkV4IomJs9erVAoCIiYkRGRkZIj09Xdy6dUsMHz5cGBkZiV27dqm3TUlJETVq1BBWVlZizpw5Ys+ePWLixInCxMREtGvXTr3d1atXhbW1tQgMDBRCCJGVlSVatGghHB0dxd27d9Xb9e7dW5iamory5cuLqVOnij179ohJkyYJExMT0aFDB4043dzcRO/evdWPHz58KMqWLSscHBzEsmXLxK5du8TQoUMFADF48GAhhBCpqali165dAoDo37+/iI6OFtHR0SI2Nvatr8fdu3eFvb29KF++vFizZo3YsWOH6Nmzp3B3dxcAREREhHpbX19fUapUKeHq6ioWL14sIiIiRGRkZJ5iE0KIiIiIHM8phBA3btwQAMTq1avz9Vp99dVXQqlUiqCgILFr1y6xYcMGUblyZVGmTBlx//599XbBwcHq12bnzp3i559/FmXLlhVOTk7C19f3ra9RNgDC1dVVVK1aVWzcuFFs3bpVtGnTRgAQf/75p3q7Ll26iPLly4vMzEyN/T/55BPh4uIiMjIy3nqM7Ndi9uzZGsvPnz8vAIhhw4apl12+fFlYW1sLLy8vsW7dOrF9+3bRrVs3AUDMnDnzna/vhQsXhK2trfDx8RHr1q0Te/bsEUFBQcLIyEhMmjTpva8Fkb4xeaFiLTt5efPPzMxMLFmyRGPbZcuWCQDijz/+0Fg+c+ZMAUDs2bNHvez3338XAMSCBQvEDz/8IIyMjDTWC/HqCxmAWLhwocbyqVOnCgDi0KFD6mVvJi/jxo0TAMS///6rse/gwYOFQqEQV65cEUII8ejRIwFABAcH5+n1GDNmjFAoFOLChQsay1u3bp1r8gJA7N+/X2PbvMambfKSl9cqOjpaABBz587V2O7WrVvCwsJCjB07VgghxNOnT4W5ubno0qWLxnaHDx8WAPKcvFhYWGgkRJmZmaJy5crC29tbvSy7nFu2bFEvu3PnjjAxMREhISHvPEb2azFz5kyRkZEhUlNTxenTp8WHH34onJ2dxY0bN9Tbfv7558LMzEwkJCRoPEfbtm2FpaWlePbsmcZzvv76tm7dWpQrV048f/5cY9+hQ4cKc3Nz8eTJk/e+HkT6xNtGRADWrVuHY8eO4dixY9i5cyd69+6Nr7/+Gj/++KN6m/DwcFhZWaFr164a+2bfhtm/f7962aefforBgwdjzJgxmDJlCiZMmAB/f/9cj92jRw+Nx927dwcAREREvDXe8PBwVK1aFfXr188RixAC4eHh7y90LiIjI1G9enVUrVpVY3m3bt1y3d7Ozg4tWrTQS2zA+1+rbdu2QaFQ4IsvvkBmZqb6z8nJCTVr1lTfooqOjkZqamqO52vUqBHc3NzyHE/Lli1RpkwZ9WNjY2N89tlniI2Nxe3btwG8ur1Ws2ZNjVswy5Ytg0KhwIABA/J0nG+//RZKpVJ9K+j8+fP4559/4O7urt4mPDwcLVu2hKurq8a+ffr0QXJyMqKjo3N97tTUVOzfvx9dunSBpaWlxuvWrl07pKamIiYmJq8vCZFeMHkhAlClShXUrVsXdevWRZs2bbB8+XIEBARg7NixePbsGQDg8ePHcHJygkKh0NjX0dERJiYmePz4scbyfv36ISMjAyYmJhg+fHiuxzUxMYG9vb3GMicnJ/Xx3ubx48dwdnbOsdzFxeW9+77L48ePNb6Ms+W2DECuMRRWbHl5rR48eAAhBMqUKQOlUqnxFxMTg//++09j++z9c3vOvHjX/q+Xc/jw4di/fz+uXLmCjIwMrFixAl27ds3zsUaMGIFjx47h0KFDmDNnDjIyMtCpUyeNY+T3dX/8+DEyMzOxePHiHK9Zu3btAED9uhEVFextRPQWNWrUwO7du3H16lXUr18f9vb2+PfffyGE0EhgHj58iMzMTJQuXVq9LCkpCT179kTFihXx4MEDfPnll/j7779zHCMzMxOPHz/W+FK+f/8+AOT4on6dvb097t27l2P53bt3AUAjFm3Y29vnaAT6ekxvejOR0yY2c3NzAFA3ds72ti/KvLxWpUuXhkKhQFRUFMzMzHI8R/ay7O1zK9f9+/c1ajTe5W37v34M4FUN0bfffouffvoJDRs2xP379/H111/n6RgAUK5cOXUj3caNG8PJyQlffPEFgoOD1bWD+b0m7OzsYGxsjJ49e741Jg8PjzzHSqQPrHkheovTp08DgLrHTsuWLfHy5UuEhYVpbLdu3Tr1+myDBg1CQkICQkNDsWrVKmzduhXz58/P9Ti//fabxuMNGzYAwDsHSmvZsiUuXryIkydP5ohFoVDAz88PwP99WaekpLyjpP/H19cX58+fx8WLFzWWv96D5n3yGlt2gnD27FmN7bZu3frW537fa9WhQwcIIXDnzh11Tdrrfz4+PgCAhg0bwtzcPMfzHTlyBPHx8Xku6/79+zWSvaysLPz+++/w8vJCuXLl1MvNzc0xYMAArF27FvPmzUOtWrXQuHHjPB/nTT169EDz5s2xYsUKdbwtW7ZEeHi4OlnJtm7dOlhaWqq7Wr/J0tISfn5+OHXqFGrUqJHr6/auRJpIEpK2uCGSWHaD3dWrV6t742zbtk3069dPANBo0Jnd28ja2lrMmzdP7N27VwQHBwulUqnR22jFihU5GkQOHTpUKJVKjUas7+pB07ZtW40439bbyMnJSfz8889i9+7dYvjw4UKhUIghQ4bk2LdSpUpi9+7d4tixYxqNPN90584djd5GO3fuFD179hRubm4CgIiMjFRv6+vrK6pVq5bjObSJrVWrVsLOzk6sWLFC7NmzR3z77beiQoUKWvU2evO1GjBggLC0tBRjxowR//zzjwgPDxe//fabGDx4sEYj7O+//17d22jXrl1ixYoVOutttGnTphzb3759W5iYmAgAYuXKle99fiHe3ttICCH+/fdfdfxC/F9vo4oVK4r169eLHTt2iB49eggAYtasWTme883eRnZ2dqJ+/fpi9erVIiIiQmzdulXMmzdP+Pn55SlWIn1i8kLFWm69jWxtbUWtWrXEvHnzRGpqqsb2jx8/FoMGDRLOzs7CxMREuLm5ifHjx6u3O3v2rLCwsNBINIR41W25Tp06wt3dXTx9+lQI8eoL2crKSpw9e1Y0b95cWFhYiFKlSonBgweLly9fauz/ZvIihBDx8fGie/fuwt7eXiiVSlGpUiUxe/ZskZWVpbHdvn37xAcffCDMzMwEgBzP86bz58+LVq1aCXNzc1GqVCnRv39/sXbtWgFAnDlzRr3d25IXbWK7d++e6Nq1qyhVqpSwtbUVX3zxhTh+/HiuyUteXyshhPjll19EgwYNhJWVlbCwsBBeXl6iV69e4vjx4+ptVCqVmD59unB1dRWmpqaiRo0a4p9//hG+vr55Tl6+/vprsWTJEuHl5SWUSqWoXLmy+O233966T/PmzUWpUqVEcnLye59fiHcnL0K86m5tYmKi7v5+7tw58dFHHwlbW1thamoqatasqfE6vv6cuS3v16+fKFu2rFAqlcLBwUE0atRITJkyJU+xEumTQggh9FjRQ0T/X58+fbB582a8fPlS6lDea8CAAdi4cSMeP34MU1NTvR9fTq/V2zx8+BBubm4YNmwYZs2aJXU4RLLGBrtEpGHy5MlwcXGBp6cnXr58iW3btmHlypX4/vvvJUlc5O727du4fv06Zs+eDSMjI4wYMULqkIhkj8kLEWlQKpWYPXs2bt++jczMTFSoUAHz5s3jl24+rVy5EpMnT4a7uzt+++03lC1bVuqQiGSPt42IiIhIVthVmoiIiGSFyQsRERHJCpMXIsqzNWvWQKFQ4Pjx47mu79ChQ55Hp31dnz598rUfAEyaNAkKhSJPQ9hPmzYtxyCDRCQ/TF6ISHITJ07Eli1bCv04TF6IDAN7GxGR5Ly8vKQOgYhkhDUvRFRohBBYsmQJatWqBQsLC9jZ2aFr1664fv26xna53TZ69uwZ+vfvj1KlSqFEiRJo3749rl+/DoVCgUmTJuU41oMHD9CtWzfY2tqiTJky6NevH54/f65er1AokJSUhLVr10KhUEChULxz/igiKrqYvBCR1rKyspCZmZnj782RFwYOHIhvvvkGrVq1QlhYGJYsWYILFy6gUaNGuc5enU2lUuGjjz7Chg0b8O2332LLli1o0KAB2rRp89Z9Pv74Y1SsWBF//fUXxo0bhw0bNmDkyJHq9dHR0bCwsEC7du0QHR2N6OhoLFmypOAvBhHpHW8bEZHW3jZDMQC4ubkBAGJiYrBixQrMnTsXo0aNUq9v2rQpKlasiHnz5mHmzJm5PseuXbtw6NAhLF26FIMGDQIA+Pv7w9TUFOPHj891n/79+2PMmDEAgFatWiE2Nha//PILVq1aBYVCgYYNG8LIyAgODg7vjJ+Iij4mL0SktXXr1qFKlSo5lo8cORK3bt0CAGzbtg0KhQJffPEFMjMz1ds4OTmhZs2aOHDgwFufPzIyEgDw6aefaizv1q3bW5OXjh07ajyuUaMGUlNT8fDhQ5QpUyZP5SIieWDyQkRaq1KlCurWrZtjua2trTp5efDgAYQQb00cPD093/r8jx8/homJCUqVKqWx/F1JiL29vcZjMzMzAEBKSspb9yEieWLyQkSFonTp0lAoFIiKilInEq/LbVk2e3t7ZGZm4smTJxoJzP379wslViKSFzbYJaJC0aFDBwghcOfOHdStWzfHn4+Pz1v39fX1BQD8/vvvGss3bdpUoJjMzMxYE0NkAFjzQkSFonHjxhgwYAD69u2L48ePo1mzZrCyssK9e/dw6NAh+Pj4YPDgwbnu26ZNGzRu3BhBQUFITExEnTp1EB0djXXr1gEAjIzy97vLx8cHBw4cwD///ANnZ2dYW1ujUqVK+S4jEUmDyQsRFZrly5ejYcOGWL58OZYsWQKVSgUXFxc0btwY9evXf+t+RkZG+OeffxAUFIQZM2YgPT0djRs3xvr169GwYUOULFkyX/EsXLgQX3/9NT7//HMkJyfD19f3nQ2HiahoUog3B2YgIiqiNmzYgB49euDw4cNo1KiR1OEQkUSYvBBRkbRx40bcuXMHPj4+MDIyQkxMDGbPno0PPvhA3ZWaiIon3jYioiLJ2toamzZtwpQpU5CUlARnZ2f06dMHU6ZMkTo0IpIYa16IiIhIVthVmoiIiGSFyQsRERHJCpMXIiIikpUi12BXpVLh7t27sLa2hkKhkDocIiIi0gMhBF68eAEXF5f3DkRZ5JKXu3fvwtXVVeowiIiISAK3bt1CuXLl3rlNkUterK2tAbwK3sbGRi/HzMjIwJ49exAQEAClUqmXY+oby2gYDL2Mhl4+gGU0FCyj7iUmJsLV1VWdB7xLkUtesm8V2djY6DV5sbS0hI2NjUFfhCyj/Bl6GQ29fADLaChYxsKTlyYjbLBLREREssLkhYiIiGSFyQsRERHJCpMXIiIikhUmL0RERCQrTF6IiIhIVpi8EBERkawweSEiIiJZYfJCREVCVlYWIiMjcfDgQURGRiIrK0vqkIioiGLyQkSSCw0Nhbe3N/z9/TFv3jz4+/vD29sboaGhUodGREUQkxciklRoaCi6du0KHx8fREVFYePGjYiKioKPjw+6du3KBIaIcmDyQkSSycrKQlBQEDp06ICwsDA0aNAAFhYWaNCgAcLCwtChQweMHj2at5CISAOTFyKSTFRUFG7evIkJEybAyEjz48jIyAjjx4/HjRs3EBUVJVGERFQUMXkhIsncu3cPAFC9evVc12cvz96OiAhg8kJEEnJ2dgYAnD9/Ptf12cuztyMiApi8EJGEmjZtCnd3d0ybNg0qlUpjnUqlwvTp0+Hh4YGmTZtKFCERFUVMXohIMsbGxpg7dy62bduGzp07IyYmBikpKYiJiUHnzp2xbds2zJkzB8bGxlKHSkRFiInUARBR8RYYGIjNmzcjKCgIzZo1Uy/38PDA5s2bERgYKGF0RFQUMXkhIskFBgaiU6dOiIiIwM6dO9G2bVv4+fmxxoWIcsXkhYiKBGNjY/j6+iIpKQm+vr5MXIjordjmhYiIiGSFyQsRERHJCpMXIiIikhUmL0RERCQrTF6IiIhIVpi8EBERkawweSEiIiJZYfJCREREssLkhYiIiGSFI+wSERFpIT09HYsXL0Z4eDhiY2MxbNgwmJqaSh1WsaJVzUtmZia+//57eHh4wMLCAp6enpg8ebJ6KvuMjAx8++238PHxgZWVFVxcXNCrVy/cvXu3UIInIiLSp7Fjx8LKygqjR4/Gjh07MHr0aFhZWWHs2LFSh1asaFXzMnPmTCxbtgxr165FtWrVcPz4cfTt2xe2trYYMWIEkpOTcfLkSUycOBE1a9bE06dP8c0336Bjx444fvx4YZWBiIio0I0dOxazZ89GmTJlEBISAjMzM6SlpSE4OBizZ88GAMyaNUviKIsHrZKX6OhodOrUCe3btwcAuLu7Y+PGjerExNbWFnv37tXYZ/Hixahfvz4SEhJQvnx5HYVNRESkP+np6Zg/fz7KlCmD27dvQwiBHTt2oF27dujfvz/KlSuH+fPnY8qUKbyFpAdaJS9NmjTBsmXLcPXqVVSsWBFnzpzBoUOHsGDBgrfu8/z5cygUCpQsWTLX9WlpaUhLS1M/TkxMBPDqFlRGRoY24eVb9nH0dTwpsIyGwdDLaOjlA1hGuVq8eDEyMzMREhICIYRGGZVKJYKDgzFkyBAsXrwYw4cPlzha3dD3edTmOAohhMjrxkIITJgwATNnzoSxsTGysrIwdepUjB8/PtftU1NT0aRJE1SuXBnr16/PdZtJkyYhJCQkx/INGzbA0tIyr6EREREVmp9//hk7duzA6tWrYWdnl2P9kydP0K9fP7Rr1w4DBgyQIEL5S05ORvfu3fH8+XPY2Ni8c1utal5+//13rF+/Hhs2bEC1atVw+vRpfPPNN3BxcUHv3r01ts3IyMDnn38OlUqFJUuWvPU5x48fj1GjRqkfJyYmwtXVFQEBAe8NXlcyMjKwd+9e+Pv7Q6lU6uWY+sYyGgZDL6Ohlw9gGeUqNjYWO3bsQFpaGtq1a5ejjCtXrgQAtGjRAu3atZM4Wt3Q93nMvvOSF1olL2PGjMG4cePw+eefAwB8fHwQHx+P6dOnayQvGRkZ+PTTT3Hjxg2Eh4e/MwkxMzODmZlZjuVKpVLvF70Ux9Q3ltEwGHoZDb18AMsoN8OGDcO4ceMQHByM/v37q8ulVCqhUCgQEhICExMTDBs2zGDKnE1f51GbY2jVVTo5ORlGRpq7GBsbq7tKA/+XuFy7dg379u2Dvb29NocgIiIqckxNTTFy5Eg8ePAA5cqVw8qVK/HkyROsXLkS5cqVw4MHDzBy5Eg21tUTrWpePvroI0ydOhXly5dHtWrVcOrUKcybNw/9+vUD8GocmK5du+LkyZPYtm0bsrKycP/+fQBAqVKleFKJiEi2srtBz58/H0OGDFEvNzExwZgxY9hNWo+0Sl4WL16MiRMnYsiQIXj48CFcXFwwcOBA/PDDDwCA27dvY+vWrQCAWrVqaewbERGB5s2b6yRoIiIiKcyaNQtTpkxRj7DbokULjrArAa2SF2trayxYsOCtXaPd3d2hReclIiIi2TE1NcXw4cPh7e2Ndu3aGVwbFzngxIxEREQkK0xeiIiISFaYvBAREZGsMHkhIiIiWWHyQkRERLLC5IWIiIhkhckLERERyQqTFyIiIpIVJi9EVCRkZWUhMjISBw8eRGRkJLKysqQOiShXvFalx+SFiCQXGhoKb29v+Pv7Y968efD394e3tzdCQ0OlDo1IA6/VooHJCxFJKjQ0FF27doWPjw+ioqKwceNGREVFwcfHB127duWXAhUZvFaLDiYvRCSZrKwsBAUFoUOHDggLC0ODBg1gYWGBBg0aICwsDB06dMDo0aNZLU+S47VatDB5ISLJREVF4ebNm5gwYQKMjDQ/joyMjDB+/HjcuHEDUVFREkVI9Aqv1aKFyQsRSebevXsAgOrVq+e6Pnt59nZEUuG1WrQweSEiyTg7OwMAzp8/n+v67OXZ2xFJhddq0cLkhYgk07RpU7i7u2PatGlQqVQa61QqFaZPnw4PDw80bdpUogiJXuG1WrQweSEiyRgbG2Pu3LnYtm0bOnfujJiYGKSkpCAmJgadO3fGtm3bMGfOHBgbG0sdKhVzvFaLFhOpAyCi4i0wMBCbN29GUFAQmjVrpl7u4eGBzZs3IzAwUMLoiP4Pr9Wig8kLEUkuMDAQnTp1QkREBHbu3Im2bdvCz8+Pv2KpyOG1WjQweSGiIsHY2Bi+vr5ISkqCr68vvwyoyOK1Kj22eSEiIiJZYfJCREREssLkhYiIiGSFyQsRERHJCpMXIiIikhUmL0RERCQrTF6IiIhIVpi8EBERkawweSEiIiJZYfJCBiErKwuRkZE4ePAgIiMjkZWVJXVIRERUSLRKXjIzM/H999/Dw8MDFhYW8PT0xOTJkzWmBxdCYNKkSXBxcYGFhQWaN2+OCxcu6DxwomyhoaHw9vaGv78/5s2bB39/f3h7eyM0NFTq0IiIqBBolbzMnDkTy5Ytw48//ohLly5h1qxZmD17NhYvXqzeZtasWZg3bx5+/PFHHDt2DE5OTvD398eLFy90HjxRaGgounbtCh8fH0RFRWHjxo2IioqCj48PunbtygSGiMgAaZW8REdHo1OnTmjfvj3c3d3RtWtXBAQE4Pjx4wBe1bosWLAA3333HQIDA1G9enWsXbsWycnJ2LBhQ6EUgIqvrKwsBAUFoUOHDggLC0ODBg1gYWGBBg0aICwsDB06dMDo0aN5C4mIyMBoNat0kyZNsGzZMly9ehUVK1bEmTNncOjQISxYsAAAcOPGDdy/fx8BAQHqfczMzODr64sjR45g4MCBOZ4zLS0NaWlp6seJiYkAgIyMDGRkZOSnTFrLPo6+jicFQyxjZGQkbt68iV9//RVZWVk5yjhmzBg0a9YMERER8PX1lTJUnTGE85icnIwrV67kuu5lShqOnIuDdckYlLAwe+tzVKpUCZaWloUVYqEyhHP4PoZSxoJeq3K+TgH9n0dtjqNV8vLtt9/i+fPnqFy5MoyNjZGVlYWpU6eiW7duAID79+8DAMqUKaOxX5kyZRAfH5/rc06fPh0hISE5lu/Zs0fvJ33v3r16PZ4UDKmMBw8eBADcvn0bjx8/Vi/PLmNKSgoAYOfOnUhKStJ/gIVIzucxLi4OQUFB79xm1nueY+7cufDy8tJdUBKQ8znMK7mXsaDXqiFcp4D+zmNycnKet9Uqefn999+xfv16bNiwAdWqVcPp06fxzTffwMXFBb1791Zvp1AoNPYTQuRYlm38+PEYNWqU+nFiYiJcXV0REBAAGxsbbcLLt4yMDOzduxf+/v5QKpV6Oaa+GWIZraysMG/ePJQrVw4NGjTIUcaYmBgAQNu2bQ2q5kXu5zE5ORlNmjTJdd3Ve88xZstFzO5SFRWdbd/6HHL+RWsI5/B9DKWMBb1W5XydAvo/j9l3XvJCq+RlzJgxGDduHD7//HMAgI+PD+Lj4zF9+nT07t0bTk5OAF7VwDg7O6v3e/jwYY7amGxmZmYwM8tZ5aZUKvV+0UtxTH0zpDL6+fnB3d0ds2bNQlhYmHq5UqmEsbExZs+eDQ8PD/j5+cHY2Fi6QAuBnM+jra0t6tevn+s60/jHMItOR/VatVHLzV7PkemXnM9hXsm9jLxWX9HXedTmGFo12E1OToaRkeYuxsbG6q7SHh4ecHJy0qhiSk9PR2RkJBo1aqTNoYjey9jYGHPnzsW2bdvQuXNnxMTEICUlBTExMejcuTO2bduGOXPmGFziQkRU3GlV8/LRRx9h6tSpKF++PKpVq4ZTp05h3rx56NevH4BXt4u++eYbTJs2DRUqVECFChUwbdo0WFpaonv37oVSACreAgMDsXnzZgQFBaFZs2bq5R4eHti8eTMCAwMljI6IiAqDVsnL4sWLMXHiRAwZMgQPHz6Ei4sLBg4ciB9++EG9zdixY5GSkoIhQ4bg6dOnaNCgAfbs2QNra2udB08EvEpgOnXqhIiICOzcuRNt27Y1yFtFRET0ilbJi7W1NRYsWKDuGp0bhUKBSZMmYdKkSQUMjSjvjI2N4evri6SkJPj6+jJxISIyYJzbiIiIiGSFyQsRERHJCpMXIiIikhUmL0RERCQrTF6IiIhIVpi8EBERkawweSEiIiJZYfJCREREssLkhQxCVlYWIiMjcfDgQURGRiIrK0vqkIiIqJAweSHZCw0Nhbe3N/z9/TFv3jz4+/vD29sboaGhUodGRESFgMkLyVpoaCi6du0KHx8fREVFYePGjYiKioKPjw+6du3KBIaIyAAxeSHZysrKQlBQEDp06ICwsDA0aNAAFhYWaNCgAcLCwtChQweMHj2at5CIiAwMkxeSraioKNy8eRMTJkyAkZHmpWxkZITx48fjxo0biIqKkihCIiIqDExeSLbu3bsHAKhevXqu67OXZ29HRESGgckLyZazszMA4Pz587muz16evR0RERkGJi8kW02bNoW7uzumTZsGlUqlsU6lUmH69Onw8PBA06ZNJYqQiIgKA5MXki1jY2PMnTsX27ZtQ+fOnRETE4OUlBTExMSgc+fO2LZtG+bMmQNjY2OpQyUiIh0ykToAooIIDAzE5s2bERQUhGbNmqmXe3h4YPPmzQgMDJQwOiIiKgxMXkj2AgMD0alTJ0RERGDnzp1o27Yt/Pz8WONCRGSgmLyQQTA2Noavry+SkpLg6+vLxIWIyICxzQsRERHJCpMXIiIikhUmL0RERCQrTF6IiIhIVpi8EBERkawweSEiIiJZYfJCREREssLkhYiIiGSFg9QRyUR6ejoWL16M8PBwxMbGYtiwYTA1NZU6LCIivWPNC5EMjB07FlZWVhg9ejR27NiB0aNHw8rKCmPHjpU6NCIivdMqeXF3d4dCocjx9/XXXwMAXr58iaFDh6JcuXKwsLBAlSpVsHTp0kIJnKi4GDt2LGbPng17e3ssW7YMq1evxrJly2Bvb4/Zs2czgSGiYker5OXYsWO4d++e+m/v3r0AgE8++QQAMHLkSOzatQvr16/HpUuXMHLkSAwbNgx///237iMnKgbS09Mxf/58lClTBrdv30a/fv1gZ2eHfv364fbt2yhTpgzmz5+P9PR0qUMlItIbrdq8ODg4aDyeMWMGvLy84OvrCwCIjo5G79690bx5cwDAgAEDsHz5chw/fhydOnXK9TnT0tKQlpamfpyYmAgAyMjIQEZGhjbh5Vv2cfR1PCmwjPK0ePFiZGZmIiQkBEIIjTIqlUoEBwdjyJAhWLx4MYYPHy5xtAWXmZmp/teQzuPrDPE6fVNxKCOv1cI7Xl7ku8Fueno61q9fj1GjRkGhUAAAmjRpgq1bt6Jfv35wcXHBgQMHcPXqVSxcuPCtzzN9+nSEhITkWL5nzx5YWlrmN7x8ya5JMmQso7yEh4cDAMzMzLBjxw718uwympubq7fz9vbWf4A6duslAJggJiYGd85LHU3hMqTr9G0MuYy8VnUvOTk5z9vmO3kJCwvDs2fP0KdPH/WyRYsW4auvvkK5cuVgYmICIyMjrFy5Ek2aNHnr84wfPx6jRo1SP05MTISrqysCAgJgY2OT3/C0kpGRgb1798Lf3x9KpVIvx9Q3llGeYmNjsWPHDqSlpaFdu3Y5yrhy5UoAQIsWLdCuXTuJoy24MwlPgHPH0bBhQ9QsX0rqcAqFIV6nbyoOZeS1qnvZd17yIt/Jy6pVq9C2bVu4uLioly1atAgxMTHYunUr3NzccPDgQQwZMgTOzs5o1apVrs9jZmYGMzOzHMuVSqXeL3opjqlvLKO8DBs2DOPGjUNwcDD69++vLpdSqYRCoUBISAhMTEwwbNgwgyiziYmJ+l9DKM+7GNJ1+jaGXEZeq4VznLzKV1fp+Ph47Nu3D19++aV6WUpKCiZMmIB58+bho48+Qo0aNTB06FB89tlnmDNnTn4OQ1TsmZqaYuTIkXjw4AHKlSuHlStX4smTJ1i5ciXKlSuHBw8eYOTIkRzvhYiKlXzVvKxevRqOjo5o3769ell2A1sjI818yNjYGCqVqmBREhVjs2bNAgDMnz8fQ4YMUS83MTHBmDFj1OuJiIoLrZMXlUqF1atXo3fv3upqMwCwsbGBr68vxowZAwsLC7i5uSEyMhLr1q3DvHnzdBo0UXEza9YsTJkyRT3CbosWLTjCLhEVW1onL/v27UNCQgL69euXY92mTZswfvx49OjRA0+ePIGbmxumTp2KQYMG6SRYouLM1NQUw4cPh7e3N9q1a2fw99mJiN5G6+QlICAAQohc1zk5OWH16tUFDoqIiIjobTi3EREREckKkxciIiKSFSYvREREJCtMXoiIiEhWmLwQERGRrDB5ISIiIllh8kJERESywuSFiIiIZIXJCxEREckKkxciIiKSFSYvREREJCtMXoiIiEhWtJ6YkYqu5ORkXL58Odd1L1PScORcHOxKH0cJC7Nct6lcuTIsLS0LM8QCM/Qyvqt8gGGUkYiKDrl+pjJ5MSCXL19GnTp13rnNrHesO3HiBGrXrq3boHTM0MuYl/IB8i4jERUdcv1MZfJiQCpXrowTJ07kuu7KvWcY9ec5zPvEB5WcS751/6LO0Mv4rvIBhlFGIio65PqZyuTFgFhaWr41AzaKfwyzqBRUqV4Ttdzs9RyZ7hh6Gd9VPsAwykhERYdcP1PZYJeIiIhkhckLERERyQqTFyIiIpIVJi9EREQkK0xeiIiISFaYvBAREZGsMHkhIiIiWWHyQkRERLLC5IWIiIhkhckLERERyQqTFyIiIpIVJi9EREQkK0xeiIiISFa0Sl7c3d2hUChy/H399dfqbS5duoSOHTvC1tYW1tbWaNiwIRISEnQeOBERERVPJtpsfOzYMWRlZakfnz9/Hv7+/vjkk08AAHFxcWjSpAn69++PkJAQ2Nra4tKlSzA3N9dt1ERERFRsaZW8ODg4aDyeMWMGvLy84OvrCwD47rvv0K5dO8yaNUu9jaenpw7CJCIiInpFq+Tldenp6Vi/fj1GjRoFhUIBlUqF7du3Y+zYsWjdujVOnToFDw8PjB8/Hp07d37r86SlpSEtLU39ODExEQCQkZGBjIyM/IaXQ3JyMq5cuZLrupcpaThyLg7WJWNQwsIs120qVaoES0tLncWjb5mZmep/dfm6FiUsY9Fy83ESktKy3r/ha67ef67xr7aszIzhbm+Vr331Jfu8FfXzVxByK6O+r1U5XKeA/j9vtDmGQggh8nOQP/74A927d0dCQgJcXFxw//59ODs7w9LSElOmTIGfnx927dqFCRMmICIiQl0786ZJkyYhJCQkx/INGzboNFmIi4tDUFBQvvefO3cuvLy8dBaPvt16Ccw5Z4LRPplwLSF1NIWDZSw6HqYAU0/n+7dRgXxXKxOOFpIcmmRIqmtVDtepvj9vkpOT0b17dzx//hw2Njbv3DbfZ2zVqlVo27YtXFxcAAAqlQoA0KlTJ4wcORIAUKtWLRw5cgTLli17a/Iyfvx4jBo1Sv04MTERrq6uCAgIeG/w2khOTkaTJk1yXXf13nOM2XIRs7tURUVn21y3kXvNy5mEJ8C542jYsCFqli8ldTiFgmUsOi7cTQROx2BOVx94O+T9F2ZSahp2RR1Dm6b1YGWeey3o28Q+SsLozedQ78MmqOaiu88OXcvIyMDevXvh7+8PpVIpdTiFQk5l1Pe1KpfrFND/5032nZe8yFfyEh8fj3379iE0NFS9rHTp0jAxMUHVqlU1tq1SpQoOHTr01ucyMzODmVnOE69UKnV60dva2qJ+/fq5rjONfwyz6HRUr1UbtdzsdXbMosTExET9b1H/MMkvlrHoyI6zsrMtqpfN/QdBbjIyMvDfZaC+p4PW5ZPLa5NN159xRZEcyqjva1VO16m+Y9XmGPka52X16tVwdHRE+/bt1ctMTU1Rr169HO1Krl69Cjc3t/wchoiIiCgHrWteVCoVVq9ejd69e6uzsmxjxozBZ599hmbNmqnbvPzzzz84cOCAruIlIiKiYk7rmpd9+/YhISEB/fr1y7GuS5cuWLZsGWbNmgUfHx+sXLkSf/3111vbmhARERFpS+ual4CAALyrg1K/fv1yTWyIiIiIdIFzGxEREZGsMHkhIiIiWWHyQkRERLLC5IWIiIhkhckLERERyQqTFyIiIpIVJi9EREQkK0xeiIiISFaYvBAREZGsMHkhIiIiWWHyQkRERLLC5IWIiIhkhckLERERyYrWs0qT9G78l4SktEyt9ol7lKT+18REu9NuZWYCj9JWWu1TEPkpHyCvMpJhS05OxuXLl3Nd9zIlDUfOxcGu9HGUsDDLdZvKlSvD0tKyMEMssOJQRkNiaN8bTF5k5sZ/SfCbcyDf+wdtPpev/SJGN9fLl3tBywcU/TKS4bt8+TLq1Knzzm1mvWPdiRMnULt2bd0GpWPFoYyGwhC/N5i8yEx25rzgs1rwdiyR9/1S0rDtQDQ6NP8QVm/5JZSb2Icv8c3vp/NVE5If+S0fIJ8ykuGrXLkyTpw4keu6K/eeYdSf5zDvEx9Uci751v2LuuJQRkNhiN8bTF5kytuxBKqXtc3z9hkZGbjvANR2s4NSqSzEyHRD2/IB8isjGS5LS8u31ioYxT+GWVQKqlSviVpu9nqOTHeKQxkNjSF9b7DBLhEREckKkxciIiKSFSYvREREJCtMXoiIiEhWmLwQERGRrDB5ISIiIllhV2mZSctKhZH5HdxIvAIj87z318/MzMTdzLu49OSSViMl3kh8CSPzO0jLSgWgXddlIiKiwsDkRWbuJsXDymMxJhzN3/5Ldi3Reh8rD+BuUi3UQZn8HZSIiEiHmLzIjIuVG5JuDMPCz2rBS4uREjMzM3H40GE0btJYq5qXuIcvMeL303Dxc8tPuERERDrH5EVmzIzNoUotCw+bSqhqr91IiTdMbqBKqSpajZSoSn0OVeojmBmb5ydcIiIinWODXSIiIpIVJi9EREQkK0xeiIiISFa0Sl7c3d2hUChy/H399dc5th04cCAUCgUWLFigq1iJiIiItGuwe+zYMWRlZakfnz9/Hv7+/vjkk080tgsLC8O///4LFxcX3URJRERE9P9pVfPi4OAAJycn9d+2bdvg5eUFX19f9TZ37tzB0KFD8dtvv2nVq4WIiIgoL/LdVTo9PR3r16/HqFGjoFAoAAAqlQo9e/bEmDFjUK1atTw9T1paGtLS0tSPExMTAbzq2puRkaF1XDcfJyEpLev9G77m6v3nGv9qw8rMGO72Vlrvl1+ZmZnqf7V5fbK31fY1ze/x8isp7dWIvrFPL0Jlot3rmj2K8LmH57Qay+b60yQYmd9BUtpLZGRYahtyvuTnOgXkc63m9zzm9xwC0pzH/ND3e0oKciqjvq9VKa5TuXxvaLNtvpOXsLAwPHv2DH369FEvmzlzJkxMTDB8+PA8P8/06dMREhKSY/mePXtgaandiX2YAkw9nf+ha8ZuuZSv/b6rlQlHi3wfViu3XgKACQ4dOoT4vI9Rp7Z37169Hk9bJ1/chZXHEkw8kf/nWLIvf6MI7ziShfvWhX+rs6DXKVD0r9WCnsf8nENAv+cxv7LfUzExMbhzXupoCoecyijFtarv61Qu3xvJycl53jbfn6CrVq1C27Zt1e1aTpw4gYULF+LkyZPqmpi8GD9+PEaNGqV+nJiYCFdXVwQEBMDGxkarmC7cTQROx2BOVx94O+Q9g05KTcOuqGNo07QerMzN8rxf7KMkjN58DvU+bIJqLtrFml8X7iZizrkYNGmi3TEzMjKwd+9e+Pv7a3U7L7/Hyy+nWw/x6zpjzOvqA08tziHwKsv/N+ZfNGjYQLtfQo+SMGrzObTr1R61XR21DVlr+b1OAflcq/k9j/k9h4D+z2N+nUl4Apw7joYNG6Jm+VJSh1Mo5FRGfV+rUlyncvneyL7zkhf5Sl7i4+Oxb98+hIaGqpdFRUXh4cOHKF++vHpZVlYWgoKCsGDBAty8eTPX5zIzM4OZWc4PYaVSqXWbmewLqLKzLaqX1W702f8uA/U9HbQ6ZvbxTExM9Na+p6DH1PZ11XcZrcxKQJVaFt52VVG9jHYTQWZkZOCWyS34OPpoFatR5nOoUp/AyqyEXsqY3+sUkM+1mt/zmN9zCOj/POaXFJ8b+ianMur7WpXiOpXL94ZWx8jzlq9ZvXo1HB0d0b59e/Wynj17olWrVhrbtW7dGj179kTfvn3zcxgiIiKiHLROXlQqFVavXo3evXtrVJXZ29vD3t5eY1ulUgknJydUqlSp4JESERERIR8j7O7btw8JCQno169fYcRDRERE9E5a17wEBARACJGnbd/WzoWIiIgovzi3EREREckKkxciIiKSFSYvREREJCtMXoiIiEhWmLwQERGRrDB5ISIiIllh8kJERESywuSFiIiIZIXJCxEREckKkxciIiKSFSYvREREJCtMXoiIiEhWmLwQERGRrGg9q3RRlpaVCiPzO7iReAVG5iXyvF9mZibuZt7FpSeXYGKS95fkRuJLGJnfQVpWKgDbfESsvZSMLADA+TvPtdovKSUNxx8BTvFPYWVhluf9Yh++1Oo4BZXf8gHyKWN+r1NAPteqvq9TQP/nEQBu/JeEpLRMrfaJe5Sk/lebc5jNyswEHqWttN4vv/RdRn2Xz9A/UwHD/G40qOTlblI8rDwWY8LR/O2/ZNcSrfex8gDuJtVCHZTJ30G1FPf/L/xxoefysbcJfo09lq/jWpnp51IpWPkAOZSxoNcpUPSvVamuU0B/5/HGf0nwm3Mg3/sHbc7vNQ5EjG6uly94qcqor/IBhv+ZChjmd6NBJS8uVm5IujEMCz+rBS9H7bLLw4cOo3GTxlpll3EPX2LE76fh4ueWn3DzJaCaEwDAy7EELJTGed7vyr3nCNp8DnO7+qCSs3aZsD5/CeW3fIB8ypjf6xSQz7UqxXUK6Pc8ZtdGLPisFry1OI9JKWnYdiAaHZp/mK/apW9+P611TUh+6buM+i4fYPifqYBhfjcaVPJiZmwOVWpZeNhUQlX7vF9MGRkZuGFyA1VKVYFSqczzfqrU51ClPoKZsXl+ws2XUlam+Lx+ea33y8x89WHg5WCF6mX1c4srP/JbPkA+ZczvdQrI51o19Ov0dd6OJbSKNSMjA/cdgNpudlqdQykZchmLw7VqiN+NbLBLREREssLkhYiIiGSFyQsRERHJCpMXIiIikhUmL0RERCQrTF6IiIhIVpi8EBERkawweSEiIiJZYfJCREREssLkhYiIiGSFyQsRERHJCpMXIiIikhUmL0RERCQrWiUv7u7uUCgUOf6+/vprZGRk4Ntvv4WPjw+srKzg4uKCXr164e7du4UVOxERERVDWiUvx44dw71799R/e/fuBQB88sknSE5OxsmTJzFx4kScPHkSoaGhuHr1Kjp27FgogRMREVHxZKLNxg4ODhqPZ8yYAS8vL/j6+kKhUKiTmWyLFy9G/fr1kZCQgPLlyxc8WiIiIir2tEpeXpeeno7169dj1KhRUCgUuW7z/PlzKBQKlCxZ8q3Pk5aWhrS0NPXjxMREAEBGRgYyMjK0iikzM1P9rzb7Zm+rr+NJQU6x5pdcyvgi5dX1fibhiTrmvEpKTcPxR0Dp649gZW6W5/1iHyUBKPqvjVzOIQAkpb2EkfkdxD69CJWJVZ73y8zMxN3Muzj38BxMTLT7CL7+NAlG5neQlPYSGRmW2oasNX2XUd/lKwg5Xav5/czR9+eNNtsqhBAiz1u/5o8//kD37t2RkJAAFxeXHOtTU1PRpEkTVK5cGevXr3/r80yaNAkhISE5lm/YsAGWltpdvLdeAnPOmWC0TyZcS2i1a77o+3gFIadY80suZYx+oMCm68aSHPu7WplwtJDk0Hkil3MIACdf3EVo1hJJjh1oPAS1rXN+7uqaVGXUV/kKQk7XqlSfOdp+3iQnJ6N79+54/vw5bGxs3rltvmteVq1ahbZt2+aauGRkZODzzz+HSqXCkiXvvvDHjx+PUaNGqR8nJibC1dUVAQEB7w3+TRfuJmLOuRg0adIE1Vzyvm9GRgb27t0Lf39/KJXKQj+eFM4kPAHOHUfDhg1Rs3wpqcMpFHIpY8OkdPhceghPBytYKLX7QLl6/znGbrmEWV2qoKKTrVb7WpkZw90+77+epSCXcwgATrce4td1xpjX1QeeDtrVSvwb8y8aNGygfc3LoySM2nwO7Xq1R21XR21D1pq+y6jv8hWEnK7V/H7m6PvzJvvOS17kK3mJj4/Hvn37EBoammNdRkYGPv30U9y4cQPh4eHvTUDMzMxgZpazOkqpVGqVSABQv0lMTEy03jc/xyzo8fRJTrHml1zKWKakEj0+9CjQc1R0skUtN3sdRVR0yOUcAoCVWQmoUsvC264qqpfJ+wd7RkYGbpncgo+jj9ZlNMp8DlXqE1iZldDL66PvMuq7fAUhp2u1oJ85+vq80er7Nz8HWL16NRwdHdG+fXuN5dmJy7Vr1xAREQF7e8P7cCUiIiJpaZ28qFQqrF69Gr1799aoDszMzETXrl1x8uRJbNu2DVlZWbh//z4AoFSpUjA1NdVd1ERERFRsaZ287Nu3DwkJCejXr5/G8tu3b2Pr1q0AgFq1ammsi4iIQPPmzfMdJBEREVE2rZOXgIAA5NZByd3dPdflRERERLrEuY2IiIhIVpi8EBERkawweSEiIiJZYfJCREREssLkhYiIiGSFyQsRERHJCpMXIiIikhUmL0RERCQrTF6IiIhIVpi8EBERkawweSEiIiJZYfJCREREssLkhYiIiGRF61mli7KUjCwAwPk7z7XaLyklDccfAU7xT2FlYZbn/WIfvtTqOEREcsLPVCqqDCp5ifv/F/640HP52NsEv8Yey9dxrcwM6mUkIgLAz1QqugzqCgmo5gQA8HIsAQulcZ73u3LvOYI2n8Pcrj6o5Gyr1TGtzEzgUdpKq32IiOSAn6lUVBlU8lLKyhSf1y+v9X6ZmZkAAC8HK1Qvq90bjYjIUPEzlYoqNtglIiIiWWHyQkRERLLC5IWIiIhkhckLERERyQqTFyIiIpIVJi9EREQkK0xeiIiISFaYvBAREZGsMHkhIiIiWWHyQkRERLLC5IWIiIhkhckLERERyQqTFyIiIpIVrZIXd3d3KBSKHH9ff/01AEAIgUmTJsHFxQUWFhZo3rw5Lly4UCiBExERUfGkVfJy7Ngx3Lt3T/23d+9eAMAnn3wCAJg1axbmzZuHH3/8EceOHYOTkxP8/f3x4sUL3UdORERExZJWyYuDgwOcnJzUf9u2bYOXlxd8fX0hhMCCBQvw3XffITAwENWrV8fatWuRnJyMDRs2FFb8REREVMyY5HfH9PR0rF+/HqNGjYJCocD169dx//59BAQEqLcxMzODr68vjhw5goEDB+b6PGlpaUhLS1M/TkxMBABkZGQgIyMjv+FpJTMzU/2vvo5ZGJKTk3HlypVc11299xxp92Nx/rQp0h/Y5rpNpUqVYGlpWZghFlhxKOO7GMq1+jZyKt+LlFefW2cSnqjjzouk1DQcfwSUvv4IVuZmWh0z9lESgKL/+sjpPOYXy6h72hwj38lLWFgYnj17hj59+gAA7t+/DwAoU6aMxnZlypRBfHz8W59n+vTpCAkJybF8z549evuSufUSAEwQExODO+f1cshCERcXh6CgoHdu03Pt29fNnTsXXl5eOo5Kt4pDGd/FUK7Vt5FT+aIfKAAY47u/L+ZjbxP8Gnsq38c+Fn0I8Rb53r3Qyek85hfLqHvJycl53jbfycuqVavQtm1buLi4aCxXKBQaj4UQOZa9bvz48Rg1apT6cWJiIlxdXREQEAAbG5v8hqeVMwlPgHPH0bBhQ9QsX0ovxywMycnJaNKkSa7rXqakYXfUMbRuWg8lLHL/tSeHWoniUMZ3MZRr9W3kVL6GSenwufQQng5WsFAa53m/q/efY+yWS5jVpQoqOuVeQ/guVmbGcLe30no/fZLTecwvllH3su+85EW+kpf4+Hjs27cPoaGh6mVOTk4AXtXAODs7q5c/fPgwR23M68zMzGBmlvOLRqlUQqlU5ic8rZmYmKj/1dcxC4OtrS3q16+f67qMjAy8ePYETRs1ZBllzFCu1beRU/nKlFSix4ce+d6/opMtarnZ6zCiokNO5zG/WEbd0+YY+RrnZfXq1XB0dET79u3Vyzw8PODk5KTugQS8ahcTGRmJRo0a5ecwRERERDloXfOiUqmwevVq9O7dW52VAa9uF33zzTeYNm0aKlSogAoVKmDatGmwtLRE9+7ddRo0ERERFV9aJy/79u1DQkIC+vXrl2Pd2LFjkZKSgiFDhuDp06do0KAB9uzZA2tra50ES0RERKR18hIQEAAhRK7rFAoFJk2ahEmTJhU0LiIiIqJccW4jIiIikhUmL0RERCQrTF6IiIhIVpi8EBERkawweSEiIiJZYfJCREREssLkhYiIiGSFyQsRERHJCpMXIiIikhUmL0RERCQrTF6IiIhIVpi8EBERkawweSEiIiJZ0XpWablKTk7G5cuXc1135d4zpN2PxaXzFlA9LpnrNpUrV4alpWUhRkj07usUMIxrtaDvRaDol5EMA783iq5ik7xcvnwZderUeec23de+fd2JEydQu3ZtHUdFpCkv1ykg72u1oO9FoOiXkQwDvzeKrmKTvFSuXBknTpzIdd3LlDRsj4hGe78PUcLC7K37ExW2d12ngGFcqwV9L2Y/B1Fh4/dG0VVskhdLS8u3ZsAZGRl4+t9DfFi/LpRKpZ4jI/o/77pOAcO4VvleJLngtVp0scEuERERyQqTFyIiIpIVJi9EREQkK0xeiIiISFaYvBAREZGsMHkhIiIiWWHyQkRERLLC5IWIiIhkhckLERERyQqTFyIiIpIVJi9EREQkK0xeiIiISFaYvBDJRHp6OhYtWoSff/4ZixYtQnp6utQh6VRWVhYiIyNx8OBBREZGIisrS+qQiKiI0jp5uXPnDr744gvY29vD0tIStWrV0pgy/OXLlxg6dCjKlSsHCwsLVKlSBUuXLtVp0ETFzdixY2FlZYXRo0djx44dGD16NKysrDB27FipQ9OJ0NBQeHt7w9/fH/PmzYO/vz+8vb0RGhoqdWhEVASZaLPx06dP0bhxY/j5+WHnzp1wdHREXFwcSpYsqd5m5MiRiIiIwPr16+Hu7o49e/ZgyJAhcHFxQadOnXQdP5HBGzt2LGbPno0yZcogJCQEZmZmSEtLQ3BwMGbPng0AmDVrlsRR5l9oaCi6du2KDh064Ndff8Xt27dRrlw5zJo1C127dsXmzZsRGBgodZhEVIRoVfMyc+ZMuLq6YvXq1ahfvz7c3d3RsmVLeHl5qbeJjo5G79690bx5c7i7u2PAgAGoWbMmjh8/rvPgiQxdeno65s+fjzJlyuD27dvo168f7Ozs0K9fP9y+fRtlypTB/PnzZXsLKSsrC0FBQejQoQPCwsLQoEEDWFhYoEGDBggLC0OHDh0wevRo3kIiIg1a1bxs3boVrVu3xieffILIyEiULVsWQ4YMwVdffaXepkmTJti6dSv69esHFxcXHDhwAFevXsXChQtzfc60tDSkpaWpHycmJgIAMjIykJGRkZ8yaS37OPo6nhRYRnlavHgxMjMzERISAiGERhmVSiWCg4MxZMgQLF68GMOHD5c4Wu1FRkbi5s2b+PXXX5GVlZXjHI4ZMwbNmjVDREQEfH19pQxVZzIzM9X/yvlaTU5OxpUrV3Jdd/Xec6Tdj8X506ZIf2Cb6zaVKlWCpaVlYYZYqAzl86YonUdtXkutkpfr169j6dKlGDVqFCZMmICjR49i+PDhMDMzQ69evQAAixYtwldffYVy5crBxMQERkZGWLlyJZo0aZLrc06fPh0hISE5lu/Zs0fvF/bevXv1ejwpsIzyEh4eDgAwMzPDjh071Muzy2hubq7eztvbW/8BFtDBgwcBALdv38bjx4/Vy7PLl5KSAgDYuXMnkpKS9B9gIbj1EgBMEBMTgzvnpY4m/+Li4hAUFPTObXquffu6uXPnatTay5XcP2+K0nlMTk7O87ZaJS8qlQp169bFtGnTAAAffPABLly4gKVLl2okLzExMdi6dSvc3Nxw8OBBDBkyBM7OzmjVqlWO5xw/fjxGjRqlfpyYmAhXV1cEBATAxsZGm/DyLSMjA3v37oW/vz+USqVejqlvLKM8xcbGYseOHUhLS0O7du1ylHHlypUAgBYtWqBdu3YSR6s9KysrzJs3D+XKlUODBg1ylC8mJgYA0LZtW4OpeTmT8AQ4dxwNGzZEzfKlpA4n35KTk9/6o/RlShp2Rx1D66b1UMLCLNdtDKHmxRA+b4rSecy+85IXWiUvzs7OqFq1qsayKlWq4K+//gLw6lfShAkTsGXLFrRv3x4AUKNGDZw+fRpz5szJNXkxMzODmVnOF0WpVOr9gpDimPrGMsrLsGHDMG7cOAQHB6N///7qcimVSigUCoSEhMDExATDhg2TZZn9/Pzg7u6OWbNmISwsTL1cqVTC2NgYs2fPhoeHB/z8/GBsbCxdoDpkYmKi/leO5yybra0t6tevn+u6jIwMvHj2BE0bNZR1GfNC7p83Rek8anMMrRrsNm7cOMe9satXr8LNzQ3A/7VTMTLSfFpjY2OoVCptDkVEAExNTTFy5Eg8ePAA5cqVw8qVK/HkyROsXLkS5cqVw4MHDzBy5EiYmppKHWq+GBsbY+7cudi2bRs6d+6MmJgYpKSkICYmBp07d8a2bdswZ84cg0lciEg3tKp5GTlyJBo1aoRp06bh008/xdGjR/Hzzz/j559/BgDY2NjA19cXY8aMgYWFBdzc3BAZGYl169Zh3rx5hVIAIkOX3Q16/vz5GDJkiHq5iYkJxowZI+tu0gAQGBiIzZs3IygoCM2aNVMv9/DwYDdpIsqVVslLvXr1sGXLFowfPx6TJ0+Gh4cHFixYgB49eqi32bRpE8aPH48ePXrgyZMncHNzw9SpUzFo0CCdB09UXMyaNQtTpkzB4sWLER4ejhYtWmDYsGGyrXF5U2BgIDp16oSIiAjs3LkTbdu2NahbRUSkW1olLwDQoUMHdOjQ4a3rnZycsHr16gIFRUQ5mZqaYvjw4fD29ka7du1kfZ89N8bGxvD19UVSUhJ8fX2ZuBDRW3FuIyIiIpIVJi9EREQkK0xeiIiISFaYvBAREZGsMHkhIiIiWWHyQkRERLLC5IWIiIhkhckLERERyQqTFyIi0pmsrCxERkbi4MGDiIyMRFZWltQhkQFi8kJERDoRGhoKb29v+Pv7Y968efD394e3tzdCQ0OlDo0MDJMXIiIqsNDQUHTt2hU+Pj6IiorCxo0bERUVBR8fH3Tt2pUJDOkUkxciIiqQrKwsBAUFoUOHDggLC0ODBg1gYWGBBg0aICwsDB06dMDo0aN5C4l0RuuJGYmI6N2Sk5Nx+fLlXNddufcMafdjcem8BVSPS+a6TeXKlWFpaVmIEepWVFQUbt68iY0bN8LIyEgjSTEyMsL48ePRqFEjREVFoXnz5tIFSgaDyQsRkY5dvnwZderUeec23de+fd2JEydQu3ZtHUdVeO7duwcAqF69eq7rs5dnb0dUUExeiIh0rHLlyjhx4kSu616mpGF7RDTa+32IEhZmb91fTpydnQEA58+fR8OGDXOsP3/+vMZ2RAXF5IWISMcsLS3fWnOSkZGBp/89xIf160KpVOo5ssLRtGlTuLu7Y9q0aQgLC9NYp1KpMH36dHh4eKBp06bSBEgGhw12iYioQIyNjTF37lxs27YNnTt3RkxMDFJSUhATE4POnTtj27ZtmDNnDoyNjaUOlQwEa16IiKjAAgMDsXnzZgQFBaFZs2bq5R4eHti8eTMCAwMljI4MDZMXIiLSicDAQHTq1AkRERHYuXMn2rZtCz8/P9a4kM4xeSEiIp0xNjaGr68vkpKS4Ovry8SFCgXbvBAREZGsMHkhIiIiWWHyQkRERLLC5IWIiIhkhckLERERyQqTFyIiIpIVJi9EREQkK0xeiIiISFaYvBAREZGsFLkRdoUQAIDExES9HTMjIwPJyclITEw0mFle38QyGgZDL6Ohlw9gGQ0Fy6h72d/72XnAuxS55OXFixcAAFdXV4kjISIiIn178eIFbG1t37mNQuQlxdEjlUqFu3fvwtraGgqFQi/HTExMhKurK27dugUbGxu9HFPfWEbDYOhlNPTyASyjoWAZdU8IgRcvXsDFxQVGRu9u1VLkal6MjIxQrlw5SY5tY2NjsBdhNpbRMBh6GQ29fADLaChYRt16X41LNjbYJSIiIllh8kJERESywuQFgJmZGYKDg2FmZiZ1KIWGZTQMhl5GQy8fwDIaCpZRWkWuwS4RERHRu7DmhYiIiGSFyQsRERHJCpMXIiIikhUmL0RERCQrRW6QOiIiIpKGSqVCbGwsHj58CJVKpbGuWbNmEkWVU7FMXjIzMzF16lT069ePcyhRkVVcrlMhBBISEuDo6AgLCwupw6ECOn78OC5dugSFQoHKlSujbt26UoekExkZGahUqRK2bduGqlWrSh1OoYiJiUH37t0RHx+fY3JEhUKBrKwsiSLLqdh2lS5RogTOnz8Pd3d3qUMpFMXhjVYcGPp1Crz6pWdubo4LFy6gQoUKUodTaPbv34/9+/fn+ov2l19+kSgq3bl9+za6deuGw4cPo2TJkgCAZ8+eoVGjRti4caNBJOBly5bFvn37UKVKFalDKRS1atVCxYoVERISAmdn5xzzC+Z16H59KLZtXlq1aoUDBw5IHUahUSqVSEtL09vkllJJSkrCxIkT0ahRI3h7e8PT01PjT+4M/ToFXs1nVqFCBTx+/FjqUApNSEgIAgICsH//fvz33394+vSpxp8h6NevHzIyMnDp0iU8efIET548waVLlyCEQP/+/aUOTyeGDRuGmTNnIjMzU+pQCsW1a9cwbdo0VKlSBSVLloStra3GX1FSLG8bAUDbtm0xfvx4nD9/HnXq1IGVlZXG+o4dO0oUme5kv9FWrlwJExPDPNVffvklIiMj0bNnz1x/KchdcbhOAWDWrFkYM2YMli5diurVq0sdjs4tW7YMa9asQc+ePaUOpdBERUXhyJEjqFSpknpZpUqVsHjxYjRu3FjCyHTn33//xf79+7Fnzx74+PjkeD+GhoZKFJluNGjQALGxsfD29pY6lPcqtreN3jXddlG7t5dfXbp0wf79+1GiRAmDfKMBQMmSJbF9+3aD+XB8U3G4TgHAzs4OycnJyMzMhKmpaY62L0+ePJEoMt2wt7fH0aNH4eXlJXUohaZSpUr49ddfUb9+fY3lR48eRffu3REbGytRZLrTt2/fd65fvXq1niIpHFu2bMH333+PMWPGwMfHB0qlUmN9jRo1JIosJ8P8OZ4Hb95zNkQlS5bExx9/LHUYhcrOzg6lSpWSOoxCUxyuUwBYsGCB1CEUqi+//BIbNmzAxIkTpQ6l0MyaNQvDhg3DTz/9hDp16kChUOD48eMYMWIE5syZI3V4OiH35OR9sr8v+vXrp16mUCgghChyP5aKbc3L61JTU2Fubi51GJQP69evx99//421a9fC0tJS6nAKFa9T+RoxYgTWrVuHGjVqoEaNGjl+0c6bN0+iyHTn9dqz7NvU2f9/s9ZXzjVpmZmZOHDgAOLi4tC9e3dYW1vj7t27sLGxQYkSJaQOr0Di4+Pfud7NzU1PkbxfsU1esrKyMG3aNCxbtgwPHjzA1atX4enpiYkTJ8Ld3d1gGpgZ8hsNAD744APExcVBCAF3d/ccXwonT56UKDLdKC7XKQDExcVh9erViIuLw8KFC+Ho6Ihdu3bB1dUV1apVkzq8AvHz83vrOoVCgfDwcD1GUzjWrl2b52179+5diJEUnvj4eLRp0wYJCQlIS0tTvx+/+eYbpKamYtmyZVKHWGwU29tGU6dOxdq1azFr1ix89dVX6uU+Pj6YP3++QXwpvPlG8/f3h7W1NWbNmmUwb7TOnTtLHUKhKg7XKQBERkaibdu2aNy4MQ4ePIipU6fC0dERZ8+excqVK7F582apQyyQiIgIqUModHJNSLQxYsQI1K1bF2fOnIG9vb16eZcuXfDll19KGJluXbx4EQkJCUhPT9dYXqQ6CIhiysvLS+zbt08IIUSJEiVEXFycEEKIS5cuiZIlS0oZms506tRJfPHFFyItLU2jjAcOHBDe3t4SR0d5URyuUyGEaNiwoZg7d64QQrOcR48eFS4uLlKGRlrIzMwUmzdvFv/73//ElClTRGhoqMjMzJQ6LJ2xt7cXly9fFkJoXqc3btwQFhYWUoamE3FxcaJGjRpCoVAIIyMjoVAo1P83MjKSOjwNxbbm5c6dO7l2B1OpVMjIyJAgIt07dOgQDh8+DFNTU43lbm5uuHPnjkRRkTaKw3UKAOfOncOGDRtyLHdwcDCY8V+OHTuGP//8M9dftIbQ8y82Nhbt2rXDnTt3UKlSJQghcPXqVbi6umL79u0G0dNKpVLl2mj19u3bsLa2liAi3RoxYgQ8PDywb98+eHp64ujRo3j8+DGCgoKKXKPrYjtIXbVq1RAVFZVj+Z9//okPPvhAgoh0z9DfaMCrNiFz5sxB/fr14eTkhFKlSmn8yV1xuE6BVz3j7t27l2P5qVOnULZsWQki0q1NmzahcePGuHjxIrZs2YKMjAxcvHgR4eHhRW7wr/waPnw4vLy8cOvWLZw8eRKnTp1CQkICPDw8MHz4cKnD0wl/f3+NnnEKhQIvX75EcHAw2rVrJ11gOhIdHY3JkyfDwcEBRkZGMDIyQpMmTTB9+vSidw6lrvqRytatW4Wtra2YMWOGsLS0FLNnzxZffvmlMDU1FXv27JE6PJ349NNPxVdffSWEeFXFef36dfHixQvRokUL0adPH4mj042JEycKZ2dnMXv2bGFubi7+97//if79+wt7e3uxcOFCqcMrsOJwnQohxJgxY0STJk3EvXv3hLW1tbh27Zo4dOiQ8PT0FJMmTZI6vALz8fERP/74oxDi/243qFQq8dVXX4kffvhB4uh0w9LSUpw9ezbH8tOnTwsrKysJItK9O3fuiIoVK4oqVaoIExMT0bBhQ2Fvby8qVaokHjx4IHV4BVayZEn1rTBPT08RHh4uhBAiNja2yN0WK7bJixBC7Nq1SzRr1kxYWVkJCwsL0bhxY7F7926pw9IZQ3+jCfHqDbZt2zYhxKsvhdjYWCGEEAsXLhTdunWTMjSdMfTrVAgh0tPTRffu3dX32ZVKpTAyMhJffPGFQbSZsLS0FDdu3BBCvGo3kf0lf/HiReHk5CRhZLpjZ2cnDh8+nGP5oUOHhJ2dnQQRFY7k5GSxatUq8fXXX4vBgweLFStWiOTkZKnD0okmTZqILVu2CCGE6Natm2jTpo04dOiQ6NWrl6hWrZq0wb2h2HaVLi5SUlKwadMmnDhxAiqVCrVr10aPHj0MZvZeKysrXLp0CeXLl4ezszO2b9+O2rVr4/r16/jggw/w/PlzqUMkLcTFxeHUqVNQqVT44IMPDGaiRldXV+zYsQM+Pj6oWbMmxo0bh27duiE6Ohpt2rQxiOu0V69eOHnyJFatWqUeZffff//FV199hTp16mDNmjXSBkjvtXv3biQlJSEwMBDXr19Hhw4dcPnyZdjb2+P3339HixYtpA5Rrdg22M2Wnp6e6yyv5cuXlygi3Tl48CAaNWqEvn37agxrnZmZiYMHD6JZs2YSRqcb5cqVw71791C+fHl4e3tjz549qF27No4dOwYzMzOpwyMteXl5GUTDzjc1bdoUe/fuhY+PDz799FOMGDEC4eHh2Lt3L1q2bCl1eDqxaNEi9O7dGx9++KF6vKXMzEx07NjRoEZQvnr1Kg4cOJDr98YPP/wgUVS60bp1a/X/PT09cfHiRTx58gR2dnZFbt64Ylvzcu3aNfTr1w9HjhzRWC6K4DDI+WVsbIx79+7B0dFRY/njx4/h6OhoEGUcN24cbGxsMGHCBGzevBndunWDu7s7EhISMHLkSMyYMUPqELWmzQeFnEcqfV1WVhbWrFmD/fv35/qlIPdB3J48eYLU1FS4uLhApVJhzpw5OHToELy9vTFx4kTY2dlJHaLOxMbGqmeTrlq1qiwm+curFStWYPDgwShdujScnJw03qcKhUL2g2LKSbFNXho3bgwTExOMGzcu19mIa9asKVFkumNkZIQHDx7AwcFBY/nVq1dRt25dJCYmShRZ4YmJicGRI0fg7e1dtAZU0sLrI5U+fvwYU6ZMQevWrfHhhx8CeNUjYPfu3Zg4cSJGjhwpVZg6NXToUKxZswbt27fP9f04f/58iSKjvJo8eTJGjx6dY5qOlJQUzJ49W/a1EsCrYSaGDBmCb7/9VupQCkVqaioWL16MiIiIXH9EFKXkrNgmL1ZWVjhx4gQqV64sdSg6FxgYCAD4+++/0aZNG43bJ1lZWTh79iwqVaqEXbt2SRUi5dHHH38MPz8/DB06VGP5jz/+iH379iEsLEyawHSsdOnSWLdunUF0N32Xhw8f5vqlUJRm682v4lDTa2Njg9OnT8PT01PqUApF9+7dsXfvXnTt2hVlypTJ8SMiODhYoshyKrZtXqpWrYr//vtP6jAKRfa4EUIIWFtbazTONTU1RcOGDTWGmpe7O3fu4PDhw7l+KRS5sQm0tHv3bsycOTPH8tatW2PcuHESRFQ4TE1NDer2wptOnDiB3r17q2+nvM5QblNn33J/05kzZwxizCUA+OSTT7Bnzx4MGjRI6lAKxfbt27Fjxw40btxY6lDeq1glL6/fJpk5cybGjh2LadOmwcfHJ8eEfjY2NvoOT2eyp213d3fHmDFjDHq25dWrV2PQoEEwNTWFvb19jnvQck9e7O3tsWXLFowZM0ZjeVhYmMbcKnIXFBSEhQsX4scffyxyDQN1oW/fvqhYsSJWrVqV6y9aOctuo6VQKFCxYkWNsmVlZeHly5ey/rJftGiR+v/ZbZRiYmJy/d6Q++dN2bJlZTOAabG6bWRkZKTxxsrtl4IhNdht0aIFQkNDUbJkSY3liYmJ6Ny5s+wbQQKvuqAOGjQI48ePh5GR4Q0YvWbNGvTv3x9t2rRRt3mJiYnBrl27sHLlSvTp00faAAsg+/ZmtvDwcJQqVQrVqlXL8aUg9+Hzra2tcerUKYOsXVq7di2EEOjXrx8WLFigMWKwqakp3N3d1deuHHl4eORpO4VCgevXrxdyNIVr586dWLRoEZYtWwY3Nzepw3mnYlXzUhxmdn1dZGRkjjlUgFeNsnIbcl6OkpOT8fnnnxtk4gIAffr0QZUqVbBo0SKEhoaqe3AcPnwYDRo0kDq8AnlzWPwuXbpIFEnha9myJc6cOWOQyUv2bNIeHh7qjhCG5MaNG1KHoDd169ZFamoqPD09YWlpmeNHRFHq3Visal6Ki7NnzwIAatWqpf41my0rKwu7du3C8uXLcfPmTYki1J2xY8eiVKlSBtX+gwzPf//9h969e6N+/fqoXr16ji8FufaMe93JkyehVCrh4+MD4FWHgdWrV6Nq1aqYNGlSjgliqehp1aoVEhIS0L9//1xvb2YnqkVBsU1eVq9ejRIlSuCTTz7RWP7nn38iOTm5SJ0kbb1+eyy302thYYHFixejX79++g5N57KystChQwekpKTkeg963rx5EkWWf9p0YZdz26zX3bhxA5mZmTlG1L127RqUSiXc3d2lCUxHtm7dip49e+LFixc51hnKbep69eph3Lhx+Pjjj3H9+nVUrVoVgYGBOHbsGNq3b28QA9V17doVdevWzfFjafbs2Th69Cj+/PNPiSLTDUtLS0RHR8tiqBDDrGvPgxkzZqB06dI5ljs6OmLatGkSRKQ7N27cQFxcHIQQOHr0KG7cuKH+u3PnDhITEw0icQGAadOmYffu3Xjw4AHOnTuHU6dOqf9Onz4tdXj5UrJkSdjZ2b3zL3sbQ9GnT58cA0YCr4aXl3O7nmzDhw9Hz549ce/ePahUKo0/Q0hcgFfjR9WqVQvAqx+Bvr6+2LBhA9asWYO//vpL2uB0JDIyEu3bt8+xvE2bNjh48KAEEelW5cqVkZKSInUYeWJYNye1EB8fn2tDLDc3NyQkJEgQke5kN7R6s9uwIZo3bx5++eUXg/iCy1bc2mYBwKlTp3LtntmwYcMcY9zI0ePHjzFy5EiUKVNG6lAKjRBC/Zmzb98+dOjQAcCrRvWGMizFy5cvc739pVQqDWLQzxkzZiAoKAhTp04t8r1wi23y4ujoiLNnz+aojj5z5oysu6Bu3boVbdu2hVKpxNatW9+5rSHcZzczM5PFmATa8PX1lToEvVMoFLneUnn+/LlB1EwEBgYiIiLCIOdtyla3bl1MmTIFrVq1QmRkJJYuXQrgVU2woSRt1atXx++//55jtOBNmzahatWqEkWlO23atAGAHPNtFcVeuMU2efn8888xfPhwWFtbqycojIyMxIgRI/D5559LHF3+de7cGffv34ejoyM6d+781u2K2oWYXyNGjMDixYs1xmIwNFFRUVi+fDmuX7+OP//8E2XLlsWvv/4KDw8PNGnSROrwdKJp06aYPn06Nm7cCGNjYwCv2jNNnz7dIMpYsWJFjB8/HocOHTLI8UGAV1M4fPHFFwgLC8N3332n7lm1efNmNGrUSOLodGPixIn4+OOPERcXp55hef/+/di4caPs27sA8qr1LbYNdtPT09GzZ0/8+eef6q59KpUKvXr1wtKlSzkjsUx06dIF4eHhsLe3N8jxQf766y/07NkTPXr0wK+//oqLFy/C09MTS5YswbZt27Bjxw6pQ9SJCxcuwNfXFyVLlkTTpk0BvEraEhMTER4ejurVq0scYcG8a6wQQxgf5F1SU1NhYmJiMF2ot2/fjmnTpuH06dOwsLBAjRo1EBwcXCxrTKVUbJOXbNeuXVNfhD4+PkV+YB7S1Ldv33euzx5tWK4++OADjBw5Er169YK1tTXOnDkDT09PnD59Gm3atMH9+/elDlFn7t69ix9//BFnzpxRfykMHTrUYIaWN3Senp44duxYjtvuz549Q+3atQ06QTMkcqnpNYxUOB+yZ0CtUKGCRvdMQ5gBNa+3UAyhqlruycn7XLlyRX1b83U2NjZ49uyZ/gMqJAkJCXB1dc21p19CQgLKly8vQVS6l56ejhs3bsDLy8tgaiKy3bx5M9db0Wlpabh9+7YEEemeoSdor9f0njx5EmlpaQCAFy9eYNq0aUWqprfY1rwY8gyob1ZR37p1C87OzhofloZUVZ2ZmYkDBw4gLi4O3bt3h7W1Ne7evQsbGxuUKFFC6vAKxMvLC8uXL0erVq00al7WrVuHGTNm4OLFi1KHqBOG/H4EXo0EPWzYMKxduxbAq27Fnp6eGD58OFxcXGQ9yGJ2x4DOnTtj7dq1GiMnZ2VlYf/+/di7dy+uXLkiVYg6Y2RkpG5T+LoHDx6gfPny6i97uZJTTa9hpf5aMOQZUN8cztra2hqRkZEGOY17fHw82rRpg4SEBKSlpcHf3x/W1taYNWsWUlNTsWzZMqlDLJCBAwdixIgR+OWXX6BQKHD37l1ER0dj9OjRsq4dfNPb3o8vX76Eubm5BBHp1vjx43HmzBkcOHBA3aMDeDWiaXBwsKyTl9c7Brw5uGf2AINz587Vc1S69XrPzd27d+eaoMl9IEVAXjW9xS55MfQZUIubESNGoG7dujm6uHfp0gVffvmlhJHpxtixY/H8+XP4+fkhNTUVzZo1g5mZGUaPHm0Q45+MGjUKwKuawIkTJ2rMgJ6VlYV///1XPfCZnIWFheH3339Hw4YNNT5zqlatiri4OAkjK7jssV08PDxw/PhxWQ818TbZCZpCoTDYBA0AnJ2dERsbmyMRO3ToUJH78VvskpcFCxaoZ0ANCQkxuBlQi5tDhw7h8OHDOQaOcnNzw507dySKSremTp2K7777DhcvXoRKpULVqlVlfzss26lTpwC8qnk5d+6cxnk0NTVFzZo1MXr0aKnC05lHjx7luNUAAElJSbnWOMlNRkYG3N3d8fjxY4NMXl5P0I4dO5br6OyGQE41vcUueXl9BtRGjRrl6FpL8vK24dVv374Na2trCSIqHJaWlqhbt67UYehc9rgSffv2xcKFC4vUCJ66VK9ePWzfvh3Dhg0DAHXCsmLFCoP4saRUKnH+/HmDSMTexdBnmJZTTW+xbbD7upSUFGRkZGgsk/OH6JvDVJcrVw6HDh3KURUo5zJm++yzz2Bra4uff/4Z1tbWOHv2LBwcHNCpUyeUL19elr2RAgMDsWbNGtjY2CAwMPCd28p9HJvi4siRI2jTpg169OiBNWvWYODAgbhw4QKio6MRGRmJOnXqSB1igQUFBUGpVGLGjBlSh6JTixYtwoABA2Bubv7enpyG0IMTeNXAvKjX9Bbb5CU5ORljx47FH3/8gcePH+dYL+feDa/PKg3kbAxZFId6zq+7d+/Cz88PxsbGuHbtGurWrYtr166hdOnSOHjwYK5V9UVd3759sWjRIlhbW6NPnz7v/DUrx+QsW3FL0s6dO4c5c+bgxIkTUKlUqF27Nr799lv4+PhIHZpODBs2DOvWrYO3tzfq1q0LKysrjfVynOEd0GzLU9wGG8weJLJSpUqoUqWK1OFoKHa3jbKNGTMGERERWLJkCXr16oWffvoJd+7cwfLly2X/y0FOQzwXlIuLC06fPo1NmzapvxT69++PHj16wMLCQurw8qVLly7qHjZr1qyRNphCZGtrq07MbGxsDP6Wg4+Pj7qrtCE6f/48ateuDeBVV/DXyfncvn6ryNBvG3366ado1qwZhg4dipSUFNSrVw83btyAEAKbNm3Cxx9/LHWIasW25qV8+fJYt24dmjdvDhsbG5w8eRLe3t749ddfsXHjxiI1GE9hmzFjBgYNGoSSJUtKHQrh1Zgn9+/fh4ODw1vHPyF5OXnyJJRKpbqW5e+//8bq1atRtWpVTJo0KdeZiqlo+ffff7F161ZkZmaiZcuWCAgIkDoknXNycsLu3btRs2ZNbNiwAcHBwThz5gzWrl2Ln3/+Wd3AvigwkjoAqTx58kRdBWhjY4MnT54AAJo0aYKDBw9KGZreTZs2TV1+uVm7di22b9+ufjx27FiULFkSjRo1Qnx8vISR5Z+DgwNiYmIAvH38E0MhhMDs2bPRuHFj1K9fHxMmTEBqaqrUYencwIED1bUR169fx2effQZLS0v8+eefGDt2rMTR6d7t27cNprcfAGzZsgWNGzfGwoULsXz5crRt2xYLFiyQOiyde/78uXqcs127duHjjz+GpaUl2rdvj2vXrkkcnaZim7x4enri5s2bAF6NtfDHH38AAP75559iVwMh58q3adOmqW8PRUdH48cff8SsWbNQunRpjBw5UuLo8mfQoEHo1KkTjI2NoVAo4OTkBGNj41z/5G7GjBkYN24crKys4OzsjHnz5hlMo8fXXb16VT1ezZ9//glfX19s2LABa9aswV9//SVtcDqiUqkwefJk2Nraws3NDeXLl0fJkiXxv//9T93VWK6mTZuGPn364NmzZ3j27BlCQkIwZcoUqcPSOVdXV0RHRyMpKQm7du1S1y49ffq06A0WKYqpefPmiYULFwohhAgPDxcWFhbC1NRUKBQKsWDBAomj068SJUqIuLg4qcPIFwsLCxEfHy+EEGLs2LGiZ8+eQgghzp8/L0qXLi1laAVy6dIl8c8//wiFQiHWrFkjwsLCcv2Tu4oVK4qffvpJ/Xjnzp3CzMxMqFQqCaPSPWtra3H16lUhhBCtWrVSf8bEx8cLc3NzKUPTmXHjxgkHBwexZMkScebMGXH69Gnx008/CQcHBzFhwgSpwysQa2trceXKFfXj1NRUYWxsLB49eiRhVLr3008/CRMTE1GyZElRs2ZNkZWVJYQQYtGiRaJ58+YSR6ep2CYvb4qPjxd//fWXOHPmjNSh6J2ckxcHBwdx8uRJIYQQtWrVEmvXrhVCCBEbGyusrKykDE0nJk2aJJKSkqQOo9CYmZmpk08hhFCpVMLU1FTcvn1bwqh0z8/PT/Tq1UusW7dOKJVKce3aNSGEEAcOHBBubm7SBqcjzs7O4u+//86xPCwsTLi4uEgQke4oFArx4MEDjWVy/tx8l+PHj4vQ0FDx4sUL9bJt27aJQ4cOSRhVTsWut1F4eDiGDh2KmJgYjXFOypcvD1tbWzRq1AjLli1D06ZNJYyS8srf3x9ffvklPvjgA1y9ehXt27cHAFy4cMEg5hqJjIzEiBEjNIbNB151YezcuTPCw8Mlikw30tPTNXqFKRQKmJqayn6CuzctWLAAPXr0QFhYGL777jt4e3sDADZv3oxGjRpJHJ1uPHnyBJUrV86xvHLlyrJtU/e6N+c0UqlU2L9/P86fP69e1rFjRylC06k6derkGHco+3O1KCl2vY06duwIPz+/t7aHWLRoESIiIrBlyxY9Ryad12cPlZtnz57h+++/x61btzB48GD1pHfBwcEwNTXFd999J3GEBfO23kYPHz5E2bJlcwyuKDdGRkYYMGCARnL2008/4YsvvtD4opDrGCHvk5qaCmNjY4MY6btBgwZo0KBBjoHchg0bhmPHjqkbocuRkdH7m4caythZt2/fxtatW5GQkID09HSNdUXpfVjskhc3Nzfs2rXrrQPuXL58GQEBAUhISNBzZNJp164dVq1aBWdnZ6lDof/v7NmzAIBatWohPDxcY6bzrKws7Nq1C8uXL1c3Oper5s2bv7c3lUKhkH0NU3EQGRmJ9u3bo3z58vjwww+hUChw5MgR3Lp1Czt27GBttgzs378fHTt2hIeHB65cuYLq1avj5s2bEEKgdu3aRep9WOySF3Nzc5w/f15dbfum2NhY+Pj4ICUlRc+R6cabUwO8iyFMD5AtOTk5118KNWrUkCiignl9lOTc3qIWFhZYvHgx+vXrp+/QKB+ysrIwf/58/PHHH7lep4ZwWwV4NeL1Tz/9hMuXL0MIgapVq2LIkCFwcXGROjS9at++PVauXCm7H4T169dHmzZtMHnyZHWNvKOjI3r06IE2bdpg8ODBUoeoVuzavJQtWxbnzp17a/Jy9uxZ2V1wrytZsmSexwUxhCrOR48eoU+fPti1a1eu6+VaxuxRLT09PXH06FE4ODio15mamsLR0dEgukpry8bGBqdPn5bdLc6QkBCsXLkSo0aNwsSJE/Hdd9/h5s2bCAsLK3Kz9RaEi4sLpk6dKnUYkjt48KAsfwBfunQJGzduBACYmJggJSUFJUqUwOTJk9GpUycmL1Jq164dfvjhB7Rt2zZHv/WUlBQEBwejQ4cOEkVXcK9PDXDz5k2MGzcOffr0Uc9cGx0djbVr12L69OlShahT33zzDZ49e4aYmBj4+flhy5YtePDgAaZMmYK5c+dKHV6+ubm5AYDsx8fQNblWFP/2229YsWIF2rdvj5CQEHTr1g1eXl6oUaMGYmJiDGZsm2fPnuHo0aN4+PBhjmu3V69eEkVFeWVlZaVuLO/i4oK4uDhUq1YNAPDff/9JGVoOxe620YMHD1C7dm0YGxtj6NChqFSpEhQKBS5duoSffvoJWVlZOHnyJMqUKSN1qAXWsmVLfPnll+jWrZvG8g0bNuDnn3/GgQMHpAlMh5ydnfH333+jfv36sLGxwfHjx1GxYkVs3boVs2bNwqFDh6QOsUDWrVv3zvXF7QtBro3LrayscOnSJZQvXx7Ozs7Yvn07ateujevXr+ODDz7A8+fPpQ6xwP755x/06NEDSUlJsLa21qgBVigUBnNrLC/kep127twZ7du3x1dffYWxY8diy5Yt6NOnD0JDQ2FnZ4d9+/ZJHeL/kaSDtsRu3rwp2rZtK4yMjIRCoRAKhUIYGRmJtm3bihs3bkgdns5YWFioB8Z63ZUrV4SFhYUEEemetbW1+py5ubmpxyK4fv26QZSxZMmSGn9WVlZCoVAIMzMzYWdnJ3V4eifXsTUqVqwoYmJihBBCNGnSREyfPl0IIcSmTZuEg4ODlKHpTIUKFcSIESMMelyivJLrdRoXF6ce6ywpKUkMHjxY+Pj4iC5duoibN29KHJ2mYnfbCHhVJb9jxw48ffoUsbGxEEKgQoUKsLOzkzo0nXJ1dcWyZcty3D5Zvnw5XF1dJYpKtypVqoQrV67A3d0dtWrVwvLly+Hu7o5ly5bJuu1StqdPn+ZYdu3aNQwePBhjxoyRICLKjy5dumD//v1o0KABRowYgW7dumHVqlVISEiQ7TQWb7pz5w6GDx+eY0wiko/Xa4osLS2xZMkSCaN5t2J326g42bFjBz7++GN4eXmhYcOGAICYmBjExcXhr7/+Qrt27SSOsOB+++03ZGRkoE+fPjh16hRat26Nx48fw9TUFGvWrMFnn30mdYiF4vjx4/jiiy9w+fJlqUPRK7k22H1TTEwMjhw5Am9vb4MY2AwAAgMD8fnnn+PTTz+VOhTJyfW20ZuuX7+OlJQUVKlSJU9j3egTkxcDd+vWLSxdulSj6+KgQYMMpublTcnJybh8+TLKly+P0qVLSx1OoTl16hR8fX216hpf1CQmJmrdXd9QvhQMxdatW9X/f/ToESZPnoy+ffvCx8cnx8B7hpKk5cX06dMxePBg2Uzym5GRgSlTpuDkyZNo2LAhxo0bhy+++EI9YXGlSpWwY8eOIjVqOZMXoiLs9S8H4FVvm3v37uHHH3+Eq6srdu7cKVFkBff66MEtWrRAaGjoez/sDx06hHr16sHMzEw/QerI48ePYW9vD+DVD4oVK1YgJSUFHTt2lPXgbXn9NW4oo8+++X7MplAoYG5uDm9vb3h4eOg5qoILCgrCr7/+io4dOyIiIgLVq1fHlStXEBISAiMjI/zvf/+Dj48PfvvtN6lD/T+StbYhvTh48KDo0aOH+PDDD9WT3a1bt05ERUVJHFnBXb16VWzevFlcv35dCPFq8rCmTZuKunXriilTphjEzMTZDcpfb1hepkwZ0a1bN3H37l2pwysQGxsbcfHiRSHEq3I+fPhQ4oh07+zZs8LNzU0YGRmJSpUqiVOnTokyZcqIEiVKCBsbG2FsbCy2bNkidZiUR9nvwdzel9n/NmvWTDx58kTqULVSvnx5sX37diHEqw4dCoVC7NixQ73+wIEDomzZslKFl6uidROLdOqvv/5C69atYWFhgZMnT6r777948QLTpk2TOLqC2bJlC6pWrYru3bujSpUqWLduHT7++GNYWVmhTJkymDRpEmbNmiV1mAWmUqmgUqnw4MEDPHz4EFlZWbh//z42bNgg+wbJrVq1gp+fH/z8/AC8atTaokWLXP/kauzYsfDx8UFkZCSaN2+ODh06oF27dnj+/DmePn2KgQMHYsaMGVKHWSD//vtvjhrAdevWwcPDA46OjhgwYIDBTLS5d+9e1KtXD3v37sXz58/x/Plz7N27F/Xr18e2bdtw8OBBPH78GKNHj5Y6VK3cvXsXNWvWBABUrFgRZmZmGgO5VqxYEffv35cqvNxJnT1R4alVq5ZYu3atEEKz6172rz85q1OnjpgwYYJQqVTil19+ERYWFmL+/Pnq9cuXLxeVK1eWLkAdePr0qRgyZIiwt7cXRkZGwsjISNjb24uvv/5aPH36VOrwCiw5OVksXbpUjB49WigUCjFgwADxzTff5PonV/b29uqupy9evBAKhUIcO3ZMvf7SpUvC1tZWouh0o3Xr1mLGjBnqx2fPnhUmJibiyy+/FHPnzhVOTk4iODhYugB1qFq1auLw4cM5lh86dEhUrVpVCCHE3r17haurq75DKxCFQiEePHigfvxmV+/79+8LIyMjKUJ7q2LZVbq4uHLlCpo1a5ZjuY2NDZ49e6b/gHToypUr+P3336FQKNC7d2989dVXaNWqlXp9QEAAvvnmG+kCLKAnT57gww8/xJ07d9CjRw9UqVIFQghcunQJa9aswf79+3HkyBFZd++3sLDAoEGDALzqPTVz5kzZNHDMqydPnsDJyQkAUKJECVhZWWlMsmlnZ4cXL15IFZ5OnDlzBlOmTFE/3rRpExo0aIAVK1YAeDVkQ3BwMCZNmiRRhLoTFxeXayNzGxsbXL9+HQBQoUKFIjcabV7s3r1bPZO7SqXC/v37cf78eQAokt8XTF4MmLOzM2JjY3O0ED906JDse2tkj+IJvGo0aGFhoTG+hIWFhayrqidPngxTU1PExcXlGO158uTJCAgIwOTJkzF//nyJItSt7Gkt0tPTcePGDXh5ecHExDA+nt6cayyvc4/JxdOnTzWu0cjISLRp00b9uF69erh165YUoelcnTp1MGbMGKxbt04939ijR48wduxY1KtXD8CrcZjKlSsnZZj50rt3b43HAwcO1Hhc1K5bw/h0oFwNHDgQI0aMwC+//AKFQoG7d+8iOjoao0ePlv1kcAqFIsfw40XtzVUQYWFhWL58ea7TVDg5OWHWrFkYNGiQwSQvKSkpGDp0KNauXQsAuHr1Kjw9PTF8+HC4uLhg3LhxEkeYf3369FH3jkpNTcWgQYNgZWUFALJOsLOVKVMGN27cgKurK9LT03Hy5EmEhISo17948SJHt2m5WrVqFTp16oRy5crB1dUVCoUCCQkJ8PT0xN9//w0AePnyJSZOnChxpNqR4xxq7Cpt4L777jvMnz8fqampAAAzMzOMHj0a//vf/ySOrGCMjIxga2urTliePXsGGxsbdddNIQQSExNl2z3TzMwMcXFxb/0Fd/v2bXh7e6vPq9yNGDEChw8fxoIFC9CmTRucPXsWnp6e2Lp1K4KDg3Hq1CmpQ8yXvn375mm71atXF3IkhWfgwIE4d+4cZs6cibCwMKxduxZ3796FqakpgFcDSS5YsADHjh2TOFLdEEJg9+7duHr1KoQQqFy5Mvz9/YvcIG6FqX379li5cqWknQaYvBQDycnJuHjxIlQqFapWrYoSJUpIHVKBZf9Cf583q0LlomzZsvj999/RpEmTXNdHRUXh888/x507d/QcWeFwc3PD77//joYNG2oMRBcbG4vatWvLejA+bdy+fRsuLi6y+iJ89OgRAgMDcfjwYZQoUQJr165Fly5d1OtbtmyJhg0bYurUqRJGSbpUFAaLZPJiwPr164eFCxeq24ZkS0pKwrBhw/DLL79IFJn+bdy4ER07dlRX1xd1/fv3R2xsLPbu3av+BZstLS0NrVu3hpeXF1atWiVRhLplaWmJ8+fPw9PTU+OD8cyZM2jWrJlBzLqcF3Ke/uD58+coUaIEjI2NNZY/efIEJUqUyHEdy9X+/fuxf/9+PHz4MMftluLymVoUkhf5pPektbVr1yIlJSXH8pSUFKxbt06CiKQzcOBAPHjwQOow8iwkJARXrlxBhQoVMGvWLGzduhVbt27FjBkzUKFCBVy6dMkgem9kq1evHrZv365+nH07cMWKFfjwww+lCkvv5Pxb0tbWNkfiAgClSpUymMQlJCQEAQEB2L9/P/777z88ffpU44/0hw12DVBiYiKEEBBC4MWLFzA3N1evy8rKwo4dO+Do6ChhhPonty+FcuXKITo6GkOGDMH48ePV8SsUCvj7+6unBzAU06dPR5s2bXDx4kVkZmZi4cKFuHDhAqKjoxEZGSl1eEQAgGXLlmHNmjXo2bOn1KEUe0xeDFDJkiXVvW8qVqyYY71CodDoDUBFk4eHB3bu3ImnT5/i2rVrAABvb2+NcUIMRaNGjXD48GHMmTMHXl5e2LNnD2rXro3o6Gj4+PhIHR4RgFdd+Rs1aiR1GAQmLwYpIiICQgi0aNECf/31l8aXnampKdzc3ODi4iJhhKQNOzs71K9fX+owCp2Pj0+eG2ITSeHLL7/Ehg0bZNcV2hAxeTFAvr6+AKAee0FOPReo+EhMTFSPVvq+3kS5jWpqiAxprCJDlJqaip9//hn79u1DjRo1coxfM2/ePIki068JEyZIXgPM5MWAubm5AXjVVTohIQHp6eka62vUqCFFWEQAXtUo3bt3D46OjupbnW8SQkChUMh2vB5tya1tVnFz9uxZ1KpVCwDUQ+dnk2viuXXr1jxv27FjRwDA+PHjCyucPGPyYsAePXqEvn375pjxNVtx+UIAXiVyhjLKp6EIDw9X/3rLnh6guLt48SJv6RZhhniddu7cWeOxQqHQSKJfT8qK0ncGx3kxYD169MDNmzexYMEC+Pn5YcuWLXjw4AGmTJmCuXPnon379lKHWGCenp44duwY7O3tNZY/e/YMtWvXVk+WRqRvgYGBed42NDS0ECMhypt9+/bh22+/xbRp0/Dhhx9CoVDgyJEj+P777zFt2jT4+/tLHaIaa14MWHh4OP7++2/Uq1cPRkZGcHNzg7+/P2xsbDB9+nSDSF5u3ryZ66+BtLQ0gxl91lCdPXs2z9vK8RZn9gy9wKvbQVu2bIGtrS3q1q0LADhx4gSePXumVZJD+hcYGIg1a9bAxsbmvedK7knoN998g2XLlmmM7N26dWtYWlpiwIABuHTpkoTRaWLyYsCSkpLU47mUKlUKjx49QsWKFeHj44OTJ09KHF3BvH6f9vWp3IFXVZv79+/PMZs2FS21atXKUUWdG7m2eXl9vqJvv/0Wn376KZYtW6YeyC0rKwtDhgwpNo2R5er1OdRsbGxk27YlL+Li4jQ+S7PZ2tri5s2b+g/oHXjbyIDVq1cPU6ZMQevWrdG5c2d1jcuiRYuwefNmxMXFSR1ivmX3oMrty0+pVMLd3R1z585Fhw4dpAiP8iA+Pj7P22Y3PpcrBwcHHDp0CJUqVdJYfuXKFTRq1AiPHz+WKDKi/9OsWTMolUqsX79ePeni/fv30bNnT6SnpxepASNZ82LAvvnmG9y7dw8AEBwcjNatW+O3336Dqakp1qxZI21wBZQ9p4iHhweOHTuG0qVLSxwRaUvuCYk2MjMzcenSpRzJy6VLl3LMj0NFV4sWLRAaGoqSJUtqLE9MTETnzp0RHh4uTWA6smrVKgQGBsLNzQ3ly5cHACQkJKBixYoICwuTNrg3sOalGElOTsbly5dRvnx5g/6yf/bsWY4PFyr6fv31Vyxbtgw3btxAdHQ03NzcsGDBAnh4eKBTp05Sh1cgo0aNwpo1azBhwgQ0bNgQABATE4MZM2agV69exWZ8ELkzMjLC/fv3c0yv8vDhQ5QtWxYZGRkSRaY7KpUK+/btw+XLlyGEQNWqVdGqVasid7uMNS/FiKWlJWrXri11GDo1c+ZMuLu747PPPgMAfPLJJ/jrr7/g7OyMHTt2oGbNmhJHSHmxdOlS/PDDD/jmm28wdepUdRuXkiVLYsGCBbJPXubMmQMnJyfMnz9fXRvq7OyMsWPHIigoSOLo6H1eb1x+8eJF3L9/X/04KysLu3btQtmyZaUITWcyMzNhbm6O06dPIyAgAAEBAVKH9E6seTFgWVlZWLNmzVunb5d7FSfwqqv0+vXr0ahRI+zduxeffvopfv/9d/zxxx9ISEjAnj17pA6R8qBq1aqYNm0aOnfuDGtra5w5cwaenp44f/48mjdvjv/++0/qEHUmezRhNtSVDyMjI3XNQ25fmRYWFli8eDH69eun79B0ysvLC6GhobL40ceaFwM2YsQIrFmzBu3bt0f16tWLXLWfLty7d089u/K2bdvw6aefIiAgAO7u7mjQoIHE0VFe3bhxAx988EGO5WZmZkhKSpIgosLDpEV+bty4ASEEPD09cfToUTg4OKjXmZqawtHRUd2LTM6+//57jB8/HuvXr5d8+P/3YfJiwDZt2oQ//vgD7dq1kzqUQmNnZ4dbt27B1dUVu3btwpQpUwC8+nUkx+61xZWHhwdOnz6doxHvzp07UaVKFYmi0p0HDx5g9OjR6lrQN3+981ot2tzc3JCRkYFevXqhVKlSBtvYfNGiRYiNjYWLiwvc3NxgZWWlsb4oDbHB5MWAmZqawtvbW+owClVgYCC6d++OChUq4PHjx2jbti0A4PTp0wZfdkMyZswYfP3110hNTYUQAkePHsXGjRsxbdo0rFq1SurwCqxPnz5ISEjAxIkT4ezsbJC1oIZOqVTi77//xg8//CB1KIXmzakCijK2eTFgc+fOxfXr1/Hjjz8a7IdlRkYGFi1ahISEBPTp00d962HBggUoUaIEvvzyS4kjpLxasWIFpkyZglu3bgEAypYti5CQELRu3Vr2jSGtra0RFRWlntSP5Klv377w8fHBqFGjpA6l2GPyYsC6dOmCiIgIlCpVCtWqVcsxMaHch7LOyMjAgAEDMHHiRHh6ekodDunIf//9B5VKhaysLEybNg0rV65ESkqK1GEVSNWqVfHbb7/l2q6H5GPq1KmYM2cOWrZsiTp16uS4rTJ8+HCJIit+mLwYsL59+75z/evDl8tVyZIlcfLkSSYvMvXs2TN8/fXX2LNnD5RKJcaNG4ehQ4ciJCQEc+bMQdWqVTFq1Ch069ZN6lALZM+ePZg7dy6WL1/OaStkzMPD463rFAqFLCeCLVWqFK5evYrSpUvDzs7unbX0T5480WNk78bkhWSN1bjyNmTIEPzzzz/47LPPsGvXLly6dAmtW7dGamoqgoOD4evrK3WIOmFnZ4fk5GRkZmbC0tIyRy1oUfpSoOJl7dq1+Pzzz2FmZoa1a9e+c9vevXvrKar3Y/JCssZqXHlzc3PDqlWr0KpVK1y/fh3e3t4YPnw4FixYIHVoOiWnLwUiOWDyYsA++OCDXKsAFQoFzM3N4e3tjT59+sDPz0+C6HTDEKtxixOlUon4+Hi4uLgAeDUK9NGjR1G9enWJIyPK3e3bt7F161YkJCQgPT1dY50hTPOgUqkQGxub68CmzZo1kyiqnNhV2oC1adMGS5cuhY+PD+rXrw8hBI4fP46zZ8+iT58+uHjxIlq1aoXQ0FDZDr9+48YNqUOgAlCpVBq3UIyNjXPUnhmKrKwshIWF4dKlS1AoFKhatSo6duxoEIObFRf79+9Hx44d4eHhgStXrqB69eq4efMmhBAGMfVKTEwMunfvjvj4+BxjESkUiiI1HhFrXgzYV199hfLly2PixIkay6dMmYL4+HisWLECwcHB2L59O44fPy5RlFScGRkZoW3btjAzMwMA/PPPP2jRokWOBEbuPeNiY2PRrl073LlzB5UqVYIQAlevXoWrqyu2b98OLy8vqUOkPKhfvz7atGmDyZMnq6excHR0RI8ePdCmTRsMHjxY6hALpFatWqhYsSJCQkJyHY/I1tZWoshyYvJiwGxtbXHixIkcg7XFxsaiTp06eP78OS5fvox69erhxYsXEkWpvVGjRuF///sfrKys3ttQ1xCqcQ3Z+3rEZZN7z7h27dpBCIHffvtNPez648eP8cUXX8DIyAjbt2+XOELKC2tra5w+fRpeXl6ws7PDoUOHUK1aNZw5cwadOnXCzZs3pQ6xQKysrHDmzBlZDPDJ20YGzNzcHEeOHMlxIR45cgTm5uYAXlXbZ//qlYtTp07h8uXL+OCDD3Dq1Km3bmeoA/MZErknJXkVGRmJmJgYjfli7O3tMWPGDDRu3FjCyEgbVlZWSEtLAwC4uLggLi4O1apVAwCDmDy0QYMGiI2NZfJC0ho2bBgGDRqEEydOoF69elAoFDh69ChWrlyJCRMmAAB2794tu4GzIiIiYGxsjHv37iEiIgIA8Nlnn2HRokUoU6aMxNER5WRmZpZr7ebLly9hamoqQUSUHw0bNsThw4dRtWpVtG/fHkFBQTh37hxCQ0PRsGFDqcPLl7Nnz6r/P2zYMAQFBeH+/fvw8fHJ0aW/Ro0a+g7vrXjbyMD99ttv+PHHH3HlyhUAQKVKlTBs2DB0794dAJCSkqLufSQnRkZGuH//PhwdHQG8mqn39OnTHKyOiqRevXrh5MmTWLVqFerXrw8A+Pfff/HVV1+hTp06WLNmjbQBUp5cv34dL1++RI0aNZCcnIzRo0fj0KFD8Pb2xvz582U5YaORkREUCkWOBrrZstexwS6RDryZvGQ3nmPyQkXRs2fP0Lt3b/zzzz/qX7OZmZno2LEj1qxZU6QaQlLxEh8fn+dti1JyxttGJEsKhSJHmxa2caGiqmTJkvj7778RGxuLS5cuQQiBqlWryqJtAf0fT09PHDt2DPb29hrLnz17htq1a8tyXCk3Nzf069cPCxcuhLW1tdTh5BlrXgyMXOep0FZx6WJLREXHmzW+2R48eIDy5curG/PKTXYbwjfLVZSx5sXAzJ8/X509z58/32BrI94cTv2LL76QKBKi9+vatSvq1q2LcePGaSyfPXs2jh49ij///FOiyCgvtm7dqv7/7t27NW7zZWVlYf/+/bKecFOOdRiseSEiKmQODg4IDw+Hj4+PxvJz586hVatWePDggUSRUV4YGRkBQK4NW5VKJdzd3TF37lx06NBBivAKzMjICA8ePICDg4PUoeQZa14M2MmTJ6FUKtUfmH///TdWr16NqlWrYtKkSeyiSaQnb+sSrVQqkZiYKEFEpI3sOX48PDxw7NgxlC5dWuKIdK9ixYrvrakvSk0NmLwYsIEDB2LcuHHw8fHB9evX8dlnnyEwMBB//vknkpOTDW7mXqKiqnr16vj999/xww8/aCzftGkTqlatKlFUlFf//vsvnjx5ojGX2rp16xAcHIykpCR07twZixcvlt2An68LCQmRVa833jYyYLa2tjh58iS8vLwwc+ZMhIeHY/fu3Th8+DA+//xz3Lp1S+oQiYqFrVu34uOPP0b37t3RokULAK8m+du4cSP+/PNPdO7cWdoA6Z3atGkDPz8/fPvttwBe3e6rXbs2+vTpgypVqmD27NkYOHAgJk2aJG2g+fS2hshFGWteDJgQQl3duW/fPvX9WFdXV4MYyppILjp27IiwsDBMmzYNmzdvhoWFBWrUqIF9+/bB19dX6vDoPc6cOYMpU6aoH2/atAkNGjTAihUrALz6TA0ODpZt8iLHjh1MXgxY3bp1MWXKFLRq1QqRkZFYunQpAODGjRscRp9Iz9q3b4/27dtLHQblw9OnTzU+MyMjI9GmTRv143r16sm6JluON2CMpA6ACs+CBQtw8uRJDB06FN999516QKzNmzejUaNGEkdHVLw8e/ZMPa9YdsPHkydP4s6dOxJHRu9TpkwZdXuX9PR0nDx5Eh9++KF6/YsXL3LMAyQnKpVKVreMALZ5KZZSU1NhbGws6zcbkZycPXsWrVq1gq2tLW7evIkrV67A09MTEydORHx8PNatWyd1iPQOAwcOxLlz5zBz5kyEhYVh7dq1uHv3rroH2W+//YYFCxbg2LFjEkdafLDmxcBl/9obP368+tfexYsX8fDhQ4kjIyo+Ro0ahT59+uDatWsak6C2bdsWBw8elDAyyospU6bA2NgYvr6+WLFiBVasWKHR9f2XX35BQECAhBEWP6x5MWBnz55Fy5YtUbJkSf7aI5LQ6z3/Xp9END4+HpUqVUJqaqrUIVIePH/+HCVKlICxsbHG8idPnqBEiRIcO0uPWPNiwEaNGoW+ffvy1x6RxMzNzXMdjO7KlSuyGtW0uLO1tc2RuACv5pRj4qJfTF4M2LFjxzBw4MAcy8uWLYv79+9LEBFR8dSpUydMnjwZGRkZAF51TU1ISMC4cePw8ccfSxwdkfwweTFg/LVHVDTMmTMHjx49gqOjI1JSUuDr6wsvLy+UKFECU6dOlTo8ItlhmxcDNmDAADx69Ah//PEHSpUqhbNnz8LY2BidO3dGs2bNOD0AkZ6Fh4fj5MmTUKlUqFOnDlq2bCl1SESyxOTFgCUmJqJdu3a4cOECXrx4ARcXF9y/fx8ffvghduzYASsrK6lDJDJo2XPitG3bVr1s7dq1CA4ORnJyskHMiUMkBSYvxUBERAROnDgBlUqF2rVro1WrVlKHRFQstG3bFs2bN9eYE6dOnTro3bu3QcyJQyQVTg9goFQqFdasWYPQ0FDcvHkTCoUCHh4ecHJyghBClnNZEMnN6dOn8b///U/9eNOmTahfv77BzIlDJBU22DVAQgh07NgRX375Je7cuQMfHx9Uq1YN8fHx6NOnD7p06SJ1iETFgqHPiUMkFda8GKA1a9bg4MGD2L9/P/z8/DTWhYeHo3Pnzli3bh169eolUYRExUP2nDiurq7qOXFCQkLU6+U+Jw6RVFjzYoA2btyICRMm5EhcAKBFixYYN24cfvvtNwkiIype2rRpg3HjxiEqKgrjx4+HpaUlmjZtql5/9uxZeHl5SRghkTwxeTFAZ8+e1aiaflPbtm1x5swZPUZEVDxxThyiwsHeRgbI1NQU8fHxcHZ2znX93bt34eHhgbS0ND1HRlQ8cU4cIt1imxcDlJWVBROTt59aY2NjZGZm6jEiouLN1tY21+WlSpXScyREhoHJiwESQqBPnz5vHfiKNS5ERCRnTF4MUO/evd+7DXsaERGRXLHNCxEREckKexsRERGRrDB5ISIiIllh8kJERESywuSFiIiIZIXJCxEVWdkzop8+fVrqUIioCGHyQkSFpk+fPlAoFFAoFDAxMUH58uUxePBgPH36VOrQiEjGmLwQUaFq06YN7t27h5s3b2LlypX4559/MGTIEKnDIiIZY/JCRIXKzMwMTk5OKFeuHAICAvDZZ59hz549AACVSoXJkyejXLlyMDMzQ61atbBr1653Pt/FixfRrl07lChRAmXKlEHPnj3x33//6aMoRFREMHkhIr25fv06du3aBaVSCQBYuHAh5s6dizlz5uDs2bNo3bo1OnbsiGvXruW6/7179+Dr64tatWrh+PHj2LVrFx48eIBPP/1Un8UgIolxegAiKlTbtm1DiRIlkJWVhdTUVADAvHnzAABz5szBt99+i88//xwAMHPmTERERGDBggX46aefcjzX0qVLUbt2bUybNk297JdffoGrqyuuXr2KihUr6qFERCQ1Ji9EVKj8/PywdOlSJCcnY+XKlbh69SqGDRuGxMRE3L17F40bN9bYvnHjxjhz5kyuz3XixAlERESgRIkSOdbFxcUxeSEqJpi8EFGhsrKygre3NwBg0aJF8PPzQ0hICMaMGQMAUCgUGtsLIXIsy6ZSqfDRRx9h5syZOdY5OzvrOHIiKqrY5oWI9Co4OBhz5szBy5cv4eLigkOHDmmsP3LkCKpUqZLrvrVr1/5/7dkxrilAGIbh757WDjQUNGxCxxaUtAoJEVYgsRStUq9RaRQUFqBQ6BTi1CdR3Mq5k/s8yZR/8k/3TibH4zH1ej2NRuPHqVQqn1gf+AeIF+CjOp1O2u12lstlZrNZVqtV1ut1TqdTFotFDodDxuPx29nRaJTb7ZZ+v5/9fp/L5ZLtdpvhcJjn8/nhmwC/xbcR8HGTySSDwSDn8zn3+z3T6TTX6zWtViubzSbNZvPtXLVazW63y3w+T7fbzePxSK1WS6/Xy9eXtxj8L/68Xq/Xby8BAPC3PFUAgKKIFwCgKOIFACiKeAEAiiJeAICiiBcAoCjiBQAoingBAIoiXgCAoogXAKAo4gUAKMo3F01CxsXEpdsAAAAASUVORK5CYII="
},
"metadata": {}
}
@@ -353,40 +397,35 @@
"metadata": {}
},
{
- "cell_type": "code",
- "execution_count": 44,
+ "cell_type": "markdown",
"source": [
- "print(list(df['Weight'])[:20])"
- ],
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "[180.0, 215.0, 210.0, 210.0, 188.0, 176.0, 209.0, 200.0, 231.0, 180.0, 188.0, 180.0, 185.0, 160.0, 180.0, 185.0, 197.0, 189.0, 185.0, 219.0]\n"
- ]
- }
+ "> **Note**: This diagram suggests, that on average, height of first basemen is higher that height of second basemen. Later we will learn how we can test this hypothesis more formally, and how to demonstrate that our data is statistically significant to show that. \r\n",
+ "\r\n",
+ "Age, height and weight are all continuous random variables. What do you think their distribution is? A good way to find out is to plot the histogram of values: "
],
"metadata": {}
},
{
"cell_type": "code",
- "execution_count": 49,
+ "execution_count": 211,
"source": [
- "mean = df['Weight'].mean()\r\n",
- "var = df['Weight'].var()\r\n",
- "std = df['Weight'].std()\r\n",
- "print(f\"Mean = {mean}\\nVariance = {var}\\nStandard Deviation = {std}\")"
+ "df['Weight'].hist(bins=15)\r\n",
+ "plt.suptitle('Weight distribution of MLB Players')\r\n",
+ "plt.xlabel('Weight')\r\n",
+ "plt.ylabel('Count')\r\n",
+ "plt.show()"
],
"outputs": [
{
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "Mean = 201.6892545982575\n",
- "Variance = 440.6426848120547\n",
- "Standard Deviation = 20.991490771549664\n"
- ]
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "
"
+ ],
+ "image/svg+xml": "\r\n\r\n\r\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHgCAYAAABDx6wqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGB0lEQVR4nO3de3xU1b3///fkNhBIAiHmVkJAFFqBolzEA2gSIdxBRCtKVbBYORVoEdB6KRKsCsWKKBRse7gpRqj+AKl4wAAJF4EKQSpQi6gBFIKUiwkQHIZk/f7wmzkMuYckk6y8no/HPGDWXnvv9VnJbN7s2XvGYYwxAgAAsJSfrwcAAABQnQg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDuoNd599105HA4tX768yLKOHTvK4XBo3bp1RZa1bt1anTp1qtC+Ro0apZYtW1ZqnCkpKXI4HDp58mSZfV988UWtWrWqUvspdOjQITkcDi1evLjIGCoiLy9PKSkpysjIqNB6xe2rZcuWGjRoUIW2U5bU1FTNnj272GUOh0MpKSlVur+qtmHDBnXp0kWNGjWSw+Eo8ede+PMsraZf/OIXnj6XS0xMVPv27UsdR+HPq/Dh5+enmJgYDRgwQB999FG5amnZsqXXNho3bqxu3brpjTfeKDKexMTEcm0T8CXCDmqNxMREORwOpaene7WfPn1ae/fuVaNGjYos++abb/TVV18pKSmpQvuaMmWKVq5cedVjLktVhJ3iPPzww9q+fXuF1snLy9O0adMqHHYqs6/KKC3sbN++XQ8//HC1j6GyjDG65557FBgYqNWrV2v79u1KSEgodZ2QkBAtXrxYBQUFXu3nzp3TO++8o9DQ0Ksa09q1a7V9+3Zt3bpVr7zyio4fP67ExETt3r27XOv36NFD27dv1/bt27V48WI5HA6NHDlS8+fPv6pxAb4Q4OsBAIUiIiLUvn37Iv8Yb9q0SQEBARo9enSRsFP4vKJhp3Xr1lc1Vl9r3ry5mjdvXq37yMvLU3BwcI3sqyy33HKLT/dflmPHjun06dO688471atXr3KtM3z4cP3P//yPNmzYoOTkZE/78uXLlZ+fr6FDh2rp0qWVHlPnzp0VEREhSerevbtuvvlmtW7dWu+++265zoQ2adLEa9579+6t+Ph4zZo1S7/61a8qPa6aVPg7DHBmB7VKUlKSDhw4oOzsbE9bRkaGunbtqgEDBigzM1Nnz571Wubv769bb71V0g//w543b55uvPFGNWzYUE2bNtXdd9+tr776yms/xb2N9d1332n06NEKDw9X48aNNXDgQH311Vclvt3w7bff6r777lNYWJiioqL0i1/8Qjk5OZ7lDodD58+f15IlSzxvB5R1yv/YsWO65557FBISorCwMA0fPlzHjx8v0q+4t5Y2btyoxMRENWvWTA0bNlSLFi101113KS8vT4cOHdI111wjSZo2bZpnPKNGjfLa3u7du3X33XeradOmnkBY2ltmK1eu1E9/+lM1aNBA1157rV577TWv5YVnBA4dOuTVnpGRIYfD4Qm2iYmJWrNmjQ4fPuz19snlc3nlz2Dfvn2644471LRpUzVo0EA33nijlixZUux+3n77bT3zzDOKjY1VaGioevfurQMHDhRb05W2bt2qXr16KSQkRMHBwerevbvWrFnjWZ6SkuIJg7/97W/lcDjK9RZp27Zt1b17dy1cuNCrfeHChRo2bJjCwsLKNb7yKtxeYGBgpdZv0qSJ2rZtq8OHD5fab9q0aerWrZvCw8MVGhqqTp06acGCBbr8O6cLX2d5eXlF1r/99tvVrl07z/PyvqYL3+LbvHmzunfvruDgYP3iF7+QVPprA/UDYQe1SuEZmsvP7qSnpyshIUE9evSQw+HQli1bvJZ16tTJcyAfM2aMJkyYoN69e2vVqlWaN2+e9u/fr+7du+vbb78tcb8FBQUaPHiwUlNT9dvf/lYrV65Ut27d1K9fvxLXueuuu9SmTRv9f//f/6cnn3xSqampeuyxxzzLt2/froYNG2rAgAGetwPmzZtX4vYuXLig3r1768MPP9T06dP1zjvvKDo6WsOHDy9z3g4dOqSBAwcqKChICxcu1Nq1azVjxgw1atRIFy9eVExMjNauXSvph39oCsczZcoUr+0MGzZM1113nd555x29/vrrpe5zz549mjBhgh577DGtXLlS3bt3129+8xv98Y9/LHO8V5o3b5569Oih6Ohoz9hKe+vswIED6t69u/bv36/XXntNK1as0A033KBRo0Zp5syZRfo//fTTOnz4sP7nf/5Hf/nLX3Tw4EENHjxY+fn5pY5r06ZNuv3225WTk6MFCxbo7bffVkhIiAYPHuy5tuzhhx/WihUrJEnjx4/X9u3by/0W6ejRo7Vq1SqdOXPGU9e2bds0evTocq1fmvz8fF26dEkXL17UF198obFjx8rpdOruu++u1PbcbrcOHz7sCc0lOXTokMaMGaO//e1vWrFihYYNG6bx48fr97//vafPb37zG505c0apqale6/7rX/9Senq6xo4d62mryGs6Oztb999/v0aMGKEPPvhAjz76aJmvDdQTBqhFTp8+bfz8/MwjjzxijDHm5MmTxuFwmLVr1xpjjLn55pvN5MmTjTHGHDlyxEgyTzzxhDHGmO3btxtJ5uWXX/ba5tdff20aNmzo6WeMMSNHjjTx8fGe52vWrDGSzPz5873WnT59upFkpk6d6mmbOnWqkWRmzpzp1ffRRx81DRo0MAUFBZ62Ro0amZEjR5ar9vnz5xtJ5r333vNq/+Uvf2kkmUWLFhUZQ6F3333XSDJ79uwpcfv/+c9/itRy5faeffbZEpddLj4+3jgcjiL7S05ONqGhoeb8+fPGGGMWLVpkJJmsrCyvfunp6UaSSU9P97QNHDjQ62dyuSvHfe+99xqn02mOHDni1a9///4mODjYfPfdd177GTBggFe/v/3tb0aS2b59e7H7K3TLLbeYyMhIc/bsWU/bpUuXTPv27U3z5s09P+usrCwjybz00kulbu/KvmfPnjWNGzc2c+fONcYY8/jjj5tWrVqZgoICM3bs2CLznpCQYNq1a1fq9gt/Xlc+QkNDzYoVK8ocnzE//HwHDBhg3G63cbvdJisry4wcOdJIMo8//rjXeBISEkrcTn5+vnG73ea5554zzZo183ptJCQkmBtvvNGr/69+9SsTGhrqme+KvKYTEhKMJLNhwwavvuV5bcB+nNlBrdK0aVN17NjRc2Zn06ZN8vf3V48ePSRJCQkJnut0rrxe5/3335fD4dD999+vS5cueR7R0dFe2yzOpk2bJEn33HOPV/t9991X4jpDhgzxev7Tn/5U33//vU6cOFH+gi+Tnp6ukJCQItsdMWJEmeveeOONCgoK0iOPPKIlS5YUOcVfXnfddVe5+7Zr104dO3b0ahsxYoRyc3PLfRFsZW3cuFG9evVSXFycV/uoUaOUl5dX5KxQcT8rSaW+JXP+/Hn94x//0N13363GjRt72v39/fXAAw/om2++KfdbYSVp3Lixfvazn2nhwoW6dOmS3njjDT300EMVvtOuOOvXr9fOnTv18ccf6/3331fv3r117733lvus0wcffKDAwEAFBgaqVatW+tvf/qbx48fr+eefL3W9jRs3qnfv3goLC5O/v78CAwP17LPP6tSpU16vjd/85jfas2eP5w6x3Nxcvfnmmxo5cqRnviv6mm7atKluv/12r7aqem2gbiPsoNZJSkrS559/rmPHjik9PV2dO3f2HPwSEhL0ySefKCcnR+np6QoICFDPnj0l/XANjTFGUVFRnoN04WPHjh2l3ip+6tQpBQQEKDw83Ks9KiqqxHWaNWvm9dzpdEr64e2oyjh16lSx+4uOji5z3datW2v9+vWKjIzU2LFj1bp1a7Vu3VqvvvpqhcYQExNT7r7Fjauw7dSpUxXab0WdOnWq2LHGxsYWu//K/KzOnDkjY0yF9lMZo0eP1u7du/XCCy/oP//5j+c6qqvVsWNHdenSRV27dtXAgQP1zjvv6LrrrvN6i6g0PXv21M6dO7Vr1y7961//0nfffafXXntNQUFBJa7z8ccfq0+fPpKkv/71r/roo4+0c+dOPfPMM5K85/uOO+5Qy5Yt9ac//UnSD9d3nT9/3mt8FX1NF/ezqqrXBuo27sZCrZOUlKRZs2YpIyNDGRkZGjBggGdZYbDZvHmz58LlwiAUERHhuaan8B+zyxXXVqhZs2a6dOmSTp8+7RV4irs4uLo0a9ZMH3/8cZH28o7h1ltv1a233qr8/Hzt2rVLc+bM0YQJExQVFaV77723XNuoyBmF4sZV2FYYLho0aCBJcrlcXv3K8xlFpWnWrJnXReyFjh07Jkmeu5CuRtOmTeXn51ft++nRo4fatm2r5557TsnJyUXOVlUVPz8/tWvXTu+8845OnDihyMjIUvuHhYWpS5cuFdrHsmXLFBgYqPfff9/zs5dU7Mcv+Pn5aezYsXr66af18ssva968eerVq5fatm3r6VPR13RJv79V8dpA3caZHdQ6t912m/z9/fXuu+9q//79XncwhYWFee66OXTokNct54MGDZIxRkePHlWXLl2KPDp06FDiPgs/E+XKDzRctmzZVdXidDrLfaYnKSlJZ8+e1erVq73ar7yIsyz+/v7q1q2b53/MhW8pXe2Zpyvt379f//znP73aUlNTFRIS4rm1ufCupE8//dSr35U1Fo6vvGPr1auXNm7c6Akdhd544w0FBwdXya3qjRo1Urdu3bRixQqvcRUUFGjp0qVq3ry52rRpc9X7kaTf/e53Gjx4sCZNmlQl2ytOfn6+9u7dK6fTedWf4VMSh8OhgIAA+fv7e9ouXLigN998s9j+Dz/8sIKCgvTzn/9cBw4c0Lhx47yWX81rujglvTZgP87soNYpvF111apV8vPz81yvUyghIcHz4XOXh50ePXrokUce0UMPPaRdu3bptttuU6NGjZSdna2tW7eqQ4cOJX4+SL9+/dSjRw9NmjRJubm56ty5s7Zv3+75xFg/v8r9v6BDhw7KyMjQ3//+d8XExCgkJMTrf66Xe/DBB/XKK6/owQcf1AsvvKDrr79eH3zwQbGfGn2l119/XRs3btTAgQPVokULff/9955bmnv37i3phw+xi4+P13vvvadevXopPDxcERERlf4k6djYWA0ZMkQpKSmKiYnR0qVLlZaWpj/84Q+ezzbp2rWr2rZtq8mTJ+vSpUtq2rSpVq5cqa1btxY7VytWrND8+fPVuXNn+fn5lXhmYerUqXr//feVlJSkZ599VuHh4Xrrrbe0Zs0azZw5s8pu254+fbqSk5OVlJSkyZMnKygoSPPmzdO+ffv09ttvV8m1NZJ0//336/777y9X39zcXL377rtF2q+55hqvDzLMzMz0zMO3336rhQsX6t///rcee+wxr7MuVWngwIGaNWuWRowYoUceeUSnTp3SH//4xxLPqjZp0kQPPvig5s+fr/j4eA0ePNhr+dW8pguV57WBesCnl0cDJXjiiSeMJNOlS5ciy1atWmUkmaCgIM9dP5dbuHCh6datm2nUqJFp2LChad26tXnwwQfNrl27PH2uvBvLmB/uBHvooYdMkyZNTHBwsElOTjY7duwwksyrr77q6Vd4t8t//vMfr/WLu/Noz549pkePHiY4ONhIKvXOFWOM+eabb8xdd91lGjdubEJCQsxdd91ltm3bVubdWNu3bzd33nmniY+PN06n0zRr1swkJCSY1atXe21//fr15qabbjJOp9NI8twpVlJNxe3LmB/u1hk4cKB59913Tbt27UxQUJBp2bKlmTVrVpH1P//8c9OnTx8TGhpqrrnmGjN+/HjP3W+X3411+vRpc/fdd5smTZoYh8PhtU8VcxfZ3r17zeDBg01YWJgJCgoyHTt29JojY/7vbqx33nnHq73wjqgr+xdny5Yt5vbbb/f8Pt1yyy3m73//e7Hbq+jdWKUp6W4sFXOn1eW/W8XdjRUeHm66detmFi5caPLz88scY+HPtyzF3Y21cOFC07ZtW+N0Os21115rpk+fbhYsWFDsXXnGGJORkWEkmRkzZpS4n/K8pku6U628rw3YzWHMZZ/0BMBLamqqfv7zn+ujjz5S9+7dfT0cwDqTJk3S/Pnz9fXXXxe5kByoKryNBfw/b7/9to4ePaoOHTrIz89PO3bs0EsvvaTbbruNoANUsR07dujzzz/XvHnzNGbMGIIOqhVndoD/5/3331dKSoq++OILnT9/XjExMRo6dKief/75arugE6ivHA6HgoODNWDAAC1atMjrs4yAqkbYAQAAVuPWcwAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqwX4egC1QUFBgY4dO6aQkBA5HA5fDwcAAJSDMUZnz55VbGys/PxKPn9D2JF07NgxxcXF+XoYAACgEr7++ms1b968xOWEHUkhISGSfpis0NBQH4+marndbn344Yfq06ePAgMDfT2cGkf99bt+iTmo7/VLzIHN9efm5iouLs7z73hJCDuS562r0NBQK8NOcHCwQkNDrfslLw/qr9/1S8xBfa9fYg7qQ/1lXYLCBcoAAMBqhB0AAGA1n4ad6dOnq2vXrgoJCVFkZKSGDh2qAwcOePUxxiglJUWxsbFq2LChEhMTtX//fq8+LpdL48ePV0REhBo1aqQhQ4bom2++qclSAABALeXTsLNp0yaNHTtWO3bsUFpami5duqQ+ffro/Pnznj4zZ87UrFmzNHfuXO3cuVPR0dFKTk7W2bNnPX0mTJiglStXatmyZdq6davOnTunQYMGKT8/3xdlAQCAWsSnFyivXbvW6/miRYsUGRmpzMxM3XbbbTLGaPbs2XrmmWc0bNgwSdKSJUsUFRWl1NRUjRkzRjk5OVqwYIHefPNN9e7dW5K0dOlSxcXFaf369erbt2+N1wUAAGqPWnU3Vk5OjiQpPDxckpSVlaXjx4+rT58+nj5Op1MJCQnatm2bxowZo8zMTLndbq8+sbGxat++vbZt21Zs2HG5XHK5XJ7nubm5kn64Yt3tdldLbb5SWI9tdZUX9dfv+iXmoL7XLzEHNtdf3ppqTdgxxmjixInq2bOn2rdvL0k6fvy4JCkqKsqrb1RUlA4fPuzpExQUpKZNmxbpU7j+laZPn65p06YVaf/www8VHBx81bXURmlpab4egk9Rf/2uX2IO6nv9EnNgY/15eXnl6ldrws64ceP06aefauvWrUWWXXn/vDGmzHvqS+vz1FNPaeLEiZ7nhR9K1KdPHys/ZyctLU3JycnWfr5Caai/ftcvMQf1vX6JObC5/sJ3ZspSK8LO+PHjtXr1am3evNnr456jo6Ml/XD2JiYmxtN+4sQJz9me6OhoXbx4UWfOnPE6u3PixAl179692P05nU45nc4i7YGBgdb9IhSyubbyoP76Xb/EHNT3+iXmwMb6y1uPT+/GMsZo3LhxWrFihTZu3KhWrVp5LW/VqpWio6O9Tr1dvHhRmzZt8gSZzp07KzAw0KtPdna29u3bV2LYAQAA9YdPz+yMHTtWqampeu+99xQSEuK5xiYsLEwNGzaUw+HQhAkT9OKLL+r666/X9ddfrxdffFHBwcEaMWKEp+/o0aM1adIkNWvWTOHh4Zo8ebI6dOjguTsLAADUXz4NO/Pnz5ckJSYmerUvWrRIo0aNkiQ98cQTunDhgh599FGdOXNG3bp104cffuj1pV+vvPKKAgICdM899+jChQvq1auXFi9eLH9//5oqBQAA1FI+DTvGmDL7OBwOpaSkKCUlpcQ+DRo00Jw5czRnzpwqHB0AALAB340FAACsRtgBAABWqxW3ngOouJZPrimzj9PfaObNUvuUdXLll/7ZVOV1aMbAKtkOANQUzuwAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKwW4Mudb968WS+99JIyMzOVnZ2tlStXaujQoZ7lDoej2PVmzpypxx9/XJKUmJioTZs2eS0fPny4li1bVm3jBi7X8sk1vh4CAKAUPj2zc/78eXXs2FFz584tdnl2drbXY+HChXI4HLrrrru8+v3yl7/06vfnP/+5JoYPAADqAJ+e2enfv7/69+9f4vLo6Giv5++9956SkpJ07bXXerUHBwcX6QsAACD5OOxUxLfffqs1a9ZoyZIlRZa99dZbWrp0qaKiotS/f39NnTpVISEhJW7L5XLJ5XJ5nufm5kqS3G633G531Q/ehwrrsa2u8qqJ+p3+ptq2fbWcfsbrz6pQ136XeA3U7/ol5sDm+stbk8MYUyuO1A6Ho8g1O5ebOXOmZsyYoWPHjqlBgwae9r/+9a9q1aqVoqOjtW/fPj311FO67rrrlJaWVuK+UlJSNG3atCLtqampCg4OvupaAABA9cvLy9OIESOUk5Oj0NDQEvvVmbDz4x//WMnJyZozZ06p28nMzFSXLl2UmZmpTp06FdunuDM7cXFxOnnyZKmTVRe53W6lpaUpOTlZgYGBvh5OjauJ+tunrKuW7VYFp5/R77sUaMouP7kKir/gv6L2pfStku3UFF4D9bt+iTmwuf7c3FxFRESUGXbqxNtYW7Zs0YEDB7R8+fIy+3bq1EmBgYE6ePBgiWHH6XTK6XQWaQ8MDLTuF6GQzbWVR3XW78qvmhBRnVwFjiobZ139PeI1UL/rl5gDG+svbz114nN2FixYoM6dO6tjx45l9t2/f7/cbrdiYmJqYGQAAKC28+mZnXPnzumLL77wPM/KytKePXsUHh6uFi1aSPrhFNU777yjl19+ucj6X375pd566y0NGDBAERER+te//qVJkybppptuUo8ePWqsDgAAUHv5NOzs2rVLSUlJnucTJ06UJI0cOVKLFy+WJC1btkzGGN13331F1g8KCtKGDRv06quv6ty5c4qLi9PAgQM1depU+fv710gNAACgdvNp2ElMTFRZ10c/8sgjeuSRR4pdFhcXV+TTkwEAAC5XJ67ZAQAAqCzCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwWoAvd75582a99NJLyszMVHZ2tlauXKmhQ4d6lo8aNUpLlizxWqdbt27asWOH57nL5dLkyZP19ttv68KFC+rVq5fmzZun5s2b11QZQL3S8sk1PtnvoRkDfbJfAHWfT8/snD9/Xh07dtTcuXNL7NOvXz9lZ2d7Hh988IHX8gkTJmjlypVatmyZtm7dqnPnzmnQoEHKz8+v7uEDAIA6wKdndvr376/+/fuX2sfpdCo6OrrYZTk5OVqwYIHefPNN9e7dW5K0dOlSxcXFaf369erbt2+VjxkAANQtPg075ZGRkaHIyEg1adJECQkJeuGFFxQZGSlJyszMlNvtVp8+fTz9Y2Nj1b59e23btq3EsONyueRyuTzPc3NzJUlut1tut7saq6l5hfXYVld51UT9Tn9Tbdu+Wk4/4/VnXVbZnyGvgfpdv8Qc2Fx/eWtyGGNqxVHQ4XAUuWZn+fLlaty4seLj45WVlaUpU6bo0qVLyszMlNPpVGpqqh566CGv4CJJffr0UatWrfTnP/+52H2lpKRo2rRpRdpTU1MVHBxcpXUBAIDqkZeXpxEjRignJ0ehoaEl9qvVZ3aGDx/u+Xv79u3VpUsXxcfHa82aNRo2bFiJ6xlj5HA4Slz+1FNPaeLEiZ7nubm5iouLU58+fUqdrLrI7XYrLS1NycnJCgwM9PVwalxN1N8+ZV21bLcqOP2Mft+lQFN2+clVUPJroi7Yl1K5t6V5DdTv+iXmwOb6C9+ZKUutDjtXiomJUXx8vA4ePChJio6O1sWLF3XmzBk1bdrU0+/EiRPq3r17idtxOp1yOp1F2gMDA637RShkc22FirtLyOlvNPNm6aYXNsqVX13/2Nf+EOEqcFRj/TXjan9/68NroDT1vX6JObCx/vLWU6c+Z+fUqVP6+uuvFRMTI0nq3LmzAgMDlZaW5umTnZ2tffv2lRp2AABA/eHTMzvnzp3TF1984XmelZWlPXv2KDw8XOHh4UpJSdFdd92lmJgYHTp0SE8//bQiIiJ05513SpLCwsI0evRoTZo0Sc2aNVN4eLgmT56sDh06eO7OAgAA9ZtPw86uXbuUlJTkeV54Hc3IkSM1f/587d27V2+88Ya+++47xcTEKCkpScuXL1dISIhnnVdeeUUBAQG65557PB8quHjxYvn7+9d4PQAAoPbxadhJTExUaTeDrVtX9oWfDRo00Jw5czRnzpyqHBoAALBEnbpmBwAAoKIIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaj4NO5s3b9bgwYMVGxsrh8OhVatWeZa53W799re/VYcOHdSoUSPFxsbqwQcf1LFjx7y2kZiYKIfD4fW49957a7gSAABQW/k07Jw/f14dO3bU3LlziyzLy8vT7t27NWXKFO3evVsrVqzQ559/riFDhhTp+8tf/lLZ2dmex5///OeaGD4AAKgDAny58/79+6t///7FLgsLC1NaWppX25w5c3TzzTfryJEjatGihac9ODhY0dHR1TpWAABQN/k07FRUTk6OHA6HmjRp4tX+1ltvaenSpYqKilL//v01depUhYSElLgdl8sll8vleZ6bmyvph7fO3G53tYzdVwrrsa2u4jj9TdE2P+P1Z31jU/2V/R2uT6+B4tT3+iXmwOb6y1uTwxhTK46CDodDK1eu1NChQ4td/v3336tnz5768Y9/rKVLl3ra//rXv6pVq1aKjo7Wvn379NRTT+m6664rclbocikpKZo2bVqR9tTUVAUHB191LQAAoPrl5eVpxIgRysnJUWhoaIn96kTYcbvd+tnPfqYjR44oIyOj1IIyMzPVpUsXZWZmqlOnTsX2Ke7MTlxcnE6ePFnqtusit9uttLQ0JScnKzAw0NfDqVbtU9YVaXP6Gf2+S4Gm7PKTq8Dhg1H5lk3170vpW6n16tNroDj1vX6JObC5/tzcXEVERJQZdmr921hut1v33HOPsrKytHHjxjLDSKdOnRQYGKiDBw+WGHacTqecTmeR9sDAQOt+EQrZXFshV37J/5i7ChylLredDfVf7e9vfXgNlKa+1y8xBzbWX956anXYKQw6Bw8eVHp6upo1a1bmOvv375fb7VZMTEwNjBAAANR2Pg07586d0xdffOF5npWVpT179ig8PFyxsbG6++67tXv3br3//vvKz8/X8ePHJUnh4eEKCgrSl19+qbfeeksDBgxQRESE/vWvf2nSpEm66aab1KNHD1+VBQAAahGfhp1du3YpKSnJ83zixImSpJEjRyolJUWrV6+WJN14441e66WnpysxMVFBQUHasGGDXn31VZ07d05xcXEaOHCgpk6dKn9//xqrAwAA1F4+DTuJiYkq7frosq6djouL06ZNm6p6WAAAwCJ8NxYAALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgtUqFnWuvvVanTp0q0v7dd9/p2muvvepBAQAAVJVKhZ1Dhw4pPz+/SLvL5dLRo0evelAAAABVJaAinVevXu35+7p16xQWFuZ5np+frw0bNqhly5ZVNjgAAICrVaGwM3ToUEmSw+HQyJEjvZYFBgaqZcuWevnll6tscAAAAFerQmGnoKBAktSqVSvt3LlTERER1TIoAACAqlKhsFMoKyurqscBAABQLSoVdiRpw4YN2rBhg06cOOE541No4cKFVz0wAACAqlCpsDNt2jQ999xz6tKli2JiYuRwOKp6XAAAAFWiUmHn9ddf1+LFi/XAAw9U9XgAAACqVKU+Z+fixYvq3r17VY8FAACgylUq7Dz88MNKTU2t6rEAAABUuUq9jfX999/rL3/5i9avX6+f/vSnCgwM9Fo+a9asKhkcAADA1apU2Pn000914403SpL27dvntYyLlQEAQG1SqbCTnp5e1eMAAACoFpW6ZgcAAKCuqNSZnaSkpFLfrtq4cWOlBwQAAFCVKhV2Cq/XKeR2u7Vnzx7t27evyBeEAgAA+FKlws4rr7xSbHtKSorOnTt3VQMCAACoSlV6zc7999/P92IBAIBapUrDzvbt29WgQYNy99+8ebMGDx6s2NhYORwOrVq1ymu5MUYpKSmKjY1Vw4YNlZiYqP3793v1cblcGj9+vCIiItSoUSMNGTJE33zzTVWUAwAALFCpt7GGDRvm9dwYo+zsbO3atUtTpkwp93bOnz+vjh076qGHHtJdd91VZPnMmTM1a9YsLV68WG3atNHzzz+v5ORkHThwQCEhIZKkCRMm6O9//7uWLVumZs2aadKkSRo0aJAyMzPl7+9fmfIA1EItn1xTqfWc/kYzb5bap6yTK7/inwN2aMbASu0XQO1RqbATFhbm9dzPz09t27bVc889pz59+pR7O/3791f//v2LXWaM0ezZs/XMM894wtWSJUsUFRWl1NRUjRkzRjk5OVqwYIHefPNN9e7dW5K0dOlSxcXFaf369erbt2+x23a5XHK5XJ7nubm5kn640Nrtdpd7/HVBYT221VUcp78p2uZnvP6sb+p7/dLVz0Fdf+3Up2NASer7HNhcf3lrchhjasVR0OFwaOXKlRo6dKgk6auvvlLr1q21e/du3XTTTZ5+d9xxh5o0aaIlS5Zo48aN6tWrl06fPq2mTZt6+nTs2FFDhw7VtGnTit1XSkpKsctSU1MVHBxctYUBAIBqkZeXpxEjRignJ0ehoaEl9qvUmZ1CmZmZ+uyzz+RwOHTDDTd4hZKrdfz4cUlSVFSUV3tUVJQOHz7s6RMUFOQVdAr7FK5fnKeeekoTJ070PM/NzVVcXJz69OlT6mTVRW63W2lpaUpOTi7yHWa2aZ+yrkib08/o910KNGWXn1wF9e+rTOp7/dLVz8G+lOLPENcV9ekYUJL6Pgc211/4zkxZKhV2Tpw4oXvvvVcZGRlq0qSJjDHKyclRUlKSli1bpmuuuaYymy3WlR9eaIwp8/u3yurjdDrldDqLtAcGBlr3i1DI5toKlXY9hqvAUanrNWxR3+uXKj8Htrxu6sMxoCz1fQ5srL+89VTqbqzx48crNzdX+/fv1+nTp3XmzBnt27dPubm5+vWvf12ZTRYRHR0tSUXO0Jw4ccJztic6OloXL17UmTNnSuwDAADqt0qFnbVr12r+/Pn6yU9+4mm74YYb9Kc//Un/+7//WyUDa9WqlaKjo5WWluZpu3jxojZt2qTu3btLkjp37qzAwECvPtnZ2dq3b5+nDwAAqN8q9TZWQUFBsaeOAgMDVVBQUO7tnDt3Tl988YXneVZWlvbs2aPw8HC1aNFCEyZM0Isvvqjrr79e119/vV588UUFBwdrxIgRkn64K2z06NGaNGmSmjVrpvDwcE2ePFkdOnTw3J0FAADqt0qFndtvv12/+c1v9Pbbbys2NlaSdPToUT322GPq1atXubeza9cuJSUleZ4XXjQ8cuRILV68WE888YQuXLigRx99VGfOnFG3bt304Ycfej5jR/rhqysCAgJ0zz336MKFC+rVq5cWL17MZ+wAAABJlQw7c+fO1R133KGWLVsqLi5ODodDR44cUYcOHbR06dJybycxMVGl3fnucDiUkpKilJSUEvs0aNBAc+bM0Zw5cypSAgAAqCcqFXbi4uK0e/dupaWl6d///reMMbrhhht46wgAANQ6FbpAeePGjbrhhhs897UnJydr/Pjx+vWvf62uXbuqXbt22rJlS7UMFAAAoDIqFHZmz56tX/7yl8V+8F5YWJjGjBmjWbNmVdngAAAArlaFws4///lP9evXr8Tlffr0UWZm5lUPCgAAoKpUKOx8++23pX5aYUBAgP7zn/9c9aAAAACqSoXCzo9+9CPt3bu3xOWffvqpYmJirnpQAAAAVaVCYWfAgAF69tln9f333xdZduHCBU2dOlWDBg2qssEBAABcrQrdev673/1OK1asUJs2bTRu3Di1bdtWDodDn332mf70pz8pPz9fzzzzTHWNFQAAoMIqFHaioqK0bds2/epXv9JTTz3l+UBAh8Ohvn37at68eXwBJwAAqFUq/KGC8fHx+uCDD3TmzBl98cUXMsbo+uuvV9OmTatjfAAAAFelUp+gLElNmzZV165dq3IsAAAAVa5CFygDAADUNYQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAq9X6sNOyZUs5HI4ij7Fjx0qSRo0aVWTZLbfc4uNRAwCA2iLA1wMoy86dO5Wfn+95vm/fPiUnJ+tnP/uZp61fv35atGiR53lQUFCNjhEAANRetT7sXHPNNV7PZ8yYodatWyshIcHT5nQ6FR0dXe5tulwuuVwuz/Pc3FxJktvtltvtvsoR1y6F9dhWV3Gc/qZom5/x+rO+qe/1S1c/B3X9tVOfjgElqe9zYHP95a3JYYypM0fBixcvKjY2VhMnTtTTTz8t6Ye3sVatWqWgoCA1adJECQkJeuGFFxQZGVnidlJSUjRt2rQi7ampqQoODq628QMAgKqTl5enESNGKCcnR6GhoSX2q1Nh529/+5tGjBihI0eOKDY2VpK0fPlyNW7cWPHx8crKytKUKVN06dIlZWZmyul0Frud4s7sxMXF6eTJk6VOVl3kdruVlpam5ORkBQYG+no41ap9yroibU4/o993KdCUXX5yFTh8MCrfqu/1S1c/B/tS+lbDqGpOfToGlKS+z4HN9efm5ioiIqLMsFPr38a63IIFC9S/f39P0JGk4cOHe/7evn17denSRfHx8VqzZo2GDRtW7HacTmexQSgwMNC6X4RCNtdWyJVf8j9krgJHqcttV9/rlyo/B9dP+bAaRlO2QzMGVun26sMxoCz1fQ5srL+89dSZsHP48GGtX79eK1asKLVfTEyM4uPjdfDgwRoaGQAAqM3qTNhZtGiRIiMjNXBg6f/bOXXqlL7++mvFxMTU0MhwpZZPrvH1EAAA8Kj1n7MjSQUFBVq0aJFGjhypgID/y2fnzp3T5MmTtX37dh06dEgZGRkaPHiwIiIidOedd/pwxAAAoLaoE2d21q9fryNHjugXv/iFV7u/v7/27t2rN954Q999951iYmKUlJSk5cuXKyQkxEejBQAAtUmdCDt9+vRRcTeNNWzYUOvWFb0DBwAAoFCdeBsLAACgsgg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqtTrspKSkyOFweD2io6M9y40xSklJUWxsrBo2bKjExETt37/fhyMGAAC1Ta0OO5LUrl07ZWdnex579+71LJs5c6ZmzZqluXPnaufOnYqOjlZycrLOnj3rwxEDAIDaJMDXAyhLQECA19mcQsYYzZ49W88884yGDRsmSVqyZImioqKUmpqqMWPGlLhNl8sll8vleZ6bmytJcrvdcrvdVVyBbxXWU5N1Of1Nje2rLE4/4/VnfVPf65fq7hxU1WvWF8eA2qa+z4HN9Ze3JocxptYeAVJSUvTSSy8pLCxMTqdT3bp104svvqhrr71WX331lVq3bq3du3frpptu8qxzxx13qEmTJlqyZEmp2502bVqR9tTUVAUHB1dLLQAAoGrl5eVpxIgRysnJUWhoaIn9anXY+d///V/l5eWpTZs2+vbbb/X888/r3//+t/bv368DBw6oR48eOnr0qGJjYz3rPPLIIzp8+LDWrVtX4naLO7MTFxenkydPljpZdZHb7VZaWpqSk5MVGBhYI/tsn1Ly3Nc0p5/R77sUaMouP7kKHL4eTo2r7/VLdXcO9qX0rZLt+OIYUNvU9zmwuf7c3FxFRESUGXZq9dtY/fv39/y9Q4cO+q//+i+1bt1aS5Ys0S233CJJcji8D17GmCJtV3I6nXI6nUXaAwMDrftFKFSTtbnya98/KK4CR60cV02p7/VLdW8Oqvr1avPxrbzq+xzYWH9566n1FyhfrlGjRurQoYMOHjzouY7n+PHjXn1OnDihqKgoXwwPAADUQnUq7LhcLn322WeKiYlRq1atFB0drbS0NM/yixcvatOmTerevbsPRwkAAGqTWv021uTJkzV48GC1aNFCJ06c0PPPP6/c3FyNHDlSDodDEyZM0Isvvqjrr79e119/vV588UUFBwdrxIgRvh46AACoJWp12Pnmm29033336eTJk7rmmmt0yy23aMeOHYqPj5ckPfHEE7pw4YIeffRRnTlzRt26ddOHH36okJAQH48cAADUFrU67CxbtqzU5Q6HQykpKUpJSamZAQEAgDqnTl2zAwAAUFGEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwWq3+biwAqK9aPrmmSrbj9DeaebPUPmWdXPmOMvsfmjGwSvYL1Cac2QEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWC/D1AFB9Wj65Rk5/o5k3S+1T1smV7/D1kAAAqHGc2QEAAFYj7AAAAKsRdgAAgNUIOwAAwGq1OuxMnz5dXbt2VUhIiCIjIzV06FAdOHDAq8+oUaPkcDi8HrfccouPRgwAAGqbWh12Nm3apLFjx2rHjh1KS0vTpUuX1KdPH50/f96rX79+/ZSdne15fPDBBz4aMQAAqG1q9a3na9eu9Xq+aNEiRUZGKjMzU7fddpun3el0Kjo6uqaHBwAA6oBaHXaulJOTI0kKDw/3as/IyFBkZKSaNGmihIQEvfDCC4qMjCxxOy6XSy6Xy/M8NzdXkuR2u+V2u6th5L7h9Ddy+pkf/v7//qxvqL9+1y8xBxWt36ZjYKHCmmysrTxsrr+8NTmMMXXiCGCM0R133KEzZ85oy5Ytnvbly5ercePGio+PV1ZWlqZMmaJLly4pMzNTTqez2G2lpKRo2rRpRdpTU1MVHBxcbTUAAICqk5eXpxEjRignJ0ehoaEl9qszYWfs2LFas2aNtm7dqubNm5fYLzs7W/Hx8Vq2bJmGDRtWbJ/izuzExcXp5MmTpU5WXdM+ZZ2cfka/71KgKbv85Cqof5+gTP31u36JOaho/ftS+tbAqGqW2+1WWlqakpOTFRgY6Ovh1Dib68/NzVVERESZYadOvI01fvx4rV69Wps3by416EhSTEyM4uPjdfDgwRL7OJ3OYs/6BAYGWvWLcPnXQ7gKHPX66yKov37XLzEH5a3fpmPglWw7xleUjfWXt55aHXaMMRo/frxWrlypjIwMtWrVqsx1Tp06pa+//loxMTE1MEIAsEvLJ9f4ZL+HZgz0yX5RP9TqW8/Hjh2rpUuXKjU1VSEhITp+/LiOHz+uCxcuSJLOnTunyZMna/v27Tp06JAyMjI0ePBgRURE6M477/Tx6AEAQG1Qq8/szJ8/X5KUmJjo1b5o0SKNGjVK/v7+2rt3r9544w199913iomJUVJSkpYvX66QkBAfjBgAANQ2tTrslHXtdMOGDbVu3boaGg0AAKiLavXbWAAAAFeLsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGC1AF8PwHYtn1zj6yEAAFCvcWYHAABYjTM7AACfq86z4E5/o5k3S+1T1smV7/BadmjGwGrbL2oPzuwAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFaz5kMF582bp5deeknZ2dlq166dZs+erVtvvdXXwwIAoIia/Cqhyz9U8cALg2psv7WJFWd2li9frgkTJuiZZ57RJ598oltvvVX9+/fXkSNHfD00AADgY1ac2Zk1a5ZGjx6thx9+WJI0e/ZsrVu3TvPnz9f06dN9PDoAQG1V376s2Vf1+vprOep82Ll48aIyMzP15JNPerX36dNH27ZtK3Ydl8sll8vleZ6TkyNJOn36tNxud5WOL+DS+SrdXoX3X2CUl1egALef8gscZa9gGeqv3/VLzEF9r19iDmpD/adOnaqW7Z49e1aSZIwpvaOp444ePWokmY8++sir/YUXXjBt2rQpdp2pU6caSTx48ODBgwcPCx5ff/11qVmhzp/ZKeRweKdVY0yRtkJPPfWUJk6c6HleUFCg06dPq1mzZiWuU1fl5uYqLi5OX3/9tUJDQ309nBpH/fW7fok5qO/1S8yBzfUbY3T27FnFxsaW2q/Oh52IiAj5+/vr+PHjXu0nTpxQVFRUses4nU45nU6vtiZNmlTXEGuF0NBQ637JK4L663f9EnNQ3+uXmANb6w8LCyuzT52/GysoKEidO3dWWlqaV3taWpq6d+/uo1EBAIDaos6f2ZGkiRMn6oEHHlCXLl30X//1X/rLX/6iI0eO6L//+799PTQAAOBjVoSd4cOH69SpU3ruueeUnZ2t9u3b64MPPlB8fLyvh+ZzTqdTU6dOLfK2XX1B/fW7fok5qO/1S8xBfa9fkhzGlHW/FgAAQN1V56/ZAQAAKA1hBwAAWI2wAwAArEbYAQAAViPs1EGbN2/W4MGDFRsbK4fDoVWrVhXp89lnn2nIkCEKCwtTSEiIbrnlFq9vgXe5XBo/frwiIiLUqFEjDRkyRN98800NVlF5ZdV/7tw5jRs3Ts2bN1fDhg31k5/8RPPnz/fqU5frnz59urp27aqQkBBFRkZq6NChOnDggFcfY4xSUlIUGxurhg0bKjExUfv37/fqY/McuN1u/fa3v1WHDh3UqFEjxcbG6sEHH9SxY8e8tlNX56A8vwOXGzNmjBwOh2bPnu3Vbnv9Nh8HyzMHth8LK4KwUwedP39eHTt21Ny5c4td/uWXX6pnz5768Y9/rIyMDP3zn//UlClT1KBBA0+fCRMmaOXKlVq2bJm2bt2qc+fOadCgQcrPz6+pMiqtrPofe+wxrV27VkuXLtVnn32mxx57TOPHj9d7773n6VOX69+0aZPGjh2rHTt2KC0tTZcuXVKfPn10/vz/fenszJkzNWvWLM2dO1c7d+5UdHS0kpOTPV+aJ9k9B3l5edq9e7emTJmi3bt3a8WKFfr88881ZMgQr+3U1Tkoz+9AoVWrVukf//hHsR+nb3P9th8HyzMHth8LK6QqvowTviPJrFy50qtt+PDh5v777y9xne+++84EBgaaZcuWedqOHj1q/Pz8zNq1a6trqNWiuPrbtWtnnnvuOa+2Tp06md/97nfGGLvqN8aYEydOGElm06ZNxhhjCgoKTHR0tJkxY4anz/fff2/CwsLM66+/boyxfw6K8/HHHxtJ5vDhw8YYu+agpPq/+eYb86Mf/cjs27fPxMfHm1deecWzzPb669Nx0Jji56C+HQtLw5kdyxQUFGjNmjVq06aN+vbtq8jISHXr1s3rrZ7MzEy53W716dPH0xYbG6v27dtr27ZtPhh11erZs6dWr16to0ePyhij9PR0ff755+rbt68k++rPycmRJIWHh0uSsrKydPz4ca/6nE6nEhISPPXZPgcl9XE4HJ7vwbNpDoqrv6CgQA888IAef/xxtWvXrsg6NtdfH4+Dxf0O1LdjYWkIO5Y5ceKEzp07pxkzZqhfv3768MMPdeedd2rYsGHatGmTJOn48eMKCgpS06ZNvdaNiooq8oWqddFrr72mG264Qc2bN1dQUJD69eunefPmqWfPnpLsqt8Yo4kTJ6pnz55q3769JHlquPKLcC+vz/Y5uNL333+vJ598UiNGjPB8EaItc1BS/X/4wx8UEBCgX//618WuZ3P99e04WNLvQH06FpbFiq+LwP8pKCiQJN1xxx167LHHJEk33nijtm3bptdff10JCQklrmuMkcPhqJFxVqfXXntNO3bs0OrVqxUfH6/Nmzfr0UcfVUxMjHr37l3ienWx/nHjxunTTz/V1q1biyy7spby1GfbHEg/XKx87733qqCgQPPmzStze3VtDoqrPzMzU6+++qp2795d4VpsqL++HQdLeg3Up2NhWTizY5mIiAgFBATohhtu8Gr/yU9+4rkLITo6WhcvXtSZM2e8+pw4caLI2YC65sKFC3r66ac1a9YsDR48WD/96U81btw4DR8+XH/84x8l2VP/+PHjtXr1aqWnp6t58+ae9ujoaEkq8j+zy+uzfQ4Kud1u3XPPPcrKylJaWprnrI5kxxyUVP+WLVt04sQJtWjRQgEBAQoICNDhw4c1adIktWzZUpLd9den42BJc1CfjoXlQdixTFBQkLp27VrkFsTPP//c88WonTt3VmBgoNLS0jzLs7OztW/fPnXv3r1Gx1vV3G633G63/Py8f7X9/f09/9ur6/UbYzRu3DitWLFCGzduVKtWrbyWt2rVStHR0V71Xbx4UZs2bfLUZ/scSP8XdA4ePKj169erWbNmXsvr8hyUVf8DDzygTz/9VHv27PE8YmNj9fjjj2vdunWS7K6/PhwHy5qD+nAsrJCavR4aVeHs2bPmk08+MZ988omRZGbNmmU++eQTz10mK1asMIGBgeYvf/mLOXjwoJkzZ47x9/c3W7Zs8Wzjv//7v03z5s3N+vXrze7du83tt99uOnbsaC5duuSrssqtrPoTEhJMu3btTHp6uvnqq6/MokWLTIMGDcy8efM826jL9f/qV78yYWFhJiMjw2RnZ3seeXl5nj4zZswwYWFhZsWKFWbv3r3mvvvuMzExMSY3N9fTx+Y5cLvdZsiQIaZ58+Zmz549Xn1cLpdnO3V1DsrzO3ClK+/GMsbu+m0/DpZnDmw/FlYEYacOSk9PN5KKPEaOHOnps2DBAnPdddeZBg0amI4dO5pVq1Z5bePChQtm3LhxJjw83DRs2NAMGjTIHDlypIYrqZyy6s/OzjajRo0ysbGxpkGDBqZt27bm5ZdfNgUFBZ5t1OX6i6tdklm0aJGnT0FBgZk6daqJjo42TqfT3HbbbWbv3r1e27F5DrKyskrsk56e7tlOXZ2D8vwOXKm4sGN7/TYfB8szB7YfCyvCYYwxVX++CAAAoHbgmh0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQBWWrx4sZo0aVKhdUaNGqWhQ4dWy3gA+A5hB4DPvf766woJCdGlS5c8befOnVNgYKBuvfVWr75btmyRw+HQ559/Xuo2hw8fXmafymjZsqVmz55d5dsFUH0IOwB8LikpSefOndOuXbs8bVu2bFF0dLR27typvLw8T3tGRoZiY2PVpk2bUrfZsGFDRUZGVtuYAdQdhB0APte2bVvFxsYqIyPD05aRkaE77rhDrVu31rZt27zak5KSdPHiRT3xxBP60Y9+pEaNGqlbt25e6xf3Ntbzzz+vyMhIhYSE6OGHH9aTTz6pG2+8sch4/vjHPyomJkbNmjXT2LFj5Xa7JUmJiYk6fPiwHnvsMTkcDjkcjqqcBgDVhLADoFZITExUenq653l6eroSExOVkJDgab948aK2b9+upKQkPfTQQ/roo4+0bNkyffrpp/rZz36mfv366eDBg8Vu/6233tILL7ygP/zhD8rMzFSLFi00f/78Iv3S09P15ZdfKj09XUuWLNHixYu1ePFiSdKKFSvUvHlzPffcc8rOzlZ2dnbVTwSAKkfYAVArJCYm6qOPPtKlS5d09uxZffLJJ7rtttuUkJDgOWOzY8cOXbhwQYmJiXr77bf1zjvv6NZbb1Xr1q01efJk9ezZU4sWLSp2+3PmzNHo0aP10EMPqU2bNnr22WfVoUOHIv2aNm2quXPn6sc//rEGDRqkgQMHasOGDZKk8PBw+fv7KyQkRNHR0YqOjq62+QBQdQg7AGqFpKQknT9/Xjt37tSWLVvUpk0bRUZGKiEhQTt37tT58+eVkZGhFi1aaPfu3TLGqE2bNmrcuLHnsWnTJn355ZfFbv/AgQO6+eabvdqufC5J7dq1k7+/v+d5TEyMTpw4UbXFAqhRAb4eAABI0nXXXafmzZsrPT1dZ86cUUJCgiQpOjparVq10kcffaT09HTdfvvtKigokL+/vzIzM72CiSQ1bty4xH1ceY2NMaZIn8DAwCLrFBQUVLYsALUAZ3YA1BpJSUnKyMhQRkaGEhMTPe0JCQlat26dduzYoaSkJN10003Kz8/XiRMndN1113k9SnprqW3btvr444+92i6/+6u8goKClJ+fX+H1APgOYQdArZGUlKStW7dqz549njM70g9h569//au+//57JSUlqU2bNvr5z3+uBx98UCtWrFBWVpZ27typP/zhD/rggw+K3fb48eO1YMECLVmyRAcPHtTzzz+vTz/9tMJ3VLVs2VKbN2/W0aNHdfLkyauqF0DNIOwAqDWSkpJ04cIFXXfddYqKivK0JyQk6OzZs2rdurXi4uIkSYsWLdKDDz6oSZMmqW3bthoyZIj+8Y9/eJZf6ec//7meeuopTZ48WZ06dVJWVpZGjRqlBg0aVGiMzz33nA4dOqTWrVvrmmuuqXyxAGqMwxT3pjUA1APJycmKjo7Wm2++6euhAKhGXKAMoF7Iy8vT66+/rr59+8rf319vv/221q9fr7S0NF8PDUA148wOgHrhwoULGjx4sHbv3i2Xy6W2bdvqd7/7nYYNG+broQGoZoQdAABgNS5QBgAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACs9v8D3R0KHIuDgGgAAAAASUVORK5CYII="
+ },
+ "metadata": {}
}
],
"metadata": {}
@@ -1023,10 +1062,12 @@
"metadata": {}
},
{
- "cell_type": "code",
- "execution_count": null,
- "source": [],
- "outputs": [],
+ "cell_type": "markdown",
+ "source": [
+ "## Conclusion\r\n",
+ "\r\n",
+ "In this notebook, we have learnt how to perform basic operations on data to compute statistical functions. We now know how to use sound apparatus of math and statistics in order to prove some hypotheses, and how to compute confidence intervals for random variable given data sample. "
+ ],
"metadata": {}
}
],
diff --git a/1-Introduction/04-stats-and-probability/solution/assignment.ipynb b/1-Introduction/04-stats-and-probability/solution/assignment.ipynb
new file mode 100644
index 0000000..da16d87
--- /dev/null
+++ b/1-Introduction/04-stats-and-probability/solution/assignment.ipynb
@@ -0,0 +1,945 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## Introduction to Probability and Statistics\r\n",
+ "## Assignment\r\n",
+ "\r\n",
+ "In this assignment, we will use the dataset of diabetes patients taken [from here](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html)."
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "source": [
+ "import pandas as pd\r\n",
+ "import numpy as np\r\n",
+ "import matplotlib.pyplot as plt\r\n",
+ "\r\n",
+ "df = pd.read_csv(\"../../../data/diabetes.tsv\",sep='\\t')\r\n",
+ "df.head()"
+ ],
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " AGE SEX BMI BP S1 S2 S3 S4 S5 S6 Y\n",
+ "0 59 2 32.1 101.0 157 93.2 38.0 4.0 4.8598 87 151\n",
+ "1 48 1 21.6 87.0 183 103.2 70.0 3.0 3.8918 69 75\n",
+ "2 72 2 30.5 93.0 156 93.6 41.0 4.0 4.6728 85 141\n",
+ "3 24 1 25.3 84.0 198 131.4 40.0 5.0 4.8903 89 206\n",
+ "4 50 1 23.0 101.0 192 125.4 52.0 4.0 4.2905 80 135"
+ ],
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
AGE
\n",
+ "
SEX
\n",
+ "
BMI
\n",
+ "
BP
\n",
+ "
S1
\n",
+ "
S2
\n",
+ "
S3
\n",
+ "
S4
\n",
+ "
S5
\n",
+ "
S6
\n",
+ "
Y
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
59
\n",
+ "
2
\n",
+ "
32.1
\n",
+ "
101.0
\n",
+ "
157
\n",
+ "
93.2
\n",
+ "
38.0
\n",
+ "
4.0
\n",
+ "
4.8598
\n",
+ "
87
\n",
+ "
151
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
48
\n",
+ "
1
\n",
+ "
21.6
\n",
+ "
87.0
\n",
+ "
183
\n",
+ "
103.2
\n",
+ "
70.0
\n",
+ "
3.0
\n",
+ "
3.8918
\n",
+ "
69
\n",
+ "
75
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
72
\n",
+ "
2
\n",
+ "
30.5
\n",
+ "
93.0
\n",
+ "
156
\n",
+ "
93.6
\n",
+ "
41.0
\n",
+ "
4.0
\n",
+ "
4.6728
\n",
+ "
85
\n",
+ "
141
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
24
\n",
+ "
1
\n",
+ "
25.3
\n",
+ "
84.0
\n",
+ "
198
\n",
+ "
131.4
\n",
+ "
40.0
\n",
+ "
5.0
\n",
+ "
4.8903
\n",
+ "
89
\n",
+ "
206
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
50
\n",
+ "
1
\n",
+ "
23.0
\n",
+ "
101.0
\n",
+ "
192
\n",
+ "
125.4
\n",
+ "
52.0
\n",
+ "
4.0
\n",
+ "
4.2905
\n",
+ "
80
\n",
+ "
135
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 13
+ }
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "\r\n",
+ "In this dataset, columns as the following:\r\n",
+ "* Age and sex are self-explanatory\r\n",
+ "* BMI is body mass index\r\n",
+ "* BP is average blood pressure\r\n",
+ "* S1 through S6 are different blood measurements\r\n",
+ "* Y is the qualitative measure of disease progression over one year\r\n",
+ "\r\n",
+ "Let's study this dataset using methods of probability and statistics.\r\n",
+ "\r\n",
+ "### Task 1: Compute mean values and variance for all values"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "source": [
+ "df.describe()"
+ ],
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " AGE SEX BMI BP S1 S2 \\\n",
+ "count 442.000000 442.000000 442.000000 442.000000 442.000000 442.000000 \n",
+ "mean 48.518100 1.468326 26.375792 94.647014 189.140271 115.439140 \n",
+ "std 13.109028 0.499561 4.418122 13.831283 34.608052 30.413081 \n",
+ "min 19.000000 1.000000 18.000000 62.000000 97.000000 41.600000 \n",
+ "25% 38.250000 1.000000 23.200000 84.000000 164.250000 96.050000 \n",
+ "50% 50.000000 1.000000 25.700000 93.000000 186.000000 113.000000 \n",
+ "75% 59.000000 2.000000 29.275000 105.000000 209.750000 134.500000 \n",
+ "max 79.000000 2.000000 42.200000 133.000000 301.000000 242.400000 \n",
+ "\n",
+ " S3 S4 S5 S6 Y \n",
+ "count 442.000000 442.000000 442.000000 442.000000 442.000000 \n",
+ "mean 49.788462 4.070249 4.641411 91.260181 152.133484 \n",
+ "std 12.934202 1.290450 0.522391 11.496335 77.093005 \n",
+ "min 22.000000 2.000000 3.258100 58.000000 25.000000 \n",
+ "25% 40.250000 3.000000 4.276700 83.250000 87.000000 \n",
+ "50% 48.000000 4.000000 4.620050 91.000000 140.500000 \n",
+ "75% 57.750000 5.000000 4.997200 98.000000 211.500000 \n",
+ "max 99.000000 9.090000 6.107000 124.000000 346.000000 "
+ ],
+ "text/html": [
+ "