diff --git a/1-Introduction/04-stats-and-probability/README.md b/1-Introduction/04-stats-and-probability/README.md index f2fa0c2..83e3959 100644 --- a/1-Introduction/04-stats-and-probability/README.md +++ b/1-Introduction/04-stats-and-probability/README.md @@ -55,7 +55,7 @@ Graphically we can represent relationship between median and quartiles in a diag Here we also computer **inter-quartile range** IQR=Q3-Q1, and so-called **outliers** - values, that lie outside the boundaries [Q1-1.5*IQR,Q3+1.5*IQR]. -For finite distribution that contains small number of possible values, a good "typical" value is the one that appears the most frequently, which is called **mode**. It is often applied to categorical data, such as colors. Consider a situation when we have two groups of people - some that strongly prefer red, and others who prefer blue. If we code colors by numbers, the mean value for a favourite color would be somewhere in the orange-green spectrum, which does not indicate the actual preference on neither group. However, the mode would be either one of the colors, or both colors, if the number of people voting for them is equal (in this case we call the sample **multimodal**). +For finite distribution that contains small number of possible values, a good "typical" value is the one that appears the most frequently, which is called **mode**. It is often applied to categorical data, such as colors. Consider a situation when we have two groups of people - some that strongly prefer red, and others who prefer blue. If we code colors by numbers, the mean value for a favorite color would be somewhere in the orange-green spectrum, which does not indicate the actual preference on neither group. However, the mode would be either one of the colors, or both colors, if the number of people voting for them is equal (in this case we call the sample **multimodal**). ## Real-world Data When we analyze data from real life, they often are not random variables as such, in a sense that we do not perform experiments with unknown result. For example, consider a team of baseball players, and their body data, such as height, weight and age. Those numbers are not exactly random, but we can still apply the same mathematical concepts. For example, a sequence of people's weights can be considered to be a sequence of values drawn from some random variable. Below is the sequence of weights of actual baseball players from [Major League Baseball](http://mlb.mlb.com/index.jsp), taken from [this dataset](http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_MLB_HeightsWeights) (for your convenience, only first 20 values are shown): @@ -64,6 +64,8 @@ When we analyze data from real life, they often are not random variables as such [180.0, 215.0, 210.0, 210.0, 188.0, 176.0, 209.0, 200.0, 231.0, 180.0, 188.0, 180.0, 185.0, 160.0, 180.0, 185.0, 197.0, 189.0, 185.0, 219.0] ``` +> **Note**: To see the example of working with this dataset, have a look at the [accompanying notebook](notebook.ipynb). There is also a number of challenges throughout this lesson, and you may complete them by adding some code to that notebook. If you are not sure how to operate on data, do not worry - we will come back to working with data using Python at a later time. + Here is the box plot showing mean, median and quartiles for our data: ![Weight Box Plot](images/weight-boxplot.png) @@ -94,13 +96,23 @@ If we plot the histogram of the generated samples we will see the picture very s ## Confidence Intervals -When we talk about weights of baseball players, we assume that there is certain **random variable W** that corresponds to ideal probability distribution of weights of all baseball players. Our sequence of weights corresponds to a subset of all baseball players that we call **population**. An interesting question is, can we know the parameters of distribution of W, i.e. mean and variance? +When we talk about weights of baseball players, we assume that there is certain **random variable W** that corresponds to ideal probability distribution of weights of all baseball players (so-called **population**). Our sequence of weights corresponds to a subset of all baseball players that we call **sample**. An interesting question is, can we know the parameters of distribution of W, i.e. mean and variance of the population? + +The easiest answer would be to calculate mean and variance of our sample. However, it could happen that our random sample does not accurately represent complete population. Thus it makes sense to talk about **confidence interval**. -The easiest answer would be to calculate mean and variance of our sample. However, it could happen that our random sample does not accurately represent complete population. Thus it makes sense to talk about **confidence interval**. +> **Confidence interval** is the estimation of true mean of the population given our sample, which is accurate is a certain probability (or **level of confidence**). Suppose we have a sample X1, ..., Xn from our distribution. Each time we draw a sample from our distribution, we would end up with different mean value μ. Thus μ can be considered to be a random variable. A **confidence interval** with confidence p is a pair of values (Lp,Rp), such that **P**(Lp≤μ≤Rp) = p, i.e. a probability of measured mean value falling within the interval equals to p. -It does beyond our short intro to discuss how those confidence intervals are calculated. Some more details can be found [on Wikipedia](https://en.wikipedia.org/wiki/Confidence_interval). An example of calculating confidence interval for weights and heights is given in the [accompanying notebooks](notebook.ipynb). +It does beyond our short intro to discuss in detail how those confidence intervals are calculated. Some more details can be found [on Wikipedia](https://en.wikipedia.org/wiki/Confidence_interval). In short, we define the distribution of computed sample mean relative to the true mean of the population, which is called **student distribution**. + +> **Interesting fact**: Student distribution is named after mathematician William Sealy Gosset, who published his paper under pseudonym "Student". He worked in the Guinness brewery, and, according to one of the versions, his employer did not want general public to know that they were using statistical tests to determine the quality of raw materials. + +If we want to estimate the mean μ of our population with confidence p, we need to take *(1-p)/2-th percentile* of a Student distribution A, which can either be taken from tables, or computer using some built-in functions of statistical software (eg. Python, R, etc.). Then the interval for μ would be given by X±A*D/√n, where X is the obtained mean of the sample, D is the standard deviation. + +> **Note**: We also omit the discussion of an important concept of [degrees of freedom](https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)), which is important in relation to Student distribution. You can refer to more complete books on statistics to understand this concept deeper. + +An example of calculating confidence interval for weights and heights is given in the [accompanying notebooks](notebook.ipynb). | p | Weight mean | |-----|-----------| @@ -163,11 +175,10 @@ In our case, p-value is very low, meaning that there is strong evidence supporti > **Challenge**: Use the sample code in the notebook to test other hypothesis that: (1) First basemen and older that second basemen; (2) First basemen and taller than third basemen; (3) Shortstops are taller than second basemen - -There are different types of hypothesis that we might want to test, for example: +There are also different other types of hypothesis that we might want to test, for example: * To prove that a given sample follows some distribution. In our case we have assumed that heights are normally distributed, but that needs formal statistical verification. * To prove that a mean value of a sample corresponds to some predefined value -* To prove that +* To compare means of a number of samples (eg. what is the difference in happiness levels amond different age groups) ## Law of Large Numbers and Central Limit Theorem @@ -205,9 +216,6 @@ In our case, the value 0.53 indicates that there is some correlation between wei > More examples of correlation and covariance can be found in [accompanying notebook](notebook.ipynb). - - - ## 🚀 Challenge @@ -217,7 +225,12 @@ In our case, the value 0.53 indicates that there is some correlation between wei ## Review & Self Study +Probability and statistics is such a broad topic that it deserves its own course. If you are interested to go deeper into theory, you may want to continue reading some of the following books: + +1. [Carlos Fernanderz-Granda](https://cims.nyu.edu/~cfgranda/) from New York University has great lecture notes [Probability and Statistics for Data Science](https://cims.nyu.edu/~cfgranda/pages/stuff/probability_stats_for_DS.pdf) (available online) +1. [Peter and Andrew Bruce. Practical Statistics for Data Scientists.](https://www.oreilly.com/library/view/practical-statistics-for/9781491952955/) [[sample code in R](https://github.com/andrewgbruce/statistics-for-data-scientists)]. +1. [James D. Miller. Statistics for Data Science](https://www.packtpub.com/product/statistics-for-data-science/9781788290678) [[sample code in R](https://github.com/PacktPublishing/Statistics-for-Data-Science)] ## Assignment -[Assignment Title](assignment.md) +[Small Diabetes Study](assignment.md) diff --git a/1-Introduction/04-stats-and-probability/assignment.ipynb b/1-Introduction/04-stats-and-probability/assignment.ipynb new file mode 100644 index 0000000..a6f8147 --- /dev/null +++ b/1-Introduction/04-stats-and-probability/assignment.ipynb @@ -0,0 +1,252 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "## Introduction to Probability and Statistics\r\n", + "## Assignment\r\n", + "\r\n", + "In this assignment, we will use the dataset of diabetes patients taken [from here](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html)." + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "source": [ + "import pandas as pd\r\n", + "import numpy as np\r\n", + "\r\n", + "df = pd.read_csv(\"../../data/diabetes.tsv\",sep='\\t')\r\n", + "df.head()" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " AGE SEX BMI BP S1 S2 S3 S4 S5 S6 Y\n", + "0 59 2 32.1 101.0 157 93.2 38.0 4.0 4.8598 87 151\n", + "1 48 1 21.6 87.0 183 103.2 70.0 3.0 3.8918 69 75\n", + "2 72 2 30.5 93.0 156 93.6 41.0 4.0 4.6728 85 141\n", + "3 24 1 25.3 84.0 198 131.4 40.0 5.0 4.8903 89 206\n", + "4 50 1 23.0 101.0 192 125.4 52.0 4.0 4.2905 80 135" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AGESEXBMIBPS1S2S3S4S5S6Y
059232.1101.015793.238.04.04.859887151
148121.687.0183103.270.03.03.89186975
272230.593.015693.641.04.04.672885141
324125.384.0198131.440.05.04.890389206
450123.0101.0192125.452.04.04.290580135
\n", + "
" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "\r\n", + "In this dataset, columns as the following:\r\n", + "* Age and sex are self-explanatory\r\n", + "* BMI is body mass index\r\n", + "* BP is average blood pressure\r\n", + "* S1 through S6 are different blood measurements\r\n", + "* Y is the qualitative measure of disease progression over one year\r\n", + "\r\n", + "Let's study this dataset using methods of probability and statistics.\r\n", + "\r\n", + "### Task 1: Compute mean values and variance for all values" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "### Task 2: Plot boxplots for BMI, BP and Y depending on gender" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "### Task 3: What is the the distribution of Age, Sex, BMI and Y variables?" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "### Task 4: Test the correlation between different variables and disease progression (Y)\r\n", + "\r\n", + "> **Hint** Correlation matrix would give you the most useful information on which values are dependent." + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "### Task 5: Test the hypothesis that the degree of diabetes progression is different between men and women" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [], + "metadata": {} + } + ], + "metadata": { + "orig_nbformat": 4, + "language_info": { + "name": "python", + "version": "3.8.8", + "mimetype": "text/x-python", + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "pygments_lexer": "ipython3", + "nbconvert_exporter": "python", + "file_extension": ".py" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.8.8 64-bit (conda)" + }, + "interpreter": { + "hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/1-Introduction/04-stats-and-probability/assignment.md b/1-Introduction/04-stats-and-probability/assignment.md index b7af641..08ac35a 100644 --- a/1-Introduction/04-stats-and-probability/assignment.md +++ b/1-Introduction/04-stats-and-probability/assignment.md @@ -1,8 +1,25 @@ -# Title +# Small Diabetes Study + +In this assignment, we will work with a small dataset of diabetes patients taken from [here](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html). + +| | AGE | SEX | BMI | BP | S1 | S2 | S3 | S4 | S5 | S6 | Y | +|---|-----|-----|-----|----|----|----|----|----|----|----|----| +| 0 | 59 | 2 | 32.1 | 101. | 157 | 93.2 | 38.0 | 4. | 4.8598 | 87 | 151 | +| 1 | 48 | 1 | 21.6 | 87.0 | 183 | 103.2 | 70. | 3. | 3.8918 | 69 | 75 | +| 2 | 72 | 2 | 30.5 | 93.0 | 156 | 93.6 | 41.0 | 4.0 | 4. | 85 | 141 | +| ... | ... | ... | ... | ...| ...| ...| ...| ...| ...| ...| ... | ## Instructions +* Open the [assignment notebook](assignment.ipynb) in a jupyter notebook environment +* Complete all tasks listed in the notebook, namely: + [ ] Compute mean values and variance for all values + [ ] Plot boxplots for BMI, BP and Y depending on gender + [ ] What is the the distribution of Age, Sex, BMI and Y variables? + [ ] Test the correlation between different variables and disease progression (Y) + [ ] Test the hypothesis that the degree of diabetes progression is different between men and women ## Rubric Exemplary | Adequate | Needs Improvement --- | --- | -- | +All required tasks are complete, graphically illustrated and explained | Most of the tasks are complete, explanations or takeaways from graphs and/or obtained values are missing | Only basic tasks such as computation of mean/variance and basic plots are complete, no conclusions are made from the data \ No newline at end of file diff --git a/1-Introduction/04-stats-and-probability/notebook.ipynb b/1-Introduction/04-stats-and-probability/notebook.ipynb index 8b83ab7..5ecac5d 100644 --- a/1-Introduction/04-stats-and-probability/notebook.ipynb +++ b/1-Introduction/04-stats-and-probability/notebook.ipynb @@ -11,7 +11,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 212, "source": [ "import numpy as np\r\n", "import pandas as pd\r\n", @@ -33,7 +33,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 213, "source": [ "sample = [ random.randint(0,10) for _ in range(30) ]\r\n", "print(f\"Sample: {sample}\")\r\n", @@ -45,9 +45,9 @@ "output_type": "stream", "name": "stdout", "text": [ - "Sample: [4, 6, 3, 0, 3, 4, 7, 7, 9, 6, 8, 2, 0, 3, 10, 7, 2, 0, 2, 1, 1, 6, 5, 0, 9, 0, 1, 8, 2, 9]\n", - "Mean = 4.166666666666667\n", - "Variance = 10.272222222222222\n" + "Sample: [1, 1, 0, 5, 6, 3, 7, 5, 1, 6, 5, 6, 7, 0, 3, 6, 2, 4, 2, 8, 1, 5, 7, 10, 8, 5, 7, 10, 6, 8]\n", + "Mean = 4.833333333333333\n", + "Variance = 7.938888888888889\n" ] } ], @@ -62,7 +62,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 214, "source": [ "plt.hist(sample)\r\n", "plt.show()" @@ -74,8 +74,8 @@ "text/plain": [ "
" ], - "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-12T14:31:22.124750\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAGdCAYAAABO2DpVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAUzklEQVR4nO3df4zXBf3A8dcJ8QHt7goK4caBWBQKYgZWICmlshFjudYPTY1l/WEDg26VoG2KC45suVoUhmu2VgZrhdJMFv0Aco2EmyRD54+JeuUPZrU7vObHCe/vH81b9xXUz/H63IfPx8dj+/zxft/7c+/X3rvd+7n3vT/3biqKoggAgAQn1XoAAKBxCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAIM3wod7hkSNH4umnn47m5uZoamoa6t0DAINQFEUcOnQo2tra4qSTjn1dYsjD4umnn4729vah3i0AkKC7uzsmTJhwzK8PeVg0NzdHxH8Ha2lpGerdAwCD0NvbG+3t7f3n8WMZ8rB45c8fLS0twgIA6szr3cbg5k0AII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSVBQWN954YzQ1NQ14jRs3rlqzAQB1puJnhUybNi1+//vf9y8PGzYsdSAAoH5VHBbDhw93lQIAOKqK77F49NFHo62tLSZPnhyXXnppPP7446+5fblcjt7e3gEvAKAxVXTF4oMf/GD89Kc/jfe85z3x3HPPxTe/+c2YM2dO7N+/P8aMGXPU93R2dsaqVatShn09p624e0j2k+mJtQtrPQIApGkqiqIY7Jv7+vriXe96V3z961+Pjo6Oo25TLpejXC73L/f29kZ7e3v09PRES0vLYHd9VMICAKqjt7c3WltbX/f8XfE9Fv/rlFNOibPOOiseffTRY25TKpWiVCodz24AgDpxXP/Holwux0MPPRTjx4/PmgcAqGMVhcVXv/rV2LFjRxw4cCD++te/xic/+cno7e2NxYsXV2s+AKCOVPSnkL///e9x2WWXxfPPPx/vfOc740Mf+lDs2rUrJk2aVK35AIA6UlFYbNy4sVpzAAANwLNCAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASHNcYdHZ2RlNTU2xfPnypHEAgHo26LDYvXt3bNiwIWbMmJE5DwBQxwYVFi+88EJcfvnlcdttt8Xb3/727JkAgDo1qLBYsmRJLFy4MC666KLX3bZcLkdvb++AFwDQmIZX+oaNGzdGV1dX7Nmz5w1t39nZGatWrap4ME5cp624u9YjVOyJtQtrPQJQh/y+q1xFVyy6u7tj2bJl8fOf/zxGjhz5ht6zcuXK6Onp6X91d3cPalAA4MRX0RWLrq6uOHjwYMycObN/3eHDh2Pnzp2xbt26KJfLMWzYsAHvKZVKUSqVcqYFAE5oFYXFhRdeGPv27Ruw7vOf/3xMnTo1rr322ldFBQDw5lJRWDQ3N8f06dMHrDvllFNizJgxr1oPALz5+M+bAECaij8V8v9t3749YQwAoBG4YgEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApKkoLNavXx8zZsyIlpaWaGlpidmzZ8c999xTrdkAgDpTUVhMmDAh1q5dG3v27Ik9e/bERz/60fj4xz8e+/fvr9Z8AEAdGV7JxosWLRqwvHr16li/fn3s2rUrpk2bljoYAFB/KgqL/3X48OH45S9/GX19fTF79uxjblcul6NcLvcv9/b2DnaXAMAJruKw2LdvX8yePTtefPHFeOtb3xqbN2+OM88885jbd3Z2xqpVq45ryEZ22oq7az3Cm0K9Hucn1i6s9QhvCvX681Fv/Dy/OVT8qZD3vve9sXfv3ti1a1d86UtfisWLF8eDDz54zO1XrlwZPT09/a/u7u7jGhgAOHFVfMVixIgR8e53vzsiImbNmhW7d++O733ve/GjH/3oqNuXSqUolUrHNyUAUBeO+/9YFEUx4B4KAODNq6IrFtddd10sWLAg2tvb49ChQ7Fx48bYvn17bN26tVrzAQB1pKKweO655+LKK6+MZ555JlpbW2PGjBmxdevWuPjii6s1HwBQRyoKix//+MfVmgMAaACeFQIApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApKkoLDo7O+Pcc8+N5ubmGDt2bFxyySXx8MMPV2s2AKDOVBQWO3bsiCVLlsSuXbti27Zt8fLLL8f8+fOjr6+vWvMBAHVkeCUbb926dcDy7bffHmPHjo2urq44//zzUwcDAOpPRWHx//X09ERExOjRo4+5TblcjnK53L/c29t7PLsEAE5ggw6Loiiio6Mj5s6dG9OnTz/mdp2dnbFq1arB7gbe1E5bcXetR6jYE2sX1noETlD1+PNM5Qb9qZClS5fGAw88EL/4xS9ec7uVK1dGT09P/6u7u3uwuwQATnCDumJxzTXXxJYtW2Lnzp0xYcKE19y2VCpFqVQa1HAAQH2pKCyKoohrrrkmNm/eHNu3b4/JkydXay4AoA5VFBZLliyJO+64I+66665obm6OZ599NiIiWltbY9SoUVUZEACoHxXdY7F+/fro6emJefPmxfjx4/tfmzZtqtZ8AEAdqfhPIQAAx+JZIQBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKSpOCx27twZixYtira2tmhqaoo777yzCmMBAPWo4rDo6+uLs88+O9atW1eNeQCAOja80jcsWLAgFixYUI1ZAIA6V3FYVKpcLke5XO5f7u3trfYuAYAaqXpYdHZ2xqpVq6q9G+AEcdqKu2s9AlBDVf9UyMqVK6Onp6f/1d3dXe1dAgA1UvUrFqVSKUqlUrV3AwCcAPwfCwAgTcVXLF544YV47LHH+pcPHDgQe/fujdGjR8fEiRNThwMA6kvFYbFnz574yEc+0r/c0dERERGLFy+On/zkJ2mDAQD1p+KwmDdvXhRFUY1ZAIA65x4LACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACDNoMLihz/8YUyePDlGjhwZM2fOjD//+c/ZcwEAdajisNi0aVMsX748rr/++rj//vvjwx/+cCxYsCCeeuqpaswHANSRisPilltuiS984QvxxS9+Mc4444z47ne/G+3t7bF+/fpqzAcA1JHhlWz80ksvRVdXV6xYsWLA+vnz58df/vKXo76nXC5HuVzuX+7p6YmIiN7e3kpnfV1Hyv9J/54AUE+qcX793+9bFMVrbldRWDz//PNx+PDhOPXUUwesP/XUU+PZZ5896ns6Oztj1apVr1rf3t5eya4BgDeg9bvV/f6HDh2K1tbWY369orB4RVNT04Dloihete4VK1eujI6Ojv7lI0eOxL/+9a8YM2bMMd8zGL29vdHe3h7d3d3R0tKS9n0ZyHEeOo710HCch4bjPDSqeZyLoohDhw5FW1vba25XUVi84x3viGHDhr3q6sTBgwdfdRXjFaVSKUql0oB1b3vb2yrZbUVaWlr80A4Bx3noONZDw3EeGo7z0KjWcX6tKxWvqOjmzREjRsTMmTNj27ZtA9Zv27Yt5syZU9l0AEDDqfhPIR0dHXHllVfGrFmzYvbs2bFhw4Z46qmn4uqrr67GfABAHak4LD7zmc/EP//5z7jpppvimWeeienTp8dvf/vbmDRpUjXme8NKpVLccMMNr/qzC7kc56HjWA8Nx3loOM5D40Q4zk3F631uBADgDfKsEAAgjbAAANIICwAgjbAAANI0TFh4lHt1dXZ2xrnnnhvNzc0xduzYuOSSS+Lhhx+u9VgNr7OzM5qammL58uW1HqXh/OMf/4grrrgixowZEyeffHK8733vi66urlqP1VBefvnl+MY3vhGTJ0+OUaNGxemnnx433XRTHDlypNaj1b2dO3fGokWLoq2tLZqamuLOO+8c8PWiKOLGG2+Mtra2GDVqVMybNy/2798/JLM1RFh4lHv17dixI5YsWRK7du2Kbdu2xcsvvxzz58+Pvr6+Wo/WsHbv3h0bNmyIGTNm1HqUhvPvf/87zjvvvHjLW94S99xzTzz44IPxne98p6r/FfjN6Fvf+lbceuutsW7dunjooYfi5ptvjm9/+9vx/e9/v9aj1b2+vr44++yzY926dUf9+s033xy33HJLrFu3Lnbv3h3jxo2Liy++OA4dOlT94YoG8IEPfKC4+uqrB6ybOnVqsWLFihpN1PgOHjxYRESxY8eOWo/SkA4dOlRMmTKl2LZtW3HBBRcUy5Ytq/VIDeXaa68t5s6dW+sxGt7ChQuLq666asC6T3ziE8UVV1xRo4kaU0QUmzdv7l8+cuRIMW7cuGLt2rX961588cWitbW1uPXWW6s+T91fsXjlUe7z588fsP61HuXO8evp6YmIiNGjR9d4ksa0ZMmSWLhwYVx00UW1HqUhbdmyJWbNmhWf+tSnYuzYsXHOOefEbbfdVuuxGs7cuXPjD3/4QzzyyCMREfG3v/0t7r333vjYxz5W48ka24EDB+LZZ58dcF4slUpxwQUXDMl5cVBPNz2RDOZR7hyfoiiio6Mj5s6dG9OnT6/1OA1n48aN0dXVFXv27Kn1KA3r8ccfj/Xr10dHR0dcd911cd9998WXv/zlKJVK8bnPfa7W4zWMa6+9Nnp6emLq1KkxbNiwOHz4cKxevTouu+yyWo/W0F459x3tvPjkk09Wff91HxavqORR7hyfpUuXxgMPPBD33ntvrUdpON3d3bFs2bL43e9+FyNHjqz1OA3ryJEjMWvWrFizZk1ERJxzzjmxf//+WL9+vbBItGnTpvjZz34Wd9xxR0ybNi327t0by5cvj7a2tli8eHGtx2t4tTov1n1YDOZR7gzeNddcE1u2bImdO3fGhAkTaj1Ow+nq6oqDBw/GzJkz+9cdPnw4du7cGevWrYtyuRzDhg2r4YSNYfz48XHmmWcOWHfGGWfEr371qxpN1Ji+9rWvxYoVK+LSSy+NiIizzjornnzyyejs7BQWVTRu3LiI+O+Vi/Hjx/evH6rzYt3fY+FR7kOjKIpYunRp/PrXv44//vGPMXny5FqP1JAuvPDC2LdvX+zdu7f/NWvWrLj88stj7969oiLJeeed96qPSz/yyCM1f5hio/nPf/4TJ5008DQzbNgwHzetssmTJ8e4ceMGnBdfeuml2LFjx5CcF+v+ikWER7kPhSVLlsQdd9wRd911VzQ3N/dfIWptbY1Ro0bVeLrG0dzc/Kr7Vk455ZQYM2aM+1kSfeUrX4k5c+bEmjVr4tOf/nTcd999sWHDhtiwYUOtR2soixYtitWrV8fEiRNj2rRpcf/998ctt9wSV111Va1Hq3svvPBCPPbYY/3LBw4ciL1798bo0aNj4sSJsXz58lizZk1MmTIlpkyZEmvWrImTTz45PvvZz1Z/uKp/7mSI/OAHPygmTZpUjBgxonj/+9/vY5DJIuKor9tvv73WozU8Hzetjt/85jfF9OnTi1KpVEydOrXYsGFDrUdqOL29vcWyZcuKiRMnFiNHjixOP/304vrrry/K5XKtR6t7f/rTn476O3nx4sVFUfz3I6c33HBDMW7cuKJUKhXnn39+sW/fviGZzWPTAYA0dX+PBQBw4hAWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAECa/wM2GWyYQzH6qgAAAABJRU5ErkJggg==" + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-23T14:13:08.258866\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAGdCAYAAABO2DpVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAU30lEQVR4nO3df6yVBf3A8c8V84B27y0ohDsuikWhIGZghZpSKhsxpmv90NRY1h82NIhVgLYpLrlky9WisOuarRXBWqE0k0U/5OoaCXeSDJ0/JuktfzDL3YM0jxOe7x/Nu+4XUM/lc+7hHF+v7fzxPPc59/nsmfK895zn3KelKIoiAAASHFPvAQCA5iEsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0xw73Dg8cOBDPPPNMtLa2RktLy3DvHgAYgqIoYu/evdHR0RHHHHP46xLDHhbPPPNMdHZ2DvduAYAEfX19MWHChMP+fNjDorW1NSL+O1hbW9tw7x4AGIJyuRydnZ0D5/HDGfaweO3jj7a2NmEBAA3mjW5jcPMmAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaaoKixtvvDFaWloGvcaNG1er2QCABlP1s0KmTp0af/jDHwaWR4wYkToQANC4qg6LY4891lUKAOCQqr7H4vHHH4+Ojo6YNGlSXHrppfHkk0++7vaVSiXK5fKgFwDQnKq6YvHhD384fvazn8X73ve+eP755+Nb3/pWnH322bFr164YM2bMId/T1dUVK1asSBkWOPqdvOzueo/wlvD3VfPqPQIcUktRFMVQ37xv3754z3veE9/4xjdiyZIlh9ymUqlEpVIZWC6Xy9HZ2Rn9/f3R1tY21F0DRylhMTyEBcOtXC5He3v7G56/q77H4n+dcMIJcfrpp8fjjz9+2G1KpVKUSqUj2Q0A0CCO6O9YVCqVeOSRR2L8+PFZ8wAADayqsPja174WW7Zsid27d8df//rX+NSnPhXlcjkWLFhQq/kAgAZS1Uch//jHP+Kyyy6LF154Id797nfHRz7ykdi6dWucdNJJtZoPAGggVYXFunXrajUHANAEPCsEAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANEcUFl1dXdHS0hKLFy9OGgcAaGRDDott27ZFd3d3TJ8+PXMeAKCBDSksXnrppbj88svj9ttvj3e+853ZMwEADWpIYbFw4cKYN29eXHjhhW+4baVSiXK5POgFADSnY6t9w7p166K3tze2b9/+prbv6uqKFStWVD3YW8XJy+6u9whV+/uqefUeAd7y/NvB0aqqKxZ9fX2xaNGi+MUvfhEjR458U+9Zvnx59Pf3D7z6+vqGNCgAcPSr6opFb29v7NmzJ2bMmDGwbv/+/dHT0xOrV6+OSqUSI0aMGPSeUqkUpVIpZ1oA4KhWVVhccMEFsXPnzkHrvvCFL8SUKVNi6dKlB0UFAPDWUlVYtLa2xrRp0watO+GEE2LMmDEHrQcA3nr85U0AIE3V3wr5/+69996EMQCAZuCKBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQpqqwWLNmTUyfPj3a2tqira0tZs2aFffcc0+tZgMAGkxVYTFhwoRYtWpVbN++PbZv3x4f//jH4+KLL45du3bVaj4AoIEcW83G8+fPH7R88803x5o1a2Lr1q0xderU1MEAgMZTVVj8r/3798evfvWr2LdvX8yaNeuw21UqlahUKgPL5XJ5qLsEAI5yVYfFzp07Y9asWfHyyy/H29/+9tiwYUOcdtpph92+q6srVqxYcURDAtD4Tl52d71HqNrfV82r9wgNp+pvhbz//e+PHTt2xNatW+PLX/5yLFiwIB5++OHDbr98+fLo7+8fePX19R3RwADA0avqKxbHHXdcvPe9742IiJkzZ8a2bdvi+9//fvz4xz8+5PalUilKpdKRTQkANIQj/jsWRVEMuocCAHjrquqKxXXXXRdz586Nzs7O2Lt3b6xbty7uvffe2LRpU63mAwAaSFVh8fzzz8eVV14Zzz77bLS3t8f06dNj06ZNcdFFF9VqPgCggVQVFj/5yU9qNQcA0AQ8KwQASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASFNVWHR1dcVZZ50Vra2tMXbs2Ljkkkvi0UcfrdVsAECDqSostmzZEgsXLoytW7fG5s2b49VXX405c+bEvn37ajUfANBAjq1m402bNg1avuOOO2Ls2LHR29sb5513XupgAEDjqSos/r/+/v6IiBg9evRht6lUKlGpVAaWy+XykewSADiKtRRFUQzljUVRxMUXXxwvvvhi3HfffYfd7sYbb4wVK1YctL6/vz/a2tqGsuvDOnnZ3am/D+rt76vm1XuEqvn/EOqrVv9ulMvlaG9vf8Pz95C/FXLNNdfEQw89FL/85S9fd7vly5dHf3//wKuvr2+ouwQAjnJD+ijk2muvjY0bN0ZPT09MmDDhdbctlUpRKpWGNBwA0FiqCouiKOLaa6+NDRs2xL333huTJk2q1VwAQAOqKiwWLlwYa9eujbvuuitaW1vjueeei4iI9vb2GDVqVE0GBAAaR1X3WKxZsyb6+/tj9uzZMX78+IHX+vXrazUfANBAqv4oBADgcDwrBABIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDRVh0VPT0/Mnz8/Ojo6oqWlJe68884ajAUANKKqw2Lfvn1xxhlnxOrVq2sxDwDQwI6t9g1z586NuXPn1mIWAKDBVR0W1apUKlGpVAaWy+VyrXcJANRJzcOiq6srVqxYUevdQFM6ednd9R4BoCo1/1bI8uXLo7+/f+DV19dX610CAHVS8ysWpVIpSqVSrXcDABwF/B0LACBN1VcsXnrppXjiiScGlnfv3h07duyI0aNHx8SJE1OHAwAaS9VhsX379vjYxz42sLxkyZKIiFiwYEH89Kc/TRsMAGg8VYfF7NmzoyiKWswCADQ491gAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmGFBY/+tGPYtKkSTFy5MiYMWNG3HfffdlzAQANqOqwWL9+fSxevDiuv/76ePDBB+OjH/1ozJ07N55++ulazAcANJCqw+LWW2+NL37xi/GlL30pTj311Pje974XnZ2dsWbNmlrMBwA0kGOr2fiVV16J3t7eWLZs2aD1c+bMib/85S+HfE+lUolKpTKw3N/fHxER5XK52lnf0IHKf9J/JwA0klqcX//39xZF8brbVRUWL7zwQuzfvz9OPPHEQetPPPHEeO655w75nq6urlixYsVB6zs7O6vZNQDwJrR/r7a/f+/evdHe3n7Yn1cVFq9paWkZtFwUxUHrXrN8+fJYsmTJwPKBAwfi3//+d4wZM+aw7xmKcrkcnZ2d0dfXF21tbWm/l8Ec5+HjWA8Px3l4OM7Do5bHuSiK2Lt3b3R0dLzudlWFxbve9a4YMWLEQVcn9uzZc9BVjNeUSqUolUqD1r3jHe+oZrdVaWtr8x/tMHCch49jPTwc5+HhOA+PWh3n17tS8Zqqbt487rjjYsaMGbF58+ZB6zdv3hxnn312ddMBAE2n6o9ClixZEldeeWXMnDkzZs2aFd3d3fH000/H1VdfXYv5AIAGUnVYfPazn41//etfcdNNN8Wzzz4b06ZNi9/97ndx0kkn1WK+N61UKsUNN9xw0Mcu5HKch49jPTwc5+HhOA+Po+E4txRv9L0RAIA3ybNCAIA0wgIASCMsAIA0wgIASNM0YeFR7rXV1dUVZ511VrS2tsbYsWPjkksuiUcffbTeYzW9rq6uaGlpicWLF9d7lKbzz3/+M6644ooYM2ZMHH/88fGBD3wgent76z1WU3n11Vfjm9/8ZkyaNClGjRoVp5xyStx0001x4MCBeo/W8Hp6emL+/PnR0dERLS0tceeddw76eVEUceONN0ZHR0eMGjUqZs+eHbt27RqW2ZoiLDzKvfa2bNkSCxcujK1bt8bmzZvj1VdfjTlz5sS+ffvqPVrT2rZtW3R3d8f06dPrPUrTefHFF+Occ86Jt73tbXHPPffEww8/HN/97ndr+leB34q+/e1vx2233RarV6+ORx55JG655Zb4zne+Ez/4wQ/qPVrD27dvX5xxxhmxevXqQ/78lltuiVtvvTVWr14d27Zti3HjxsVFF10Ue/furf1wRRP40Ic+VFx99dWD1k2ZMqVYtmxZnSZqfnv27CkiotiyZUu9R2lKe/fuLSZPnlxs3ry5OP/884tFixbVe6SmsnTp0uLcc8+t9xhNb968ecVVV101aN0nP/nJ4oorrqjTRM0pIooNGzYMLB84cKAYN25csWrVqoF1L7/8ctHe3l7cdtttNZ+n4a9YvPYo9zlz5gxa/3qPcufI9ff3R0TE6NGj6zxJc1q4cGHMmzcvLrzwwnqP0pQ2btwYM2fOjE9/+tMxduzYOPPMM+P222+v91hN59xzz40//vGP8dhjj0VExN/+9re4//774xOf+ESdJ2tuu3fvjueee27QebFUKsX5558/LOfFIT3d9GgylEe5c2SKooglS5bEueeeG9OmTav3OE1n3bp10dvbG9u3b6/3KE3rySefjDVr1sSSJUviuuuuiwceeCC+8pWvRKlUis9//vP1Hq9pLF26NPr7+2PKlCkxYsSI2L9/f9x8881x2WWX1Xu0pvbaue9Q58Wnnnqq5vtv+LB4TTWPcufIXHPNNfHQQw/F/fffX+9Rmk5fX18sWrQofv/738fIkSPrPU7TOnDgQMycOTNWrlwZERFnnnlm7Nq1K9asWSMsEq1fvz5+/vOfx9q1a2Pq1KmxY8eOWLx4cXR0dMSCBQvqPV7Tq9d5seHDYiiPcmforr322ti4cWP09PTEhAkT6j1O0+nt7Y09e/bEjBkzBtbt378/enp6YvXq1VGpVGLEiBF1nLA5jB8/Pk477bRB60499dT49a9/XaeJmtPXv/71WLZsWVx66aUREXH66afHU089FV1dXcKihsaNGxcR/71yMX78+IH1w3VebPh7LDzKfXgURRHXXHNN/OY3v4k//elPMWnSpHqP1JQuuOCC2LlzZ+zYsWPgNXPmzLj88stjx44doiLJOeecc9DXpR977LG6P0yx2fznP/+JY44ZfJoZMWKEr5vW2KRJk2LcuHGDzouvvPJKbNmyZVjOiw1/xSLCo9yHw8KFC2Pt2rVx1113RWtr68AVovb29hg1alSdp2sera2tB923csIJJ8SYMWPcz5Loq1/9apx99tmxcuXK+MxnPhMPPPBAdHd3R3d3d71Hayrz58+Pm2++OSZOnBhTp06NBx98MG699da46qqr6j1aw3vppZfiiSeeGFjevXt37NixI0aPHh0TJ06MxYsXx8qVK2Py5MkxefLkWLlyZRx//PHxuc99rvbD1fx7J8Pkhz/8YXHSSScVxx13XPHBD37Q1yCTRcQhX3fccUe9R2t6vm5aG7/97W+LadOmFaVSqZgyZUrR3d1d75GaTrlcLhYtWlRMnDixGDlyZHHKKacU119/fVGpVOo9WsP785//fMh/kxcsWFAUxX+/cnrDDTcU48aNK0qlUnHeeecVO3fuHJbZPDYdAEjT8PdYAABHD2EBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKT5Pw1zelRjpGgFAAAAAElFTkSuQmCC" }, "metadata": {} } @@ -93,7 +93,7 @@ }, { "cell_type": "code", - "execution_count": 168, + "execution_count": 215, "source": [ "df = pd.read_csv(\"../../data/SOCR_MLB.tsv\",sep='\\t',header=None,names=['Name','Team','Role','Height','Weight','Age'])\r\n", "df" @@ -252,7 +252,7 @@ ] }, "metadata": {}, - "execution_count": 168 + "execution_count": 215 } ], "metadata": {} @@ -268,7 +268,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 216, "source": [ "df[['Age','Height','Weight']].mean()" ], @@ -284,7 +284,53 @@ ] }, "metadata": {}, - "execution_count": 30 + "execution_count": 216 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Now let's focus on height, and compute standard deviation and variance: " + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 44, + "source": [ + "print(list(df['Height'])[:20])" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[180.0, 215.0, 210.0, 210.0, 188.0, 176.0, 209.0, 200.0, 231.0, 180.0, 188.0, 180.0, 185.0, 160.0, 180.0, 185.0, 197.0, 189.0, 185.0, 219.0]\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 218, + "source": [ + "mean = df['Height'].mean()\r\n", + "var = df['Height'].var()\r\n", + "std = df['Height'].std()\r\n", + "print(f\"Mean = {mean}\\nVariance = {var}\\nStandard Deviation = {std}\")" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Mean = 73.6972920696325\n", + "Variance = 5.316798081118081\n", + "Standard Deviation = 2.305818310517566\n" + ] } ], "metadata": {} @@ -298,7 +344,7 @@ }, { "cell_type": "code", - "execution_count": 158, + "execution_count": 217, "source": [ "plt.figure(figsize=(10,2))\r\n", "plt.boxplot(df['Height'],vert=False,showmeans=True)\r\n", @@ -312,7 +358,7 @@ "text/plain": [ "
" ], - "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-17T13:50:40.404536\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-23T14:13:08.586145\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy0AAADFCAYAAABZ7x10AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAlCUlEQVR4nO3de3RV5Z3/8c+5JEEwwE9YLgwBRqGtFhkVZXTUepkqVP2Nsux1ZhRdXkYHrS22oDPjGvBSZLXViNgYEZZOG+soLVKGdkRsQRFwpEQcQZGr5Y6L8WcSRM5tf39/MMmYEG4m373PPr5fa2UlJseV57w5Z+88eZ59kjAzEwAAAAAUqWTUAwAAAACAQ2HSAgAAAKCoMWkBAAAAUNSYtAAAAAAoakxaAAAAABQ1Ji0AAAAAihqTFgAAAABFLR32NwyCQNu3b1dlZaUSiUTY3x4AAABAkTAzNTc3q6qqSsnkwddTQp+0bN++XQMGDAj72wIAAAAoUlu2bFF1dfVBvx76pKWyslLS/oH17Nkz7G8fa4VCQW+//baGDRumVCoV9XBKDn190dcXfX3R1xd9fdHXF307p6mpSQMGDGidIxxMwswspDFJ2j+wXr16qbGxkUkLAAAA8Dl2pHMDLsSPkWw2q5kzZyqbzUY9lJJEX1/09UVfX/T1RV9f9PVF33AwaYmRVCqlc845h6VHJ/T1RV9f9PVFX1/09UVfX/QNB9vDAAAAAESC7WElKJvNqra2luVHJ/T1RV9f9PVFX1/09UVfX/QNB5OWGEmn0xo5cqTS6dBf9O1zgb6+6OuLvr7o64u+vujri77hYHsYAAAAgEiwPawEZTIZPfzww8pkMlEPpSTR1xd9fdHXF3190dcXfX3RNxystMRIEATatm2b+vfvr2SS+WZXo68v+vqiry/6+qKvL/r6om/nHOncgEkLAAAAgEiwPawEZTIZPfjggyw/OqGvL/r6oq8v+vqiry/6+qJvOFhpiZEgCLR792717duX5UcH9PVFX1/09UVfX/T1RV9f9O0ctocBAAAAKGpsDytBmUxG9957L8uPTujri76+6OuLvr7o64u+vugbDlZaYsTM1NzcrMrKSiUSiaiHU3Lo64u+vujri76+6OuLvr7o2zmstJSoioqKqIdQ0ujri76+6OuLvr7o64u+vujrj0lLjGSzWU2ZMkXZbDbqoZQk+vqiry/6+qKvL/r6oq8v+oaD7WExYmbKZrMqLy9n+dEBfX3R1xd9fdHXF3190dcXfTuH7WEliou8fNHXF3190dcXfX3R1xd9fdHXH5OWGMlms6qpqWH50Ql9fdHXF3190dcXfX3R1xd9w8H2MAAAAACRYHtYCQqCQB988IGCIIh6KCWJvr7o64u+vujri76+6OuLvuFg0hIjuVxOM2fOVC6Xi3ooJYm+vujri76+6OuLvr7o64u+4WB7GAAAAIBIsD2sBAVBoC1btrD86IS+vujri76+6OuLvr7o64u+4WDSEiO5XE6zZs1i+dEJfX3R1xd9fdHXF3190dcXfcPB9jAAAAAAkWB7WAkKgkDr169n+dEJfX3R1xd9fdHXF3190dcXfcPBpCVG8vm8XnrpJeXz+aiHUpLo64u+vujri76+6OuLvr7oGw62hwEAAACIBNvDSlChUNDq1atVKBSiHkpJoq8v+vqiry/6+qKvL/r6om84mLTESKFQ0Ouvv86Twgl9fdHXF3190dcXfX3R1xd9w8H2MAAAAACRYHtYCSoUCmpoaGAm74S+vujri76+6OuLvr7o64u+4WDSEiOFQkHvvPMOTwon9PVFX1/09UVfX/T1RV9f9A0H28MAAAAARILtYSUon89r2bJlvA64E/r6oq8v+vqiry/6+qKvL/qGg0lLjJiZtm7dqpAXxz436OuLvr7o64u+vujri76+6BsOtocBAAAAiATbw0pQPp/XokWLWH50Ql9f9PVFX1/09UVfX/T1Rd9wMGmJETNTU1MTy49O6OuLvr7o64u+vujri76+6BsOtocBAAAAiATbw0pQPp/X/PnzWX50Ql9f9PVFX1/09UVfX/T1Rd9wMGkBAAAAUNTYHgYAAAAgEmwPK0G5XE5z585VLpeLeiglib6+6OuLvr7o64u+vujri77hYNISI4lEQj179lQikYh6KCWJvr7o64u+vujri76+6OuLvuFgexgAAACASLA9rATlcjnNmjWL5Ucn9PVFX1/09UVfX/T1RV9f9A0Hk5YYSSQSqq6uZvnRCX190dcXfX3R1xd9fdHXF33DwfYwAAAAAJFge1gJymazqq+vVzabjXooJYm+vujri76+6OuLvr7o64u+4WDSEiOpVEpf/vKXlUqloh5KSaKvL/r6oq8v+vqiry/6+qJvONgeBgAAACASbA8rQdlsVjNnzmT50Ql9fdHXF3190dcXfX3R1xd9w8GkJUZSqZTOOecclh+d0NcXfX3R1xd9fdHXF3190TccbA8DAAAAEAm2h5WgbDar2tpalh+d0NcXfX3R1xd9fdHXF3190TccTFpiJJ1Oa+TIkUqn01EPpSTR1xd9fdHXF3190dcXfX3RNxxsDwMAAAAQCbaHlaBMJqOHH35YmUwm6qGUJPr6oq8v+vqiry/6+qKvL/qGg5WWGAmCQNu2bVP//v2VTDLf7Gr09UVfX/T1RV9f9PVFX1/07ZwjnRswaQEAAAAQiSOdG3DFUIy0LD/eeeedqqioiHo4JYe+vjKZjP7pn/5J3/zmN1VeXh71cEpO/pMm/eH5J/RX37pF6WPi8QuhyspKfeELX4h6GEeE44Mv+vqiry/6hoOVlhgJgkC7d+9W3759WX50QF9f7733nk4++eSoh1GyzuiXVMMtx2r4E3v05s4g6uEcsbVr18Zi4sLxwRd9fdHXF307h5WWEpRMJnX88cdHPYySRV9fH3/8sSSpvr5ep5xySsSjKT3HfLRWevUWPfPMM/qk9xejHs5hvfvuu7rmmmvU3Nwc9VCOCMcHX/T1RV9f9A0Hk5YYyWQymjJliu6++26WHx3Q11fLH90aPHiwhg8fHvFoSk/2TwXp1f19ywfRt6txfPBFX1/09UXfcLCGFSPl5eUaN24c1wM4oa+vsrKyNu/RtcrK0m3eo2txfPBFX1/09UXfcDBpiRlm8L7oC+BgOD74oq8v+vqirz8mLTHy0Ucf6Y477tBHH30U9VBKUjab1ZQpU1q3MaFr5XK5Nu/RtXK5fJv36FocH3zFre/evXvV0NCgvXv3Rj2UIxK3vnFD33B8bict2WxWjzzyiL773e/qkUceicUDbePGjZo+fbo2btwY9VBKUnl5ue6++26Wd52wPcwX28N8cXzwFbe+a9as0Zlnnqk1a9ZEPZTDamxs1Fe/+lXNmDFDX/3qV9XY2Bj1kA4pbj+fZbNZ1dbWaufOnaqtrS368RYKBS1atEjPPvusFi1apEKhEPWQjtjnctIyYcIE9ejRQ+PGjdNjjz2mcePGqUePHpowYULUQ0PEMplM1EMAtGz7Ml015yot274s6qHgUzg++KJv1xsyZIh69+6tJUuWaOvWrVqyZIl69+6tIUOGRD20DsXt57OW8d55552qq6vTnXfeWdTjnT17toYMGaKLL75Yf/u3f6uLL75YQ4YM0ezZs6Me2hE56knLq6++qr/+679WVVWVEomE5syZ4zAsPxMmTNBPfvIT9enTR08++aR27NihJ598Un369NFPfvKTon2gSWyv8ZbNZlVTU1P0vyWJKx6/R8bMNLVhqjY2btTUhqk60j+lxfYwXxwffNG36w0ZMkQbNmyQJI0aNUo33HCDRo0aJUnasGFD0U1c4vbz2afHW1tbqx/84Aeqra0t2vHOnj1b3/jGNzRs2DAtW7ZMzc3NWrZsmYYNG6ZvfOMbsZi4HPUfl/yP//gPLVmyRMOHD9fXv/51vfDCCxo9evQR//9R/nHJbDarHj16qE+fPtq6davS6f/dRpHP51VdXa3//u//1scff1yUS9QNDQ0688wztWLFCl4yFrHD4/fILNm2RLe+fGvrf9ddUqfz+p93+P9x+0pp+oXS378iVZ3uNr6uwuMBcVbsj9/Gxkb17t1b0v6/kdW9e/fWr+3du1c9evSQtP9a2V69ekUxxDbi9vNZ3MZbKBQ0ZMgQDRs2THPmzGnzBzCDINDo0aO1atUqrVu3TqlUKvTxuf1xycsuu0yXXXbZEd8+k8m0WfJtamqS9L+/bc3n9/9WMJ1OK5fLKZFIHPBxNptVKpVSKpU64ON0Oq1kMqlMJqOysrIOP255wEydOlX5fF7333+/CoWC0um0giBQLpdTRUWF7r33Xt16662qra3VHXfcoXw+r/LychUKBRUKhQM+zufzMjOVlZUd8LHHfdqzZ48k6a233mr97Wsul2u9RiCXy6m8vFxBELSOvf3HhUJBZWVlKhQKCoLggI8/Pfaj/TiXyymZTCqVSh3wcSqVUjKZbHP/2n/86fsRxX0yMzU3N+vYY49VMpksiftUTP9Oq1atkiTt2bNH2Ww28udTR8eIlnG1fFxRUdHmGNH+464+RmSzWU1rmKZkIqnAAiUTSU17c5rO6nuW0un0Ie/TvkxG3SQFZsoV0X062L9Tyx+VfPfdd2PxfMpms2psbFSfPn0UBEHkz6dSO0bk83l9+OGH6tu3r8ys6O9Ty7Usn3zySVE8n9p/fPnll0vav8LSrVs3BUGg7du3q1+/furevbsuvfRSLViwQFdccYV+//vfR36MmDZtmvL5vCZNmqREItE6llQqpXQ6rX/5l3/RbbfdptraWv3DP/xD5MfylvHee++9kvb/4L9z50717dtX5eXlmjhxosaOHava2lqNHTs28vPTH/7wB73//vuqr69v85xruU/jx4/XBRdcoMWLF+v8888P/Zx7xOsn1gmS7IUXXjjkbSZOnGiSDnh79tlnzczsxRdftBdffNHMzH7zm9/YwoULzczs+eeft6VLl5qZ2S9+8QtbsWKFmZnNmDHDVq1aZWZmP/vZz2zdunVmZvbQQw/Z5s2bzcxs8uTJtmvXLjMzmzRpkjU2Ntq+ffvsL/7iL0ySrV271iZNmmRmZrt27bLJkyebmdny5ctNkt1+++22bt06+9nPfmZmZqtWrbIZM2aYmdmKFSvsF7/4hZmZLV261J5//nkzM1u4cKH95je/cb1Pjz76aIcteeMtTm+TJ08uiudTR8eISZMm2b59+6yxsbHDY8TmzZvtoYceMjNzOUZMfnaynfr0qQe83TPznsPep5kP3GE2sadl3n+jqO7Twf6dbrrppsgfi7zx1tm3+vr6ong+tT/u9evXzyTZd7/7Xdu8eXPrsWDLli1mZnb99debJKuuri6KY8TXv/51k2TTpk3r8D796Ec/Mmn/z2fFcCy//PLLTZL98pe/tBdffNH27dtn9913ny1YsMDMzOrq6lrHWwznp5tvvtkk2eLFizu8T7/97W/b3J+wz7lbtmwxSdbY2GiHctTbwz4tkUgcdntYRystAwYM0O7du9WnT59Qf4v605/+VBMmTND06dM1ZsyYA2amTzzxhG699VbV1NQU5UrL8uXL9ZWvfEVPP/20Tj31VEn8do77FJ/7tHr1al1//fV69dVXdfbZZ0f+fCq2lZZUKqXvzPuO1vy/NQosaD1mJhNJnfx/TtYzlz3Tel87uk/ZPy1X+VOXSH//ijJ9TimK+3Sof6dXXnlFF110kerr6zVkyBCeT9ynWN2nNWvW6JprrtFrr72mv/zLv4z8+dT+44svvlhLly7VqFGj9Lvf/e6A48XIkSO1YMECnXfeeUWx0vLoo4/qhz/8oR5//HHdfPPNB9yn2tpa3XbbbaqpqSmKlZapU6fqhz/8oerq6nTjjTcecJ8ef/xxjR07VjU1NUWz0jJy5Ei99tprGjFixAH3afHixbrgggu0cOHCSFZampqa1Lt378NuD3OftLTHNS2f3R//+EeNGDFCy5cv11lnnRX1cEpOEATatm2b+vfv32a/J7oGj99Da38tS3uHu7Yl2Pamkk9epODmRUr2P8NjiF2q2K8JaI/jg6+49S32x2/7a1q6devW2nffvn1c09JJ7cebTCZb+wZBUHTjLZVrWor/yNCFysvLNW7cOO3atUvV1dWaPn26tm/frunTp6u6ulq7du3SuHHjiuIB1pGW31K0vEfXyuVymjVrVuv1VuhaPH4Pzsw07c1pSijR4dcTSmjam9MOue+Xvr44Pviib9fq1auXBg8eLEnq0aOHvva1r2nKlCn62te+1jphGTx4cFFMWKT4/XzWfrx1dXWaMWOG6urqinK8qVRKDz30kObNm6fRo0e3efWw0aNHa968efrpT38ayYTlaHzu/grZj3/8Y0lSTU2NbrnlltbPp9NpjR8/vvXrxajlwV8sT4JSU1FRoTvvvDPqYZQsHr8Hlwty2vnxTpk6npSYTDs/3qlckFN5quN+5f+zfaXlPboWxwdf9O1669evb33Z4wULFmjBggWtXxs8eLDWr18f4egOFLefzz493ttuu63188U63quvvlq/+tWv9IMf/EDnnntu6+dPPPFE/epXv9LVV18d4eiOzFFPWvbs2dPmgb5p0yatXLlSxx13nAYOHNilg/Py4x//WA888IBqa2u1YcMGDR48WGPHji36H6ZaXrGm5T26VhAE2rhxo0466aRYbE+IGx6/B1eeKte//d9/04f7PjzobY7rdtxBJyzS/lcNS37qPboWxwdf9PWxfv16NTY26vLLL2/t+7vf/a5oVljai9vPZy3jfeyxx/Tmm2/qjDPO0O23316047366qt11VVXafHixdqxY4dOOOEEfeUrXyn6FZYWRz1p+eMf/6iLL7649b9bfjNy3XXX6emnn+6ygXkrLy/X97///aiHcVQKhUKb9+ha+XxeL730km666aaiPeDEGY/fQ+vXo5/69ej3mf//QiGv5Kfeo2txfPBFXz+9evXSwoULNWPGjFj0jdvPZ+Xl5br99ttj0zeVSumiiy6KehifSacuxP8sorwQP+727t2rNWvW6OSTT27zh6KAOCj2C1djjz8uCYSG8zHQdbgQvwRVVFS0vqHrFQoFrV69mpUAJ6y0+Cr8z7a7AtvvXHB88BW3vt27d9fw4cNjM2GJW9+4oW84mLTESKFQ0Ouvv86Twgl9fXFNi68gKLR5j67F8cEXfX3R1xd9w/G5e/WwOCsvL9eNN94Y9TBKFn19tfxxtjJe3cpFWbqszXt0LY4Pvujri76+6BsOJi0xUigU9NZbb+m0006LzSs9xAl9fTU3N0va/2Ie6HoVH67RUEmr33lHmZ3Fv5r17rvvRj2Eo8LxwRd9fdHXF33DwaQlRgqFgt555x2deuqpPCkc0NdXyw+pn379fXSdM/ol1XDLsbr22mv1ZgwmLS0qKyujHsIR4fjgi76+6OuLvuHg1cMAhGL37t2aM2cOr7bjJJHfp257NmvfsQNl6W5RD+eIVFZW6gtf+ELUwwAAROhI5wastMRIPp/X8uXLNWLECKXT/NN1Nfr66t27t4YOHUpfJ/sfvwmNGE5fDxwffNHXF3190TccvHpYjJiZtm7dqpAXxz436OuLvr7o64u+vujri76+6BsOtocBAAAAiAR/XLIE5fN5LVq0SPl8PuqhlCT6+qKvL/r6oq8v+vqiry/6hoNJS4yYmZqamlh+dEJfX/T1RV9f9PVFX1/09UXfcLA9DAAAAEAk2B5WgvL5vObPn8/yoxP6+qKvL/r6oq8v+vqiry/6hoNJCwAAAICixvYwAAAAAJFge1gJyuVymjt3rnK5XNRDKUn09UVfX/T1RV9f9PVFX1/0DQeTlhhJJBLq2bOnEolE1EMpSfT1RV9f9PVFX1/09UVfX/QNB9vDAAAAAESC7WElKJfLadasWSw/OqGvL/r6oq8v+vqiry/6+qJvOJi0xEgikVB1dTXLj07o64u+vujri76+6OuLvr7oGw62hwEAAACIBNvDSlA2m1V9fb2y2WzUQylJ9PVFX1/09UVfX/T1RV9f9A0Hk5YYSaVS+vKXv6xUKhX1UEoSfX3R1xd9fdHXF3190dcXfcPB9jAAAAAAkWB7WAnKZrOaOXMmy49O6OuLvr7o64u+vujri76+6BsOJi0xkkqldM4557D86IS+vujri76+6OuLvr7o64u+4WB7GAAAAIBIsD2sBGWzWdXW1rL86IS+vujri76+6OuLvr7o64u+4WDSEiPpdFojR45UOp2Oeiglib6+6OuLvr7o64u+vujri77hYHsYAAAAgEiwPawEZTIZPfzww8pkMlEPpSTR1xd9fdHXF3190dcXfX3RNxystMRIEATatm2b+vfvr2SS+WZXo68v+vqiry/6+qKvL/r6om/nHOncgEkLAAAAgEiwPawEZTIZPfjggyw/OqGvL/r6oq8v+vqiry/6+qJvOFhpiZEgCLR792717duX5UcH9PVFX1/09UVfX/T1RV9f9O0ctocBAAAAKGpsDytBmUxG9957L8uPTujri76+6OuLvr7o64u+vugbDlZaYsTM1NzcrMrKSiUSiaiHU3Lo64u+vujri76+6OuLvr7o2zmstJSoioqKqIdQ0ujri76+6OuLvr7o64u+vujrj0lLjGSzWU2ZMkXZbDbqoZQk+vqiry/6+qKvL/r6oq8v+oaD7WExYmbKZrMqLy9n+dEBfX3R1xd9fdHXF3190dcXfTuH7WEliou8fNHXF3190dcXfX3R1xd9fdHXH5OWGMlms6qpqWH50Ql9fdHXF3190dcXfX3R1xd9w8H2MAAAAACRYHtYCQqCQB988IGCIIh6KCWJvr7o64u+vujri76+6OuLvuFg0hIjuVxOM2fOVC6Xi3ooJYm+vujri76+6OuLvr7o64u+4WB7GAAAAIBIsD2sBAVBoC1btrD86IS+vujri76+6OuLvr7o64u+4WDSEiO5XE6zZs1i+dEJfX3R1xd9fdHXF3190dcXfcPB9jAAAAAAkWB7WAkKgkDr169n+dEJfX3R1xd9fdHXF3190dcXfcPBpCVG8vm8XnrpJeXz+aiHUpLo64u+vujri76+6OuLvr7oGw62hwEAAACIBNvDSlChUNDq1atVKBSiHkpJoq8v+vqiry/6+qKvL/r6om84mLTESKFQ0Ouvv86Twgl9fdHXF3190dcXfX3R1xd9w8H2MAAAAACRYHtYCSoUCmpoaGAm74S+vujri76+6OuLvr7o64u+4WDSEiOFQkHvvPMOTwon9PVFX1/09UVfX/T1RV9f9A0H28MAAAAARILtYSUon89r2bJlvA64E/r6oq8v+vqiry/6+qKvL/qGg0lLjJiZtm7dqpAXxz436OuLvr7o64u+vujri76+6BsOtocBAAAAiATbw0pQPp/XokWLWH50Ql9f9PVFX1/09UVfX/T1Rd9wMGmJETNTU1MTy49O6OuLvr7o64u+vujri76+6BsOtocBAAAAiATbw0pQPp/X/PnzWX50Ql9f9PVFX1/09UVfX/T1Rd9wMGkBAAAAUNTYHgYAAAAgEkc6N0iHOCZJar1IqampKexvHXu5XE4LFizQpZdeqrKysqiHU3Lo64u+vujri76+6OuLvr7o2zktc4LDraOEPmlpbm6WJA0YMCDsbw0AAACgCDU3N6tXr14H/Xro28OCIND27dtVWVmpRCIR5reOvaamJg0YMEBbtmxha50D+vqiry/6+qKvL/r6oq8v+naOmam5uVlVVVVKJg9+uX3oKy3JZFLV1dVhf9uS0rNnT54Ujujri76+6OuLvr7o64u+vuj72R1qhaUFrx4GAAAAoKgxaQEAAABQ1Ji0xEhFRYUmTpyoioqKqIdSkujri76+6OuLvr7o64u+vugbjtAvxAcAAACAo8FKCwAAAICixqQFAAAAQFFj0gIAAACgqDFpAQAAAFDUmLQAAAAAKGpMWorQtm3bdM0116hPnz7q3r27Tj/9dK1YsaL163v27NHtt9+u6upqHXPMMTrllFP0+OOPRzji+PizP/szJRKJA95uu+02SZKZadKkSaqqqtIxxxyjiy66SKtXr4541PFxqL65XE533XWXhg0bph49eqiqqkpjxozR9u3box52bBzu8ftpt9xyixKJhB555JHwBxpTR9L33Xff1ZVXXqlevXqpsrJS55xzjjZv3hzhqOPjcH05t3VOPp/XPffcoxNPPFHHHHOMTjrpJN13330KgqD1NpzjPrvD9eUcFwJDUfnwww9t0KBBdv3119t//ud/2qZNm+zll1+29evXt97mpptussGDB9vChQtt06ZN9sQTT1gqlbI5c+ZEOPJ4+OCDD2zHjh2tbwsWLDBJtnDhQjMzmzJlilVWVtqvf/1re/vtt+3b3/62nXDCCdbU1BTtwGPiUH0/+ugju+SSS+y5556zNWvW2LJly+zss8+2M888M+phx8bhHr8tXnjhBTvttNOsqqrKampqIhlrHB2u7/r16+24446z8ePHW0NDg23YsMHmzZtnu3btinbgMXG4vpzbOueBBx6wPn362Lx582zTpk02a9YsO/bYY+2RRx5pvQ3nuM/ucH05x/lj0lJk7rrrLjv//PMPeZuhQ4fafffd1+Zzw4cPt3vuucdzaCXpe9/7ng0ePNiCILAgCKxfv342ZcqU1q/v27fPevXqZXV1dRGOMr4+3bcjb7zxhkmyP/3pTyGPrDR01Hfr1q3Wv39/W7VqlQ0aNIhJSye07/vtb3/brrnmmohHVTra9+Xc1jlXXHGF3XDDDW0+d/XVV7c+ZjnHdc7h+naEc1zXYntYkZk7d67OOussffOb39Txxx+vM844Q08++WSb25x//vmaO3eutm3bJjPTwoULtXbtWo0aNSqiUcdTNptVfX29brjhBiUSCW3atEk7d+7UyJEjW29TUVGhCy+8UEuXLo1wpPHUvm9HGhsblUgk1Lt373AHVwI66hsEga699lqNHz9eQ4cOjXiE8da+bxAE+u1vf6svfvGLGjVqlI4//nidffbZmjNnTtRDjaWOHr+c2zrn/PPP1+9//3utXbtWkvTWW2/ptdde0+WXXy5JnOM66XB9O8I5rotFPWtCWxUVFVZRUWH/+I//aA0NDVZXV2fdunWzf/3Xf229TSaTsTFjxpgkS6fTVl5ebj//+c8jHHU8Pffcc5ZKpWzbtm1mZrZkyRKT1PrfLW6++WYbOXJkFEOMtfZ92/vkk0/szDPPtL/7u78LeWSloaO+kydPtksvvbT1N9estHx27fvu2LHDJFn37t3t4YcftjfffNMefPBBSyQStmjRoohHGz8dPX45t3VOEAR29913WyKRsHQ6bYlEwiZPntz6dc5xnXO4vu1xjut66UhnTDhAEAQ666yzNHnyZEnSGWecodWrV+vxxx/XmDFjJEmPPvqoXn/9dc2dO1eDBg3Sq6++qrFjx+qEE07QJZdcEuXwY2XmzJm67LLLVFVV1ebz7VcFzOygKwU4uIP1lfZfsPid73xHQRCotrY2gtHFX/u+K1as0NSpU9XQ0MDjtQu079tyse1VV12lcePGSZJOP/10LV26VHV1dbrwwgsjG2scdXR84NzWOc8995zq6+v1y1/+UkOHDtXKlSv1/e9/X1VVVbruuutab8c57rM50r4S5zg3Uc+a0NbAgQPtxhtvbPO52tpaq6qqMjOzvXv3WllZmc2bN6/NbW688UYbNWpUaOOMu/fff9+SyWSbCzw3bNhgkqyhoaHNba+88kobM2ZM2EOMtY76tshmszZ69Gj78z//c9u9e3cEo4u/jvrW1NRYIpGwVCrV+ibJksmkDRo0KLrBxlBHfTOZjKXTabv//vvb3HbChAl27rnnhj3EWOuoL+e2zquurrbHHnuszefuv/9++9KXvmRmnOM663B9W3CO88M1LUXmvPPO03vvvdfmc2vXrtWgQYMk7Z+953I5JZNt/+lSqVSblzXEoT311FM6/vjjdcUVV7R+7sQTT1S/fv20YMGC1s9ls1m98sorOvfcc6MYZmx11Ffa//j91re+pXXr1unll19Wnz59IhphvHXU99prr9V//dd/aeXKla1vVVVVGj9+vObPnx/haOOno77l5eUaMWLEIY/PODId9eXc1nl79+49ZD/OcZ1zuL4S5zh3Uc+a0NYbb7xh6XTafvSjH9m6devsmWeese7du1t9fX3rbS688EIbOnSoLVy40DZu3GhPPfWUdevWzWprayMceXwUCgUbOHCg3XXXXQd8bcqUKdarVy+bPXu2vf322/Y3f/M3vBzkUTpY31wuZ1deeaVVV1fbypUr27z0aSaTiWi08XOox297XNNy9A7Vd/bs2VZWVmbTp0+3devW2bRp0yyVStnixYsjGGk8Haov57bOue6666x///6tL8k7e/Zs69u3r02YMKH1NpzjPrvD9eUc549JSxH693//dzv11FOtoqLCTj75ZJs+fXqbr+/YscOuv/56q6qqsm7dutmXvvQle+ihhw76srJoa/78+SbJ3nvvvQO+FgSBTZw40fr162cVFRV2wQUX2Ntvvx3BKOPrYH03bdpkkjp8a/93RnBwh3r8tsek5egdru/MmTNtyJAh1q1bNzvttNP4GyJH6VB9Obd1TlNTk33ve9+zgQMHWrdu3eykk06yf/7nf27zAzPnuM/ucH05x/lLmJmFvrwDAAAAAEeIa1oAAAAAFDUmLQAAAACKGpMWAAAAAEWNSQsAAACAosakBQAAAEBRY9ICAAAAoKgxaQEAAABQ1Ji0AAAAAChqTFoAAAAAFDUmLQAAAACKGpMWAAAAAEXt/wNU43GrtGZYZQAAAABJRU5ErkJggg==" }, "metadata": {} @@ -323,18 +369,16 @@ { "cell_type": "markdown", "source": [ - "Age, height and weight are all continuous random variables. What do you think their distribution is? A good way to find out is to plot the histogram of values: " + "We can also make box plots of subsets of our dataset, for example, grouped by player role." ], "metadata": {} }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 210, "source": [ - "df['Weight'].hist(bins=15)\r\n", - "plt.suptitle('Weight distribution of MLB Players')\r\n", - "plt.xlabel('Weight')\r\n", - "plt.ylabel('Count')\r\n", + "df.boxplot(column='Height',by='Role')\r\n", + "plt.xticks(rotation='vertical')\r\n", "plt.show()" ], "outputs": [ @@ -344,8 +388,8 @@ "text/plain": [ "
" ], - "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-12T14:47:40.679219\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHgCAYAAABDx6wqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGB0lEQVR4nO3de3xU1b3///fkNhBIAiHmVkJAFFqBolzEA2gSIdxBRCtKVbBYORVoEdB6KRKsCsWKKBRse7gpRqj+AKl4wAAJF4EKQSpQi6gBFIKUiwkQHIZk/f7wmzkMuYckk6y8no/HPGDWXnvv9VnJbN7s2XvGYYwxAgAAsJSfrwcAAABQnQg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDuoNd599105HA4tX768yLKOHTvK4XBo3bp1RZa1bt1anTp1qtC+Ro0apZYtW1ZqnCkpKXI4HDp58mSZfV988UWtWrWqUvspdOjQITkcDi1evLjIGCoiLy9PKSkpysjIqNB6xe2rZcuWGjRoUIW2U5bU1FTNnj272GUOh0MpKSlVur+qtmHDBnXp0kWNGjWSw+Eo8ede+PMsraZf/OIXnj6XS0xMVPv27UsdR+HPq/Dh5+enmJgYDRgwQB999FG5amnZsqXXNho3bqxu3brpjTfeKDKexMTEcm0T8CXCDmqNxMREORwOpaene7WfPn1ae/fuVaNGjYos++abb/TVV18pKSmpQvuaMmWKVq5cedVjLktVhJ3iPPzww9q+fXuF1snLy9O0adMqHHYqs6/KKC3sbN++XQ8//HC1j6GyjDG65557FBgYqNWrV2v79u1KSEgodZ2QkBAtXrxYBQUFXu3nzp3TO++8o9DQ0Ksa09q1a7V9+3Zt3bpVr7zyio4fP67ExETt3r27XOv36NFD27dv1/bt27V48WI5HA6NHDlS8+fPv6pxAb4Q4OsBAIUiIiLUvn37Iv8Yb9q0SQEBARo9enSRsFP4vKJhp3Xr1lc1Vl9r3ry5mjdvXq37yMvLU3BwcI3sqyy33HKLT/dflmPHjun06dO688471atXr3KtM3z4cP3P//yPNmzYoOTkZE/78uXLlZ+fr6FDh2rp0qWVHlPnzp0VEREhSerevbtuvvlmtW7dWu+++265zoQ2adLEa9579+6t+Ph4zZo1S7/61a8qPa6aVPg7DHBmB7VKUlKSDhw4oOzsbE9bRkaGunbtqgEDBigzM1Nnz571Wubv769bb71V0g//w543b55uvPFGNWzYUE2bNtXdd9+tr776yms/xb2N9d1332n06NEKDw9X48aNNXDgQH311Vclvt3w7bff6r777lNYWJiioqL0i1/8Qjk5OZ7lDodD58+f15IlSzxvB5R1yv/YsWO65557FBISorCwMA0fPlzHjx8v0q+4t5Y2btyoxMRENWvWTA0bNlSLFi101113KS8vT4cOHdI111wjSZo2bZpnPKNGjfLa3u7du3X33XeradOmnkBY2ltmK1eu1E9/+lM1aNBA1157rV577TWv5YVnBA4dOuTVnpGRIYfD4Qm2iYmJWrNmjQ4fPuz19snlc3nlz2Dfvn2644471LRpUzVo0EA33nijlixZUux+3n77bT3zzDOKjY1VaGioevfurQMHDhRb05W2bt2qXr16KSQkRMHBwerevbvWrFnjWZ6SkuIJg7/97W/lcDjK9RZp27Zt1b17dy1cuNCrfeHChRo2bJjCwsLKNb7yKtxeYGBgpdZv0qSJ2rZtq8OHD5fab9q0aerWrZvCw8MVGhqqTp06acGCBbr8O6cLX2d5eXlF1r/99tvVrl07z/PyvqYL3+LbvHmzunfvruDgYP3iF7+QVPprA/UDYQe1SuEZmsvP7qSnpyshIUE9evSQw+HQli1bvJZ16tTJcyAfM2aMJkyYoN69e2vVqlWaN2+e9u/fr+7du+vbb78tcb8FBQUaPHiwUlNT9dvf/lYrV65Ut27d1K9fvxLXueuuu9SmTRv9f//f/6cnn3xSqampeuyxxzzLt2/froYNG2rAgAGetwPmzZtX4vYuXLig3r1768MPP9T06dP1zjvvKDo6WsOHDy9z3g4dOqSBAwcqKChICxcu1Nq1azVjxgw1atRIFy9eVExMjNauXSvph39oCsczZcoUr+0MGzZM1113nd555x29/vrrpe5zz549mjBhgh577DGtXLlS3bt3129+8xv98Y9/LHO8V5o3b5569Oih6Ohoz9hKe+vswIED6t69u/bv36/XXntNK1as0A033KBRo0Zp5syZRfo//fTTOnz4sP7nf/5Hf/nLX3Tw4EENHjxY+fn5pY5r06ZNuv3225WTk6MFCxbo7bffVkhIiAYPHuy5tuzhhx/WihUrJEnjx4/X9u3by/0W6ejRo7Vq1SqdOXPGU9e2bds0evTocq1fmvz8fF26dEkXL17UF198obFjx8rpdOruu++u1PbcbrcOHz7sCc0lOXTokMaMGaO//e1vWrFihYYNG6bx48fr97//vafPb37zG505c0apqale6/7rX/9Senq6xo4d62mryGs6Oztb999/v0aMGKEPPvhAjz76aJmvDdQTBqhFTp8+bfz8/MwjjzxijDHm5MmTxuFwmLVr1xpjjLn55pvN5MmTjTHGHDlyxEgyTzzxhDHGmO3btxtJ5uWXX/ba5tdff20aNmzo6WeMMSNHjjTx8fGe52vWrDGSzPz5873WnT59upFkpk6d6mmbOnWqkWRmzpzp1ffRRx81DRo0MAUFBZ62Ro0amZEjR5ar9vnz5xtJ5r333vNq/+Uvf2kkmUWLFhUZQ6F3333XSDJ79uwpcfv/+c9/itRy5faeffbZEpddLj4+3jgcjiL7S05ONqGhoeb8+fPGGGMWLVpkJJmsrCyvfunp6UaSSU9P97QNHDjQ62dyuSvHfe+99xqn02mOHDni1a9///4mODjYfPfdd177GTBggFe/v/3tb0aS2b59e7H7K3TLLbeYyMhIc/bsWU/bpUuXTPv27U3z5s09P+usrCwjybz00kulbu/KvmfPnjWNGzc2c+fONcYY8/jjj5tWrVqZgoICM3bs2CLznpCQYNq1a1fq9gt/Xlc+QkNDzYoVK8ocnzE//HwHDBhg3G63cbvdJisry4wcOdJIMo8//rjXeBISEkrcTn5+vnG73ea5554zzZo183ptJCQkmBtvvNGr/69+9SsTGhrqme+KvKYTEhKMJLNhwwavvuV5bcB+nNlBrdK0aVN17NjRc2Zn06ZN8vf3V48ePSRJCQkJnut0rrxe5/3335fD4dD999+vS5cueR7R0dFe2yzOpk2bJEn33HOPV/t9991X4jpDhgzxev7Tn/5U33//vU6cOFH+gi+Tnp6ukJCQItsdMWJEmeveeOONCgoK0iOPPKIlS5YUOcVfXnfddVe5+7Zr104dO3b0ahsxYoRyc3PLfRFsZW3cuFG9evVSXFycV/uoUaOUl5dX5KxQcT8rSaW+JXP+/Hn94x//0N13363GjRt72v39/fXAAw/om2++KfdbYSVp3Lixfvazn2nhwoW6dOmS3njjDT300EMVvtOuOOvXr9fOnTv18ccf6/3331fv3r117733lvus0wcffKDAwEAFBgaqVatW+tvf/qbx48fr+eefL3W9jRs3qnfv3goLC5O/v78CAwP17LPP6tSpU16vjd/85jfas2eP5w6x3Nxcvfnmmxo5cqRnviv6mm7atKluv/12r7aqem2gbiPsoNZJSkrS559/rmPHjik9PV2dO3f2HPwSEhL0ySefKCcnR+np6QoICFDPnj0l/XANjTFGUVFRnoN04WPHjh2l3ip+6tQpBQQEKDw83Ks9KiqqxHWaNWvm9dzpdEr64e2oyjh16lSx+4uOji5z3datW2v9+vWKjIzU2LFj1bp1a7Vu3VqvvvpqhcYQExNT7r7Fjauw7dSpUxXab0WdOnWq2LHGxsYWu//K/KzOnDkjY0yF9lMZo0eP1u7du/XCCy/oP//5j+c6qqvVsWNHdenSRV27dtXAgQP1zjvv6LrrrvN6i6g0PXv21M6dO7Vr1y7961//0nfffafXXntNQUFBJa7z8ccfq0+fPpKkv/71r/roo4+0c+dOPfPMM5K85/uOO+5Qy5Yt9ac//UnSD9d3nT9/3mt8FX1NF/ezqqrXBuo27sZCrZOUlKRZs2YpIyNDGRkZGjBggGdZYbDZvHmz58LlwiAUERHhuaan8B+zyxXXVqhZs2a6dOmSTp8+7RV4irs4uLo0a9ZMH3/8cZH28o7h1ltv1a233qr8/Hzt2rVLc+bM0YQJExQVFaV77723XNuoyBmF4sZV2FYYLho0aCBJcrlcXv3K8xlFpWnWrJnXReyFjh07Jkmeu5CuRtOmTeXn51ft++nRo4fatm2r5557TsnJyUXOVlUVPz8/tWvXTu+8845OnDihyMjIUvuHhYWpS5cuFdrHsmXLFBgYqPfff9/zs5dU7Mcv+Pn5aezYsXr66af18ssva968eerVq5fatm3r6VPR13RJv79V8dpA3caZHdQ6t912m/z9/fXuu+9q//79XncwhYWFee66OXTokNct54MGDZIxRkePHlWXLl2KPDp06FDiPgs/E+XKDzRctmzZVdXidDrLfaYnKSlJZ8+e1erVq73ar7yIsyz+/v7q1q2b53/MhW8pXe2Zpyvt379f//znP73aUlNTFRIS4rm1ufCupE8//dSr35U1Fo6vvGPr1auXNm7c6Akdhd544w0FBwdXya3qjRo1Urdu3bRixQqvcRUUFGjp0qVq3ry52rRpc9X7kaTf/e53Gjx4sCZNmlQl2ytOfn6+9u7dK6fTedWf4VMSh8OhgIAA+fv7e9ouXLigN998s9j+Dz/8sIKCgvTzn/9cBw4c0Lhx47yWX81rujglvTZgP87soNYpvF111apV8vPz81yvUyghIcHz4XOXh50ePXrokUce0UMPPaRdu3bptttuU6NGjZSdna2tW7eqQ4cOJX4+SL9+/dSjRw9NmjRJubm56ty5s7Zv3+75xFg/v8r9v6BDhw7KyMjQ3//+d8XExCgkJMTrf66Xe/DBB/XKK6/owQcf1AsvvKDrr79eH3zwQbGfGn2l119/XRs3btTAgQPVokULff/9955bmnv37i3phw+xi4+P13vvvadevXopPDxcERERlf4k6djYWA0ZMkQpKSmKiYnR0qVLlZaWpj/84Q+ezzbp2rWr2rZtq8mTJ+vSpUtq2rSpVq5cqa1btxY7VytWrND8+fPVuXNn+fn5lXhmYerUqXr//feVlJSkZ599VuHh4Xrrrbe0Zs0azZw5s8pu254+fbqSk5OVlJSkyZMnKygoSPPmzdO+ffv09ttvV8m1NZJ0//336/777y9X39zcXL377rtF2q+55hqvDzLMzMz0zMO3336rhQsX6t///rcee+wxr7MuVWngwIGaNWuWRowYoUceeUSnTp3SH//4xxLPqjZp0kQPPvig5s+fr/j4eA0ePNhr+dW8pguV57WBesCnl0cDJXjiiSeMJNOlS5ciy1atWmUkmaCgIM9dP5dbuHCh6datm2nUqJFp2LChad26tXnwwQfNrl27PH2uvBvLmB/uBHvooYdMkyZNTHBwsElOTjY7duwwksyrr77q6Vd4t8t//vMfr/WLu/Noz549pkePHiY4ONhIKvXOFWOM+eabb8xdd91lGjdubEJCQsxdd91ltm3bVubdWNu3bzd33nmniY+PN06n0zRr1swkJCSY1atXe21//fr15qabbjJOp9NI8twpVlJNxe3LmB/u1hk4cKB59913Tbt27UxQUJBp2bKlmTVrVpH1P//8c9OnTx8TGhpqrrnmGjN+/HjP3W+X3411+vRpc/fdd5smTZoYh8PhtU8VcxfZ3r17zeDBg01YWJgJCgoyHTt29JojY/7vbqx33nnHq73wjqgr+xdny5Yt5vbbb/f8Pt1yyy3m73//e7Hbq+jdWKUp6W4sFXOn1eW/W8XdjRUeHm66detmFi5caPLz88scY+HPtyzF3Y21cOFC07ZtW+N0Os21115rpk+fbhYsWFDsXXnGGJORkWEkmRkzZpS4n/K8pku6U628rw3YzWHMZZ/0BMBLamqqfv7zn+ujjz5S9+7dfT0cwDqTJk3S/Pnz9fXXXxe5kByoKryNBfw/b7/9to4ePaoOHTrIz89PO3bs0EsvvaTbbruNoANUsR07dujzzz/XvHnzNGbMGIIOqhVndoD/5/3331dKSoq++OILnT9/XjExMRo6dKief/75arugE6ivHA6HgoODNWDAAC1atMjrs4yAqkbYAQAAVuPWcwAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqwX4egC1QUFBgY4dO6aQkBA5HA5fDwcAAJSDMUZnz55VbGys/PxKPn9D2JF07NgxxcXF+XoYAACgEr7++ms1b968xOWEHUkhISGSfpis0NBQH4+marndbn344Yfq06ePAgMDfT2cGkf99bt+iTmo7/VLzIHN9efm5iouLs7z73hJCDuS562r0NBQK8NOcHCwQkNDrfslLw/qr9/1S8xBfa9fYg7qQ/1lXYLCBcoAAMBqhB0AAGA1n4ad6dOnq2vXrgoJCVFkZKSGDh2qAwcOePUxxiglJUWxsbFq2LChEhMTtX//fq8+LpdL48ePV0REhBo1aqQhQ4bom2++qclSAABALeXTsLNp0yaNHTtWO3bsUFpami5duqQ+ffro/Pnznj4zZ87UrFmzNHfuXO3cuVPR0dFKTk7W2bNnPX0mTJiglStXatmyZdq6davOnTunQYMGKT8/3xdlAQCAWsSnFyivXbvW6/miRYsUGRmpzMxM3XbbbTLGaPbs2XrmmWc0bNgwSdKSJUsUFRWl1NRUjRkzRjk5OVqwYIHefPNN9e7dW5K0dOlSxcXFaf369erbt2+N1wUAAGqPWnU3Vk5OjiQpPDxckpSVlaXjx4+rT58+nj5Op1MJCQnatm2bxowZo8zMTLndbq8+sbGxat++vbZt21Zs2HG5XHK5XJ7nubm5kn64Yt3tdldLbb5SWI9tdZUX9dfv+iXmoL7XLzEHNtdf3ppqTdgxxmjixInq2bOn2rdvL0k6fvy4JCkqKsqrb1RUlA4fPuzpExQUpKZNmxbpU7j+laZPn65p06YVaf/www8VHBx81bXURmlpab4egk9Rf/2uX2IO6nv9EnNgY/15eXnl6ldrws64ceP06aefauvWrUWWXXn/vDGmzHvqS+vz1FNPaeLEiZ7nhR9K1KdPHys/ZyctLU3JycnWfr5Caai/ftcvMQf1vX6JObC5/sJ3ZspSK8LO+PHjtXr1am3evNnr456jo6Ml/XD2JiYmxtN+4sQJz9me6OhoXbx4UWfOnPE6u3PixAl179692P05nU45nc4i7YGBgdb9IhSyubbyoP76Xb/EHNT3+iXmwMb6y1uPT+/GMsZo3LhxWrFihTZu3KhWrVp5LW/VqpWio6O9Tr1dvHhRmzZt8gSZzp07KzAw0KtPdna29u3bV2LYAQAA9YdPz+yMHTtWqampeu+99xQSEuK5xiYsLEwNGzaUw+HQhAkT9OKLL+r666/X9ddfrxdffFHBwcEaMWKEp+/o0aM1adIkNWvWTOHh4Zo8ebI6dOjguTsLAADUXz4NO/Pnz5ckJSYmerUvWrRIo0aNkiQ98cQTunDhgh599FGdOXNG3bp104cffuj1pV+vvPKKAgICdM899+jChQvq1auXFi9eLH9//5oqBQAA1FI+DTvGmDL7OBwOpaSkKCUlpcQ+DRo00Jw5czRnzpwqHB0AALAB340FAACsRtgBAABWqxW3ngOouJZPrimzj9PfaObNUvuUdXLll/7ZVOV1aMbAKtkOANQUzuwAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKwW4Mudb968WS+99JIyMzOVnZ2tlStXaujQoZ7lDoej2PVmzpypxx9/XJKUmJioTZs2eS0fPny4li1bVm3jBi7X8sk1vh4CAKAUPj2zc/78eXXs2FFz584tdnl2drbXY+HChXI4HLrrrru8+v3yl7/06vfnP/+5JoYPAADqAJ+e2enfv7/69+9f4vLo6Giv5++9956SkpJ07bXXerUHBwcX6QsAACD5OOxUxLfffqs1a9ZoyZIlRZa99dZbWrp0qaKiotS/f39NnTpVISEhJW7L5XLJ5XJ5nufm5kqS3G633G531Q/ehwrrsa2u8qqJ+p3+ptq2fbWcfsbrz6pQ136XeA3U7/ol5sDm+stbk8MYUyuO1A6Ho8g1O5ebOXOmZsyYoWPHjqlBgwae9r/+9a9q1aqVoqOjtW/fPj311FO67rrrlJaWVuK+UlJSNG3atCLtqampCg4OvupaAABA9cvLy9OIESOUk5Oj0NDQEvvVmbDz4x//WMnJyZozZ06p28nMzFSXLl2UmZmpTp06FdunuDM7cXFxOnnyZKmTVRe53W6lpaUpOTlZgYGBvh5OjauJ+tunrKuW7VYFp5/R77sUaMouP7kKir/gv6L2pfStku3UFF4D9bt+iTmwuf7c3FxFRESUGXbqxNtYW7Zs0YEDB7R8+fIy+3bq1EmBgYE6ePBgiWHH6XTK6XQWaQ8MDLTuF6GQzbWVR3XW78qvmhBRnVwFjiobZ139PeI1UL/rl5gDG+svbz114nN2FixYoM6dO6tjx45l9t2/f7/cbrdiYmJqYGQAAKC28+mZnXPnzumLL77wPM/KytKePXsUHh6uFi1aSPrhFNU777yjl19+ucj6X375pd566y0NGDBAERER+te//qVJkybppptuUo8ePWqsDgAAUHv5NOzs2rVLSUlJnucTJ06UJI0cOVKLFy+WJC1btkzGGN13331F1g8KCtKGDRv06quv6ty5c4qLi9PAgQM1depU+fv710gNAACgdvNp2ElMTFRZ10c/8sgjeuSRR4pdFhcXV+TTkwEAAC5XJ67ZAQAAqCzCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwWoAvd75582a99NJLyszMVHZ2tlauXKmhQ4d6lo8aNUpLlizxWqdbt27asWOH57nL5dLkyZP19ttv68KFC+rVq5fmzZun5s2b11QZQL3S8sk1PtnvoRkDfbJfAHWfT8/snD9/Xh07dtTcuXNL7NOvXz9lZ2d7Hh988IHX8gkTJmjlypVatmyZtm7dqnPnzmnQoEHKz8+v7uEDAIA6wKdndvr376/+/fuX2sfpdCo6OrrYZTk5OVqwYIHefPNN9e7dW5K0dOlSxcXFaf369erbt2+VjxkAANQtPg075ZGRkaHIyEg1adJECQkJeuGFFxQZGSlJyszMlNvtVp8+fTz9Y2Nj1b59e23btq3EsONyueRyuTzPc3NzJUlut1tut7saq6l5hfXYVld51UT9Tn9Tbdu+Wk4/4/VnXVbZnyGvgfpdv8Qc2Fx/eWtyGGNqxVHQ4XAUuWZn+fLlaty4seLj45WVlaUpU6bo0qVLyszMlNPpVGpqqh566CGv4CJJffr0UatWrfTnP/+52H2lpKRo2rRpRdpTU1MVHBxcpXUBAIDqkZeXpxEjRignJ0ehoaEl9qvVZ3aGDx/u+Xv79u3VpUsXxcfHa82aNRo2bFiJ6xlj5HA4Slz+1FNPaeLEiZ7nubm5iouLU58+fUqdrLrI7XYrLS1NycnJCgwM9PVwalxN1N8+ZV21bLcqOP2Mft+lQFN2+clVUPJroi7Yl1K5t6V5DdTv+iXmwOb6C9+ZKUutDjtXiomJUXx8vA4ePChJio6O1sWLF3XmzBk1bdrU0+/EiRPq3r17idtxOp1yOp1F2gMDA637RShkc22FirtLyOlvNPNm6aYXNsqVX13/2Nf+EOEqcFRj/TXjan9/68NroDT1vX6JObCx/vLWU6c+Z+fUqVP6+uuvFRMTI0nq3LmzAgMDlZaW5umTnZ2tffv2lRp2AABA/eHTMzvnzp3TF1984XmelZWlPXv2KDw8XOHh4UpJSdFdd92lmJgYHTp0SE8//bQiIiJ05513SpLCwsI0evRoTZo0Sc2aNVN4eLgmT56sDh06eO7OAgAA9ZtPw86uXbuUlJTkeV54Hc3IkSM1f/587d27V2+88Ya+++47xcTEKCkpScuXL1dISIhnnVdeeUUBAQG65557PB8quHjxYvn7+9d4PQAAoPbxadhJTExUaTeDrVtX9oWfDRo00Jw5czRnzpyqHBoAALBEnbpmBwAAoKIIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaj4NO5s3b9bgwYMVGxsrh8OhVatWeZa53W799re/VYcOHdSoUSPFxsbqwQcf1LFjx7y2kZiYKIfD4fW49957a7gSAABQW/k07Jw/f14dO3bU3LlziyzLy8vT7t27NWXKFO3evVsrVqzQ559/riFDhhTp+8tf/lLZ2dmex5///OeaGD4AAKgDAny58/79+6t///7FLgsLC1NaWppX25w5c3TzzTfryJEjatGihac9ODhY0dHR1TpWAABQN/k07FRUTk6OHA6HmjRp4tX+1ltvaenSpYqKilL//v01depUhYSElLgdl8sll8vleZ6bmyvph7fO3G53tYzdVwrrsa2u4jj9TdE2P+P1Z31jU/2V/R2uT6+B4tT3+iXmwOb6y1uTwxhTK46CDodDK1eu1NChQ4td/v3336tnz5768Y9/rKVLl3ra//rXv6pVq1aKjo7Wvn379NRTT+m6664rclbocikpKZo2bVqR9tTUVAUHB191LQAAoPrl5eVpxIgRysnJUWhoaIn96kTYcbvd+tnPfqYjR44oIyOj1IIyMzPVpUsXZWZmqlOnTsX2Ke7MTlxcnE6ePFnqtusit9uttLQ0JScnKzAw0NfDqVbtU9YVaXP6Gf2+S4Gm7PKTq8Dhg1H5lk3170vpW6n16tNroDj1vX6JObC5/tzcXEVERJQZdmr921hut1v33HOPsrKytHHjxjLDSKdOnRQYGKiDBw+WGHacTqecTmeR9sDAQOt+EQrZXFshV37J/5i7ChylLredDfVf7e9vfXgNlKa+1y8xBzbWX956anXYKQw6Bw8eVHp6upo1a1bmOvv375fb7VZMTEwNjBAAANR2Pg07586d0xdffOF5npWVpT179ig8PFyxsbG6++67tXv3br3//vvKz8/X8ePHJUnh4eEKCgrSl19+qbfeeksDBgxQRESE/vWvf2nSpEm66aab1KNHD1+VBQAAahGfhp1du3YpKSnJ83zixImSpJEjRyolJUWrV6+WJN14441e66WnpysxMVFBQUHasGGDXn31VZ07d05xcXEaOHCgpk6dKn9//xqrAwAA1F4+DTuJiYkq7frosq6djouL06ZNm6p6WAAAwCJ8NxYAALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgtUqFnWuvvVanTp0q0v7dd9/p2muvvepBAQAAVJVKhZ1Dhw4pPz+/SLvL5dLRo0evelAAAABVJaAinVevXu35+7p16xQWFuZ5np+frw0bNqhly5ZVNjgAAICrVaGwM3ToUEmSw+HQyJEjvZYFBgaqZcuWevnll6tscAAAAFerQmGnoKBAktSqVSvt3LlTERER1TIoAACAqlKhsFMoKyurqscBAABQLSoVdiRpw4YN2rBhg06cOOE541No4cKFVz0wAACAqlCpsDNt2jQ999xz6tKli2JiYuRwOKp6XAAAAFWiUmHn9ddf1+LFi/XAAw9U9XgAAACqVKU+Z+fixYvq3r17VY8FAACgylUq7Dz88MNKTU2t6rEAAABUuUq9jfX999/rL3/5i9avX6+f/vSnCgwM9Fo+a9asKhkcAADA1apU2Pn000914403SpL27dvntYyLlQEAQG1SqbCTnp5e1eMAAACoFpW6ZgcAAKCuqNSZnaSkpFLfrtq4cWOlBwQAAFCVKhV2Cq/XKeR2u7Vnzx7t27evyBeEAgAA+FKlws4rr7xSbHtKSorOnTt3VQMCAACoSlV6zc7999/P92IBAIBapUrDzvbt29WgQYNy99+8ebMGDx6s2NhYORwOrVq1ymu5MUYpKSmKjY1Vw4YNlZiYqP3793v1cblcGj9+vCIiItSoUSMNGTJE33zzTVWUAwAALFCpt7GGDRvm9dwYo+zsbO3atUtTpkwp93bOnz+vjh076qGHHtJdd91VZPnMmTM1a9YsLV68WG3atNHzzz+v5ORkHThwQCEhIZKkCRMm6O9//7uWLVumZs2aadKkSRo0aJAyMzPl7+9fmfIA1EItn1xTqfWc/kYzb5bap6yTK7/inwN2aMbASu0XQO1RqbATFhbm9dzPz09t27bVc889pz59+pR7O/3791f//v2LXWaM0ezZs/XMM894wtWSJUsUFRWl1NRUjRkzRjk5OVqwYIHefPNN9e7dW5K0dOlSxcXFaf369erbt2+x23a5XHK5XJ7nubm5kn640Nrtdpd7/HVBYT221VUcp78p2uZnvP6sb+p7/dLVz0Fdf+3Up2NASer7HNhcf3lrchhjasVR0OFwaOXKlRo6dKgk6auvvlLr1q21e/du3XTTTZ5+d9xxh5o0aaIlS5Zo48aN6tWrl06fPq2mTZt6+nTs2FFDhw7VtGnTit1XSkpKsctSU1MVHBxctYUBAIBqkZeXpxEjRignJ0ehoaEl9qvUmZ1CmZmZ+uyzz+RwOHTDDTd4hZKrdfz4cUlSVFSUV3tUVJQOHz7s6RMUFOQVdAr7FK5fnKeeekoTJ070PM/NzVVcXJz69OlT6mTVRW63W2lpaUpOTi7yHWa2aZ+yrkib08/o910KNGWXn1wF9e+rTOp7/dLVz8G+lOLPENcV9ekYUJL6Pgc211/4zkxZKhV2Tpw4oXvvvVcZGRlq0qSJjDHKyclRUlKSli1bpmuuuaYymy3WlR9eaIwp8/u3yurjdDrldDqLtAcGBlr3i1DI5toKlXY9hqvAUanrNWxR3+uXKj8Htrxu6sMxoCz1fQ5srL+89VTqbqzx48crNzdX+/fv1+nTp3XmzBnt27dPubm5+vWvf12ZTRYRHR0tSUXO0Jw4ccJztic6OloXL17UmTNnSuwDAADqt0qFnbVr12r+/Pn6yU9+4mm74YYb9Kc//Un/+7//WyUDa9WqlaKjo5WWluZpu3jxojZt2qTu3btLkjp37qzAwECvPtnZ2dq3b5+nDwAAqN8q9TZWQUFBsaeOAgMDVVBQUO7tnDt3Tl988YXneVZWlvbs2aPw8HC1aNFCEyZM0Isvvqjrr79e119/vV588UUFBwdrxIgRkn64K2z06NGaNGmSmjVrpvDwcE2ePFkdOnTw3J0FAADqt0qFndtvv12/+c1v9Pbbbys2NlaSdPToUT322GPq1atXubeza9cuJSUleZ4XXjQ8cuRILV68WE888YQuXLigRx99VGfOnFG3bt304Ycfej5jR/rhqysCAgJ0zz336MKFC+rVq5cWL17MZ+wAAABJlQw7c+fO1R133KGWLVsqLi5ODodDR44cUYcOHbR06dJybycxMVGl3fnucDiUkpKilJSUEvs0aNBAc+bM0Zw5cypSAgAAqCcqFXbi4uK0e/dupaWl6d///reMMbrhhht46wgAANQ6FbpAeePGjbrhhhs897UnJydr/Pjx+vWvf62uXbuqXbt22rJlS7UMFAAAoDIqFHZmz56tX/7yl8V+8F5YWJjGjBmjWbNmVdngAAAArlaFws4///lP9evXr8Tlffr0UWZm5lUPCgAAoKpUKOx8++23pX5aYUBAgP7zn/9c9aAAAACqSoXCzo9+9CPt3bu3xOWffvqpYmJirnpQAAAAVaVCYWfAgAF69tln9f333xdZduHCBU2dOlWDBg2qssEBAABcrQrdev673/1OK1asUJs2bTRu3Di1bdtWDodDn332mf70pz8pPz9fzzzzTHWNFQAAoMIqFHaioqK0bds2/epXv9JTTz3l+UBAh8Ohvn37at68eXwBJwAAqFUq/KGC8fHx+uCDD3TmzBl98cUXMsbo+uuvV9OmTatjfAAAAFelUp+gLElNmzZV165dq3IsAAAAVa5CFygDAADUNYQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAq9X6sNOyZUs5HI4ij7Fjx0qSRo0aVWTZLbfc4uNRAwCA2iLA1wMoy86dO5Wfn+95vm/fPiUnJ+tnP/uZp61fv35atGiR53lQUFCNjhEAANRetT7sXHPNNV7PZ8yYodatWyshIcHT5nQ6FR0dXe5tulwuuVwuz/Pc3FxJktvtltvtvsoR1y6F9dhWV3Gc/qZom5/x+rO+qe/1S1c/B3X9tVOfjgElqe9zYHP95a3JYYypM0fBixcvKjY2VhMnTtTTTz8t6Ye3sVatWqWgoCA1adJECQkJeuGFFxQZGVnidlJSUjRt2rQi7ampqQoODq628QMAgKqTl5enESNGKCcnR6GhoSX2q1Nh529/+5tGjBihI0eOKDY2VpK0fPlyNW7cWPHx8crKytKUKVN06dIlZWZmyul0Frud4s7sxMXF6eTJk6VOVl3kdruVlpam5ORkBQYG+no41ap9yroibU4/o993KdCUXX5yFTh8MCrfqu/1S1c/B/tS+lbDqGpOfToGlKS+z4HN9efm5ioiIqLMsFPr38a63IIFC9S/f39P0JGk4cOHe/7evn17denSRfHx8VqzZo2GDRtW7HacTmexQSgwMNC6X4RCNtdWyJVf8j9krgJHqcttV9/rlyo/B9dP+bAaRlO2QzMGVun26sMxoCz1fQ5srL+89dSZsHP48GGtX79eK1asKLVfTEyM4uPjdfDgwRoaGQAAqM3qTNhZtGiRIiMjNXBg6f/bOXXqlL7++mvFxMTU0MhwpZZPrvH1EAAA8Kj1n7MjSQUFBVq0aJFGjhypgID/y2fnzp3T5MmTtX37dh06dEgZGRkaPHiwIiIidOedd/pwxAAAoLaoE2d21q9fryNHjugXv/iFV7u/v7/27t2rN954Q999951iYmKUlJSk5cuXKyQkxEejBQAAtUmdCDt9+vRRcTeNNWzYUOvWFb0DBwAAoFCdeBsLAACgsgg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqtTrspKSkyOFweD2io6M9y40xSklJUWxsrBo2bKjExETt37/fhyMGAAC1Ta0OO5LUrl07ZWdnex579+71LJs5c6ZmzZqluXPnaufOnYqOjlZycrLOnj3rwxEDAIDaJMDXAyhLQECA19mcQsYYzZ49W88884yGDRsmSVqyZImioqKUmpqqMWPGlLhNl8sll8vleZ6bmytJcrvdcrvdVVyBbxXWU5N1Of1Nje2rLE4/4/VnfVPf65fq7hxU1WvWF8eA2qa+z4HN9Ze3JocxptYeAVJSUvTSSy8pLCxMTqdT3bp104svvqhrr71WX331lVq3bq3du3frpptu8qxzxx13qEmTJlqyZEmp2502bVqR9tTUVAUHB1dLLQAAoGrl5eVpxIgRysnJUWhoaIn9anXY+d///V/l5eWpTZs2+vbbb/X888/r3//+t/bv368DBw6oR48eOnr0qGJjYz3rPPLIIzp8+LDWrVtX4naLO7MTFxenkydPljpZdZHb7VZaWpqSk5MVGBhYI/tsn1Ly3Nc0p5/R77sUaMouP7kKHL4eTo2r7/VLdXcO9qX0rZLt+OIYUNvU9zmwuf7c3FxFRESUGXZq9dtY/fv39/y9Q4cO+q//+i+1bt1aS5Ys0S233CJJcji8D17GmCJtV3I6nXI6nUXaAwMDrftFKFSTtbnya98/KK4CR60cV02p7/VLdW8Oqvr1avPxrbzq+xzYWH9566n1FyhfrlGjRurQoYMOHjzouY7n+PHjXn1OnDihqKgoXwwPAADUQnUq7LhcLn322WeKiYlRq1atFB0drbS0NM/yixcvatOmTerevbsPRwkAAGqTWv021uTJkzV48GC1aNFCJ06c0PPPP6/c3FyNHDlSDodDEyZM0Isvvqjrr79e119/vV588UUFBwdrxIgRvh46AACoJWp12Pnmm29033336eTJk7rmmmt0yy23aMeOHYqPj5ckPfHEE7pw4YIeffRRnTlzRt26ddOHH36okJAQH48cAADUFrU67CxbtqzU5Q6HQykpKUpJSamZAQEAgDqnTl2zAwAAUFGEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwWq3+biwAqK9aPrmmSrbj9DeaebPUPmWdXPmOMvsfmjGwSvYL1Cac2QEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWC/D1AFB9Wj65Rk5/o5k3S+1T1smV7/D1kAAAqHGc2QEAAFYj7AAAAKsRdgAAgNUIOwAAwGq1OuxMnz5dXbt2VUhIiCIjIzV06FAdOHDAq8+oUaPkcDi8HrfccouPRgwAAGqbWh12Nm3apLFjx2rHjh1KS0vTpUuX1KdPH50/f96rX79+/ZSdne15fPDBBz4aMQAAqG1q9a3na9eu9Xq+aNEiRUZGKjMzU7fddpun3el0Kjo6uqaHBwAA6oBaHXaulJOTI0kKDw/3as/IyFBkZKSaNGmihIQEvfDCC4qMjCxxOy6XSy6Xy/M8NzdXkuR2u+V2u6th5L7h9Ddy+pkf/v7//qxvqL9+1y8xBxWt36ZjYKHCmmysrTxsrr+8NTmMMXXiCGCM0R133KEzZ85oy5Ytnvbly5ercePGio+PV1ZWlqZMmaJLly4pMzNTTqez2G2lpKRo2rRpRdpTU1MVHBxcbTUAAICqk5eXpxEjRignJ0ehoaEl9qszYWfs2LFas2aNtm7dqubNm5fYLzs7W/Hx8Vq2bJmGDRtWbJ/izuzExcXp5MmTpU5WXdM+ZZ2cfka/71KgKbv85Cqof5+gTP31u36JOaho/ftS+tbAqGqW2+1WWlqakpOTFRgY6Ovh1Dib68/NzVVERESZYadOvI01fvx4rV69Wps3by416EhSTEyM4uPjdfDgwRL7OJ3OYs/6BAYGWvWLcPnXQ7gKHPX66yKov37XLzEH5a3fpmPglWw7xleUjfWXt55aHXaMMRo/frxWrlypjIwMtWrVqsx1Tp06pa+//loxMTE1MEIAsEvLJ9f4ZL+HZgz0yX5RP9TqW8/Hjh2rpUuXKjU1VSEhITp+/LiOHz+uCxcuSJLOnTunyZMna/v27Tp06JAyMjI0ePBgRURE6M477/Tx6AEAQG1Qq8/szJ8/X5KUmJjo1b5o0SKNGjVK/v7+2rt3r9544w199913iomJUVJSkpYvX66QkBAfjBgAANQ2tTrslHXtdMOGDbVu3boaGg0AAKiLavXbWAAAAFeLsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGC1AF8PwHYtn1zj6yEAAFCvcWYHAABYjTM7AACfq86z4E5/o5k3S+1T1smV7/BadmjGwGrbL2oPzuwAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFaz5kMF582bp5deeknZ2dlq166dZs+erVtvvdXXwwIAoIia/Cqhyz9U8cALg2psv7WJFWd2li9frgkTJuiZZ57RJ598oltvvVX9+/fXkSNHfD00AADgY1ac2Zk1a5ZGjx6thx9+WJI0e/ZsrVu3TvPnz9f06dN9PDoAQG1V376s2Vf1+vprOep82Ll48aIyMzP15JNPerX36dNH27ZtK3Ydl8sll8vleZ6TkyNJOn36tNxud5WOL+DS+SrdXoX3X2CUl1egALef8gscZa9gGeqv3/VLzEF9r19iDmpD/adOnaqW7Z49e1aSZIwpvaOp444ePWokmY8++sir/YUXXjBt2rQpdp2pU6caSTx48ODBgwcPCx5ff/11qVmhzp/ZKeRweKdVY0yRtkJPPfWUJk6c6HleUFCg06dPq1mzZiWuU1fl5uYqLi5OX3/9tUJDQ309nBpH/fW7fok5qO/1S8yBzfUbY3T27FnFxsaW2q/Oh52IiAj5+/vr+PHjXu0nTpxQVFRUses4nU45nU6vtiZNmlTXEGuF0NBQ637JK4L663f9EnNQ3+uXmANb6w8LCyuzT52/GysoKEidO3dWWlqaV3taWpq6d+/uo1EBAIDaos6f2ZGkiRMn6oEHHlCXLl30X//1X/rLX/6iI0eO6L//+799PTQAAOBjVoSd4cOH69SpU3ruueeUnZ2t9u3b64MPPlB8fLyvh+ZzTqdTU6dOLfK2XX1B/fW7fok5qO/1S8xBfa9fkhzGlHW/FgAAQN1V56/ZAQAAKA1hBwAAWI2wAwAArEbYAQAAViPs1EGbN2/W4MGDFRsbK4fDoVWrVhXp89lnn2nIkCEKCwtTSEiIbrnlFq9vgXe5XBo/frwiIiLUqFEjDRkyRN98800NVlF5ZdV/7tw5jRs3Ts2bN1fDhg31k5/8RPPnz/fqU5frnz59urp27aqQkBBFRkZq6NChOnDggFcfY4xSUlIUGxurhg0bKjExUfv37/fqY/McuN1u/fa3v1WHDh3UqFEjxcbG6sEHH9SxY8e8tlNX56A8vwOXGzNmjBwOh2bPnu3Vbnv9Nh8HyzMHth8LK4KwUwedP39eHTt21Ny5c4td/uWXX6pnz5768Y9/rIyMDP3zn//UlClT1KBBA0+fCRMmaOXKlVq2bJm2bt2qc+fOadCgQcrPz6+pMiqtrPofe+wxrV27VkuXLtVnn32mxx57TOPHj9d7773n6VOX69+0aZPGjh2rHTt2KC0tTZcuXVKfPn10/vz/fenszJkzNWvWLM2dO1c7d+5UdHS0kpOTPV+aJ9k9B3l5edq9e7emTJmi3bt3a8WKFfr88881ZMgQr+3U1Tkoz+9AoVWrVukf//hHsR+nb3P9th8HyzMHth8LK6QqvowTviPJrFy50qtt+PDh5v777y9xne+++84EBgaaZcuWedqOHj1q/Pz8zNq1a6trqNWiuPrbtWtnnnvuOa+2Tp06md/97nfGGLvqN8aYEydOGElm06ZNxhhjCgoKTHR0tJkxY4anz/fff2/CwsLM66+/boyxfw6K8/HHHxtJ5vDhw8YYu+agpPq/+eYb86Mf/cjs27fPxMfHm1deecWzzPb669Nx0Jji56C+HQtLw5kdyxQUFGjNmjVq06aN+vbtq8jISHXr1s3rrZ7MzEy53W716dPH0xYbG6v27dtr27ZtPhh11erZs6dWr16to0ePyhij9PR0ff755+rbt68k++rPycmRJIWHh0uSsrKydPz4ca/6nE6nEhISPPXZPgcl9XE4HJ7vwbNpDoqrv6CgQA888IAef/xxtWvXrsg6NtdfH4+Dxf0O1LdjYWkIO5Y5ceKEzp07pxkzZqhfv3768MMPdeedd2rYsGHatGmTJOn48eMKCgpS06ZNvdaNiooq8oWqddFrr72mG264Qc2bN1dQUJD69eunefPmqWfPnpLsqt8Yo4kTJ6pnz55q3769JHlquPKLcC+vz/Y5uNL333+vJ598UiNGjPB8EaItc1BS/X/4wx8UEBCgX//618WuZ3P99e04WNLvQH06FpbFiq+LwP8pKCiQJN1xxx167LHHJEk33nijtm3bptdff10JCQklrmuMkcPhqJFxVqfXXntNO3bs0OrVqxUfH6/Nmzfr0UcfVUxMjHr37l3ienWx/nHjxunTTz/V1q1biyy7spby1GfbHEg/XKx87733qqCgQPPmzStze3VtDoqrPzMzU6+++qp2795d4VpsqL++HQdLeg3Up2NhWTizY5mIiAgFBATohhtu8Gr/yU9+4rkLITo6WhcvXtSZM2e8+pw4caLI2YC65sKFC3r66ac1a9YsDR48WD/96U81btw4DR8+XH/84x8l2VP/+PHjtXr1aqWnp6t58+ae9ujoaEkq8j+zy+uzfQ4Kud1u3XPPPcrKylJaWprnrI5kxxyUVP+WLVt04sQJtWjRQgEBAQoICNDhw4c1adIktWzZUpLd9den42BJc1CfjoXlQdixTFBQkLp27VrkFsTPP//c88WonTt3VmBgoNLS0jzLs7OztW/fPnXv3r1Gx1vV3G633G63/Py8f7X9/f09/9ur6/UbYzRu3DitWLFCGzduVKtWrbyWt2rVStHR0V71Xbx4UZs2bfLUZ/scSP8XdA4ePKj169erWbNmXsvr8hyUVf8DDzygTz/9VHv27PE8YmNj9fjjj2vdunWS7K6/PhwHy5qD+nAsrJCavR4aVeHs2bPmk08+MZ988omRZGbNmmU++eQTz10mK1asMIGBgeYvf/mLOXjwoJkzZ47x9/c3W7Zs8Wzjv//7v03z5s3N+vXrze7du83tt99uOnbsaC5duuSrssqtrPoTEhJMu3btTHp6uvnqq6/MokWLTIMGDcy8efM826jL9f/qV78yYWFhJiMjw2RnZ3seeXl5nj4zZswwYWFhZsWKFWbv3r3mvvvuMzExMSY3N9fTx+Y5cLvdZsiQIaZ58+Zmz549Xn1cLpdnO3V1DsrzO3ClK+/GMsbu+m0/DpZnDmw/FlYEYacOSk9PN5KKPEaOHOnps2DBAnPdddeZBg0amI4dO5pVq1Z5bePChQtm3LhxJjw83DRs2NAMGjTIHDlypIYrqZyy6s/OzjajRo0ysbGxpkGDBqZt27bm5ZdfNgUFBZ5t1OX6i6tdklm0aJGnT0FBgZk6daqJjo42TqfT3HbbbWbv3r1e27F5DrKyskrsk56e7tlOXZ2D8vwOXKm4sGN7/TYfB8szB7YfCyvCYYwxVX++CAAAoHbgmh0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQBWWrx4sZo0aVKhdUaNGqWhQ4dWy3gA+A5hB4DPvf766woJCdGlS5c8befOnVNgYKBuvfVWr75btmyRw+HQ559/Xuo2hw8fXmafymjZsqVmz55d5dsFUH0IOwB8LikpSefOndOuXbs8bVu2bFF0dLR27typvLw8T3tGRoZiY2PVpk2bUrfZsGFDRUZGVtuYAdQdhB0APte2bVvFxsYqIyPD05aRkaE77rhDrVu31rZt27zak5KSdPHiRT3xxBP60Y9+pEaNGqlbt25e6xf3Ntbzzz+vyMhIhYSE6OGHH9aTTz6pG2+8sch4/vjHPyomJkbNmjXT2LFj5Xa7JUmJiYk6fPiwHnvsMTkcDjkcjqqcBgDVhLADoFZITExUenq653l6eroSExOVkJDgab948aK2b9+upKQkPfTQQ/roo4+0bNkyffrpp/rZz36mfv366eDBg8Vu/6233tILL7ygP/zhD8rMzFSLFi00f/78Iv3S09P15ZdfKj09XUuWLNHixYu1ePFiSdKKFSvUvHlzPffcc8rOzlZ2dnbVTwSAKkfYAVArJCYm6qOPPtKlS5d09uxZffLJJ7rtttuUkJDgOWOzY8cOXbhwQYmJiXr77bf1zjvv6NZbb1Xr1q01efJk9ezZU4sWLSp2+3PmzNHo0aP10EMPqU2bNnr22WfVoUOHIv2aNm2quXPn6sc//rEGDRqkgQMHasOGDZKk8PBw+fv7KyQkRNHR0YqOjq62+QBQdQg7AGqFpKQknT9/Xjt37tSWLVvUpk0bRUZGKiEhQTt37tT58+eVkZGhFi1aaPfu3TLGqE2bNmrcuLHnsWnTJn355ZfFbv/AgQO6+eabvdqufC5J7dq1k7+/v+d5TEyMTpw4UbXFAqhRAb4eAABI0nXXXafmzZsrPT1dZ86cUUJCgiQpOjparVq10kcffaT09HTdfvvtKigokL+/vzIzM72CiSQ1bty4xH1ceY2NMaZIn8DAwCLrFBQUVLYsALUAZ3YA1BpJSUnKyMhQRkaGEhMTPe0JCQlat26dduzYoaSkJN10003Kz8/XiRMndN1113k9SnprqW3btvr444+92i6/+6u8goKClJ+fX+H1APgOYQdArZGUlKStW7dqz549njM70g9h569//au+//57JSUlqU2bNvr5z3+uBx98UCtWrFBWVpZ27typP/zhD/rggw+K3fb48eO1YMECLVmyRAcPHtTzzz+vTz/9tMJ3VLVs2VKbN2/W0aNHdfLkyauqF0DNIOwAqDWSkpJ04cIFXXfddYqKivK0JyQk6OzZs2rdurXi4uIkSYsWLdKDDz6oSZMmqW3bthoyZIj+8Y9/eJZf6ec//7meeuopTZ48WZ06dVJWVpZGjRqlBg0aVGiMzz33nA4dOqTWrVvrmmuuqXyxAGqMwxT3pjUA1APJycmKjo7Wm2++6euhAKhGXKAMoF7Iy8vT66+/rr59+8rf319vv/221q9fr7S0NF8PDUA148wOgHrhwoULGjx4sHbv3i2Xy6W2bdvqd7/7nYYNG+broQGoZoQdAABgNS5QBgAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACs9v8D3R0KHIuDgGgAAAAASUVORK5CYII=" + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-23T14:13:07.478625\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAI9CAYAAADyypjUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOEElEQVR4nOzdd1hT5/s/8HeAMAVEBAFFplvUuutCVHDWQe1Q625ddVRRq7YW8ePeo3VUraNWbWuRWvcAERXq3hNUcGtdKBvy/P7wR75GUAmEHE54v66LS3NGzv3knCR3nvMMhRBCgIiIiEgmjKQOgIiIiEgbTF6IiIhIVpi8EBERkawweSEiIiJZYfJCREREssLkhYiIiGSFyQsRERHJCpMXIiIikhUmL0RERCQrTF6oWFuzZg0UCoXGn4ODA5o3b45t27ZJHZ6au7s7+vTpo/V+ycnJmDRpEg4cOKDzmAxV8+bN0bx58/dup1AoMHTo0EKN5ebNmxrXppGREezs7NCyZUvs2bOnQM+5Zs0a3QZLpEdMXogArF69GtHR0Thy5Ah+/vlnGBsb46OPPsI///wjdWgFkpycjJCQECYvMjds2DBER0cjKioKc+bMwbVr19CuXTscPHhQ6tCIJGEidQBERUH16tVRt25d9eM2bdrAzs4OGzduxEcffSRhZPKSnJwMS0tLqcMwOOXLl0fDhg0BAI0bN0aFChXg6+uLVatWoVmzZhJHR6R/rHkhyoW5uTlMTU2hVCo1lj958gRDhgxB2bJlYWpqCk9PT3z33XdIS0sDAKSmpuKDDz6At7c3nj9/rt7v/v37cHJyQvPmzZGVlQUA6NOnD0qUKIELFy6gZcuWsLKygoODA4YOHYrk5OT3xpiQkIAvvvgCjo6OMDMzQ5UqVTB37lyoVCoAr24PODg4AABCQkLUtx7ed/vpwoULCAgIgKWlJRwcHPD1119j+/btUCgUGjU4zZs3R/Xq1XHw4EE0atQIlpaW6NevX55iA4ADBw7keM7suN+8raHNayWEwJIlS1CrVi1YWFjAzs4OXbt2xfXr13NsN2vWLLi5ucHc3By1a9fGzp073/u6v2n58uWoWLEizMzMULVqVWzatEmjLCYmJpg+fXqO/Q4ePAiFQoE///xT62NmJ9oPHjzQWH7+/Hl06tQJdnZ2MDc3R61atbB27do8Pee1a9fQvXt3jXP2008/aR0bkV4IomJs9erVAoCIiYkRGRkZIj09Xdy6dUsMHz5cGBkZiV27dqm3TUlJETVq1BBWVlZizpw5Ys+ePWLixInCxMREtGvXTr3d1atXhbW1tQgMDBRCCJGVlSVatGghHB0dxd27d9Xb9e7dW5iamory5cuLqVOnij179ohJkyYJExMT0aFDB4043dzcRO/evdWPHz58KMqWLSscHBzEsmXLxK5du8TQoUMFADF48GAhhBCpqali165dAoDo37+/iI6OFtHR0SI2Nvatr8fdu3eFvb29KF++vFizZo3YsWOH6Nmzp3B3dxcAREREhHpbX19fUapUKeHq6ioWL14sIiIiRGRkZJ5iE0KIiIiIHM8phBA3btwQAMTq1avz9Vp99dVXQqlUiqCgILFr1y6xYcMGUblyZVGmTBlx//599XbBwcHq12bnzp3i559/FmXLlhVOTk7C19f3ra9RNgDC1dVVVK1aVWzcuFFs3bpVtGnTRgAQf/75p3q7Ll26iPLly4vMzEyN/T/55BPh4uIiMjIy3nqM7Ndi9uzZGsvPnz8vAIhhw4apl12+fFlYW1sLLy8vsW7dOrF9+3bRrVs3AUDMnDnzna/vhQsXhK2trfDx8RHr1q0Te/bsEUFBQcLIyEhMmjTpva8Fkb4xeaFiLTt5efPPzMxMLFmyRGPbZcuWCQDijz/+0Fg+c+ZMAUDs2bNHvez3338XAMSCBQvEDz/8IIyMjDTWC/HqCxmAWLhwocbyqVOnCgDi0KFD6mVvJi/jxo0TAMS///6rse/gwYOFQqEQV65cEUII8ejRIwFABAcH5+n1GDNmjFAoFOLChQsay1u3bp1r8gJA7N+/X2PbvMambfKSl9cqOjpaABBz587V2O7WrVvCwsJCjB07VgghxNOnT4W5ubno0qWLxnaHDx8WAPKcvFhYWGgkRJmZmaJy5crC29tbvSy7nFu2bFEvu3PnjjAxMREhISHvPEb2azFz5kyRkZEhUlNTxenTp8WHH34onJ2dxY0bN9Tbfv7558LMzEwkJCRoPEfbtm2FpaWlePbsmcZzvv76tm7dWpQrV048f/5cY9+hQ4cKc3Nz8eTJk/e+HkT6xNtGRADWrVuHY8eO4dixY9i5cyd69+6Nr7/+Gj/++KN6m/DwcFhZWaFr164a+2bfhtm/f7962aefforBgwdjzJgxmDJlCiZMmAB/f/9cj92jRw+Nx927dwcAREREvDXe8PBwVK1aFfXr188RixAC4eHh7y90LiIjI1G9enVUrVpVY3m3bt1y3d7Ozg4tWrTQS2zA+1+rbdu2QaFQ4IsvvkBmZqb6z8nJCTVr1lTfooqOjkZqamqO52vUqBHc3NzyHE/Lli1RpkwZ9WNjY2N89tlniI2Nxe3btwG8ur1Ws2ZNjVswy5Ytg0KhwIABA/J0nG+//RZKpVJ9K+j8+fP4559/4O7urt4mPDwcLVu2hKurq8a+ffr0QXJyMqKjo3N97tTUVOzfvx9dunSBpaWlxuvWrl07pKamIiYmJq8vCZFeMHkhAlClShXUrVsXdevWRZs2bbB8+XIEBARg7NixePbsGQDg8ePHcHJygkKh0NjX0dERJiYmePz4scbyfv36ISMjAyYmJhg+fHiuxzUxMYG9vb3GMicnJ/Xx3ubx48dwdnbOsdzFxeW9+77L48ePNb6Ms+W2DECuMRRWbHl5rR48eAAhBMqUKQOlUqnxFxMTg//++09j++z9c3vOvHjX/q+Xc/jw4di/fz+uXLmCjIwMrFixAl27ds3zsUaMGIFjx47h0KFDmDNnDjIyMtCpUyeNY+T3dX/8+DEyMzOxePHiHK9Zu3btAED9uhEVFextRPQWNWrUwO7du3H16lXUr18f9vb2+PfffyGE0EhgHj58iMzMTJQuXVq9LCkpCT179kTFihXx4MEDfPnll/j7779zHCMzMxOPHz/W+FK+f/8+AOT4on6dvb097t27l2P53bt3AUAjFm3Y29vnaAT6ekxvejOR0yY2c3NzAFA3ds72ti/KvLxWpUuXhkKhQFRUFMzMzHI8R/ay7O1zK9f9+/c1ajTe5W37v34M4FUN0bfffouffvoJDRs2xP379/H111/n6RgAUK5cOXUj3caNG8PJyQlffPEFgoOD1bWD+b0m7OzsYGxsjJ49e741Jg8PjzzHSqQPrHkheovTp08DgLrHTsuWLfHy5UuEhYVpbLdu3Tr1+myDBg1CQkICQkNDsWrVKmzduhXz58/P9Ti//fabxuMNGzYAwDsHSmvZsiUuXryIkydP5ohFoVDAz88PwP99WaekpLyjpP/H19cX58+fx8WLFzWWv96D5n3yGlt2gnD27FmN7bZu3frW537fa9WhQwcIIXDnzh11Tdrrfz4+PgCAhg0bwtzcPMfzHTlyBPHx8Xku6/79+zWSvaysLPz+++/w8vJCuXLl1MvNzc0xYMAArF27FvPmzUOtWrXQuHHjPB/nTT169EDz5s2xYsUKdbwtW7ZEeHi4OlnJtm7dOlhaWqq7Wr/J0tISfn5+OHXqFGrUqJHr6/auRJpIEpK2uCGSWHaD3dWrV6t742zbtk3069dPANBo0Jnd28ja2lrMmzdP7N27VwQHBwulUqnR22jFihU5GkQOHTpUKJVKjUas7+pB07ZtW40439bbyMnJSfz8889i9+7dYvjw4UKhUIghQ4bk2LdSpUpi9+7d4tixYxqNPN90584djd5GO3fuFD179hRubm4CgIiMjFRv6+vrK6pVq5bjObSJrVWrVsLOzk6sWLFC7NmzR3z77beiQoUKWvU2evO1GjBggLC0tBRjxowR//zzjwgPDxe//fabGDx4sEYj7O+//17d22jXrl1ixYoVOutttGnTphzb3759W5iYmAgAYuXKle99fiHe3ttICCH+/fdfdfxC/F9vo4oVK4r169eLHTt2iB49eggAYtasWTme883eRnZ2dqJ+/fpi9erVIiIiQmzdulXMmzdP+Pn55SlWIn1i8kLFWm69jWxtbUWtWrXEvHnzRGpqqsb2jx8/FoMGDRLOzs7CxMREuLm5ifHjx6u3O3v2rLCwsNBINIR41W25Tp06wt3dXTx9+lQI8eoL2crKSpw9e1Y0b95cWFhYiFKlSonBgweLly9fauz/ZvIihBDx8fGie/fuwt7eXiiVSlGpUiUxe/ZskZWVpbHdvn37xAcffCDMzMwEgBzP86bz58+LVq1aCXNzc1GqVCnRv39/sXbtWgFAnDlzRr3d25IXbWK7d++e6Nq1qyhVqpSwtbUVX3zxhTh+/HiuyUteXyshhPjll19EgwYNhJWVlbCwsBBeXl6iV69e4vjx4+ptVCqVmD59unB1dRWmpqaiRo0a4p9//hG+vr55Tl6+/vprsWTJEuHl5SWUSqWoXLmy+O233966T/PmzUWpUqVEcnLye59fiHcnL0K86m5tYmKi7v5+7tw58dFHHwlbW1thamoqatasqfE6vv6cuS3v16+fKFu2rFAqlcLBwUE0atRITJkyJU+xEumTQggh9FjRQ0T/X58+fbB582a8fPlS6lDea8CAAdi4cSMeP34MU1NTvR9fTq/V2zx8+BBubm4YNmwYZs2aJXU4RLLGBrtEpGHy5MlwcXGBp6cnXr58iW3btmHlypX4/vvvJUlc5O727du4fv06Zs+eDSMjI4wYMULqkIhkj8kLEWlQKpWYPXs2bt++jczMTFSoUAHz5s3jl24+rVy5EpMnT4a7uzt+++03lC1bVuqQiGSPt42IiIhIVthVmoiIiGSFyQsRERHJCpMXIsqzNWvWQKFQ4Pjx47mu79ChQ55Hp31dnz598rUfAEyaNAkKhSJPQ9hPmzYtxyCDRCQ/TF6ISHITJ07Eli1bCv04TF6IDAN7GxGR5Ly8vKQOgYhkhDUvRFRohBBYsmQJatWqBQsLC9jZ2aFr1664fv26xna53TZ69uwZ+vfvj1KlSqFEiRJo3749rl+/DoVCgUmTJuU41oMHD9CtWzfY2tqiTJky6NevH54/f65er1AokJSUhLVr10KhUEChULxz/igiKrqYvBCR1rKyspCZmZnj782RFwYOHIhvvvkGrVq1QlhYGJYsWYILFy6gUaNGuc5enU2lUuGjjz7Chg0b8O2332LLli1o0KAB2rRp89Z9Pv74Y1SsWBF//fUXxo0bhw0bNmDkyJHq9dHR0bCwsEC7du0QHR2N6OhoLFmypOAvBhHpHW8bEZHW3jZDMQC4ubkBAGJiYrBixQrMnTsXo0aNUq9v2rQpKlasiHnz5mHmzJm5PseuXbtw6NAhLF26FIMGDQIA+Pv7w9TUFOPHj891n/79+2PMmDEAgFatWiE2Nha//PILVq1aBYVCgYYNG8LIyAgODg7vjJ+Iij4mL0SktXXr1qFKlSo5lo8cORK3bt0CAGzbtg0KhQJffPEFMjMz1ds4OTmhZs2aOHDgwFufPzIyEgDw6aefaizv1q3bW5OXjh07ajyuUaMGUlNT8fDhQ5QpUyZP5SIieWDyQkRaq1KlCurWrZtjua2trTp5efDgAYQQb00cPD093/r8jx8/homJCUqVKqWx/F1JiL29vcZjMzMzAEBKSspb9yEieWLyQkSFonTp0lAoFIiKilInEq/LbVk2e3t7ZGZm4smTJxoJzP379wslViKSFzbYJaJC0aFDBwghcOfOHdStWzfHn4+Pz1v39fX1BQD8/vvvGss3bdpUoJjMzMxYE0NkAFjzQkSFonHjxhgwYAD69u2L48ePo1mzZrCyssK9e/dw6NAh+Pj4YPDgwbnu26ZNGzRu3BhBQUFITExEnTp1EB0djXXr1gEAjIzy97vLx8cHBw4cwD///ANnZ2dYW1ujUqVK+S4jEUmDyQsRFZrly5ejYcOGWL58OZYsWQKVSgUXFxc0btwY9evXf+t+RkZG+OeffxAUFIQZM2YgPT0djRs3xvr169GwYUOULFkyX/EsXLgQX3/9NT7//HMkJyfD19f3nQ2HiahoUog3B2YgIiqiNmzYgB49euDw4cNo1KiR1OEQkUSYvBBRkbRx40bcuXMHPj4+MDIyQkxMDGbPno0PPvhA3ZWaiIon3jYioiLJ2toamzZtwpQpU5CUlARnZ2f06dMHU6ZMkTo0IpIYa16IiIhIVthVmoiIiGSFyQsRERHJCpMXIiIikpUi12BXpVLh7t27sLa2hkKhkDocIiIi0gMhBF68eAEXF5f3DkRZ5JKXu3fvwtXVVeowiIiISAK3bt1CuXLl3rlNkUterK2tAbwK3sbGRi/HzMjIwJ49exAQEAClUqmXY+oby2gYDL2Mhl4+gGU0FCyj7iUmJsLV1VWdB7xLkUtesm8V2djY6DV5sbS0hI2NjUFfhCyj/Bl6GQ29fADLaChYxsKTlyYjbLBLREREssLkhYiIiGSFyQsRERHJCpMXIiIikhUmL0RERCQrTF6IiIhIVpi8EBERkawweSEiIiJZYfJCREVCVlYWIiMjcfDgQURGRiIrK0vqkIioiGLyQkSSCw0Nhbe3N/z9/TFv3jz4+/vD29sboaGhUodGREUQkxciklRoaCi6du0KHx8fREVFYePGjYiKioKPjw+6du3KBIaIcmDyQkSSycrKQlBQEDp06ICwsDA0aNAAFhYWaNCgAcLCwtChQweMHj2at5CISAOTFyKSTFRUFG7evIkJEybAyEjz48jIyAjjx4/HjRs3EBUVJVGERFQUMXkhIsncu3cPAFC9evVc12cvz96OiAhg8kJEEnJ2dgYAnD9/Ptf12cuztyMiApi8EJGEmjZtCnd3d0ybNg0qlUpjnUqlwvTp0+Hh4YGmTZtKFCERFUVMXohIMsbGxpg7dy62bduGzp07IyYmBikpKYiJiUHnzp2xbds2zJkzB8bGxlKHSkRFiInUARBR8RYYGIjNmzcjKCgIzZo1Uy/38PDA5s2bERgYKGF0RFQUMXkhIskFBgaiU6dOiIiIwM6dO9G2bVv4+fmxxoWIcsXkhYiKBGNjY/j6+iIpKQm+vr5MXIjordjmhYiIiGSFyQsRERHJCpMXIiIikhUmL0RERCQrTF6IiIhIVpi8EBERkawweSEiIiJZYfJCREREssLkhYiIiGSFI+wSERFpIT09HYsXL0Z4eDhiY2MxbNgwmJqaSh1WsaJVzUtmZia+//57eHh4wMLCAp6enpg8ebJ6KvuMjAx8++238PHxgZWVFVxcXNCrVy/cvXu3UIInIiLSp7Fjx8LKygqjR4/Gjh07MHr0aFhZWWHs2LFSh1asaFXzMnPmTCxbtgxr165FtWrVcPz4cfTt2xe2trYYMWIEkpOTcfLkSUycOBE1a9bE06dP8c0336Bjx444fvx4YZWBiIio0I0dOxazZ89GmTJlEBISAjMzM6SlpSE4OBizZ88GAMyaNUviKIsHrZKX6OhodOrUCe3btwcAuLu7Y+PGjerExNbWFnv37tXYZ/Hixahfvz4SEhJQvnx5HYVNRESkP+np6Zg/fz7KlCmD27dvQwiBHTt2oF27dujfvz/KlSuH+fPnY8qUKbyFpAdaJS9NmjTBsmXLcPXqVVSsWBFnzpzBoUOHsGDBgrfu8/z5cygUCpQsWTLX9WlpaUhLS1M/TkxMBPDqFlRGRoY24eVb9nH0dTwpsIyGwdDLaOjlA1hGuVq8eDEyMzMREhICIYRGGZVKJYKDgzFkyBAsXrwYw4cPlzha3dD3edTmOAohhMjrxkIITJgwATNnzoSxsTGysrIwdepUjB8/PtftU1NT0aRJE1SuXBnr16/PdZtJkyYhJCQkx/INGzbA0tIyr6EREREVmp9//hk7duzA6tWrYWdnl2P9kydP0K9fP7Rr1w4DBgyQIEL5S05ORvfu3fH8+XPY2Ni8c1utal5+//13rF+/Hhs2bEC1atVw+vRpfPPNN3BxcUHv3r01ts3IyMDnn38OlUqFJUuWvPU5x48fj1GjRqkfJyYmwtXVFQEBAe8NXlcyMjKwd+9e+Pv7Q6lU6uWY+sYyGgZDL6Ohlw9gGeUqNjYWO3bsQFpaGtq1a5ejjCtXrgQAtGjRAu3atZM4Wt3Q93nMvvOSF1olL2PGjMG4cePw+eefAwB8fHwQHx+P6dOnayQvGRkZ+PTTT3Hjxg2Eh4e/MwkxMzODmZlZjuVKpVLvF70Ux9Q3ltEwGHoZDb18AMsoN8OGDcO4ceMQHByM/v37q8ulVCqhUCgQEhICExMTDBs2zGDKnE1f51GbY2jVVTo5ORlGRpq7GBsbq7tKA/+XuFy7dg379u2Dvb29NocgIiIqckxNTTFy5Eg8ePAA5cqVw8qVK/HkyROsXLkS5cqVw4MHDzBy5Eg21tUTrWpePvroI0ydOhXly5dHtWrVcOrUKcybNw/9+vUD8GocmK5du+LkyZPYtm0bsrKycP/+fQBAqVKleFKJiEi2srtBz58/H0OGDFEvNzExwZgxY9hNWo+0Sl4WL16MiRMnYsiQIXj48CFcXFwwcOBA/PDDDwCA27dvY+vWrQCAWrVqaewbERGB5s2b6yRoIiIiKcyaNQtTpkxRj7DbokULjrArAa2SF2trayxYsOCtXaPd3d2hReclIiIi2TE1NcXw4cPh7e2Ndu3aGVwbFzngxIxEREQkK0xeiIiISFaYvBAREZGsMHkhIiIiWWHyQkRERLLC5IWIiIhkhckLERERyQqTFyIiIpIVJi9EVCRkZWUhMjISBw8eRGRkJLKysqQOiShXvFalx+SFiCQXGhoKb29v+Pv7Y968efD394e3tzdCQ0OlDo1IA6/VooHJCxFJKjQ0FF27doWPjw+ioqKwceNGREVFwcfHB127duWXAhUZvFaLDiYvRCSZrKwsBAUFoUOHDggLC0ODBg1gYWGBBg0aICwsDB06dMDo0aNZLU+S47VatDB5ISLJREVF4ebNm5gwYQKMjDQ/joyMjDB+/HjcuHEDUVFREkVI9Aqv1aKFyQsRSebevXsAgOrVq+e6Pnt59nZEUuG1WrQweSEiyTg7OwMAzp8/n+v67OXZ2xFJhddq0cLkhYgk07RpU7i7u2PatGlQqVQa61QqFaZPnw4PDw80bdpUogiJXuG1WrQweSEiyRgbG2Pu3LnYtm0bOnfujJiYGKSkpCAmJgadO3fGtm3bMGfOHBgbG0sdKhVzvFaLFhOpAyCi4i0wMBCbN29GUFAQmjVrpl7u4eGBzZs3IzAwUMLoiP4Pr9Wig8kLEUkuMDAQnTp1QkREBHbu3Im2bdvCz8+Pv2KpyOG1WjQweSGiIsHY2Bi+vr5ISkqCr68vvwyoyOK1Kj22eSEiIiJZYfJCREREssLkhYiIiGSFyQsRERHJCpMXIiIikhUmL0RERCQrTF6IiIhIVpi8EBERkawweSEiIiJZYfJCBiErKwuRkZE4ePAgIiMjkZWVJXVIRERUSLRKXjIzM/H999/Dw8MDFhYW8PT0xOTJkzWmBxdCYNKkSXBxcYGFhQWaN2+OCxcu6DxwomyhoaHw9vaGv78/5s2bB39/f3h7eyM0NFTq0IiIqBBolbzMnDkTy5Ytw48//ohLly5h1qxZmD17NhYvXqzeZtasWZg3bx5+/PFHHDt2DE5OTvD398eLFy90HjxRaGgounbtCh8fH0RFRWHjxo2IioqCj48PunbtygSGiMgAaZW8REdHo1OnTmjfvj3c3d3RtWtXBAQE4Pjx4wBe1bosWLAA3333HQIDA1G9enWsXbsWycnJ2LBhQ6EUgIqvrKwsBAUFoUOHDggLC0ODBg1gYWGBBg0aICwsDB06dMDo0aN5C4mIyMBoNat0kyZNsGzZMly9ehUVK1bEmTNncOjQISxYsAAAcOPGDdy/fx8BAQHqfczMzODr64sjR45g4MCBOZ4zLS0NaWlp6seJiYkAgIyMDGRkZOSnTFrLPo6+jicFQyxjZGQkbt68iV9//RVZWVk5yjhmzBg0a9YMERER8PX1lTJUnTGE85icnIwrV67kuu5lShqOnIuDdckYlLAwe+tzVKpUCZaWloUVYqEyhHP4PoZSxoJeq3K+TgH9n0dtjqNV8vLtt9/i+fPnqFy5MoyNjZGVlYWpU6eiW7duAID79+8DAMqUKaOxX5kyZRAfH5/rc06fPh0hISE5lu/Zs0fvJ33v3r16PZ4UDKmMBw8eBADcvn0bjx8/Vi/PLmNKSgoAYOfOnUhKStJ/gIVIzucxLi4OQUFB79xm1nueY+7cufDy8tJdUBKQ8znMK7mXsaDXqiFcp4D+zmNycnKet9Uqefn999+xfv16bNiwAdWqVcPp06fxzTffwMXFBb1791Zvp1AoNPYTQuRYlm38+PEYNWqU+nFiYiJcXV0REBAAGxsbbcLLt4yMDOzduxf+/v5QKpV6Oaa+GWIZraysMG/ePJQrVw4NGjTIUcaYmBgAQNu2bQ2q5kXu5zE5ORlNmjTJdd3Ve88xZstFzO5SFRWdbd/6HHL+RWsI5/B9DKWMBb1W5XydAvo/j9l3XvJCq+RlzJgxGDduHD7//HMAgI+PD+Lj4zF9+nT07t0bTk5OAF7VwDg7O6v3e/jwYY7amGxmZmYwM8tZ5aZUKvV+0UtxTH0zpDL6+fnB3d0ds2bNQlhYmHq5UqmEsbExZs+eDQ8PD/j5+cHY2Fi6QAuBnM+jra0t6tevn+s60/jHMItOR/VatVHLzV7PkemXnM9hXsm9jLxWX9HXedTmGFo12E1OToaRkeYuxsbG6q7SHh4ecHJy0qhiSk9PR2RkJBo1aqTNoYjey9jYGHPnzsW2bdvQuXNnxMTEICUlBTExMejcuTO2bduGOXPmGFziQkRU3GlV8/LRRx9h6tSpKF++PKpVq4ZTp05h3rx56NevH4BXt4u++eYbTJs2DRUqVECFChUwbdo0WFpaonv37oVSACreAgMDsXnzZgQFBaFZs2bq5R4eHti8eTMCAwMljI6IiAqDVsnL4sWLMXHiRAwZMgQPHz6Ei4sLBg4ciB9++EG9zdixY5GSkoIhQ4bg6dOnaNCgAfbs2QNra2udB08EvEpgOnXqhIiICOzcuRNt27Y1yFtFRET0ilbJi7W1NRYsWKDuGp0bhUKBSZMmYdKkSQUMjSjvjI2N4evri6SkJPj6+jJxISIyYJzbiIiIiGSFyQsRERHJCpMXIiIikhUmL0RERCQrTF6IiIhIVpi8EBERkawweSEiIiJZYfJCREREssLkhQxCVlYWIiMjcfDgQURGRiIrK0vqkIiIqJAweSHZCw0Nhbe3N/z9/TFv3jz4+/vD29sboaGhUodGRESFgMkLyVpoaCi6du0KHx8fREVFYePGjYiKioKPjw+6du3KBIaIyAAxeSHZysrKQlBQEDp06ICwsDA0aNAAFhYWaNCgAcLCwtChQweMHj2at5CIiAwMkxeSraioKNy8eRMTJkyAkZHmpWxkZITx48fjxo0biIqKkihCIiIqDExeSLbu3bsHAKhevXqu67OXZ29HRESGgckLyZazszMA4Pz587muz16evR0RERkGJi8kW02bNoW7uzumTZsGlUqlsU6lUmH69Onw8PBA06ZNJYqQiIgKA5MXki1jY2PMnTsX27ZtQ+fOnRETE4OUlBTExMSgc+fO2LZtG+bMmQNjY2OpQyUiIh0ykToAooIIDAzE5s2bERQUhGbNmqmXe3h4YPPmzQgMDJQwOiIiKgxMXkj2AgMD0alTJ0RERGDnzp1o27Yt/Pz8WONCRGSgmLyQQTA2Noavry+SkpLg6+vLxIWIyICxzQsRERHJCpMXIiIikhUmL0RERCQrTF6IiIhIVpi8EBERkawweSEiIiJZYfJCREREssLkhYiIiGSFg9QRyUR6ejoWL16M8PBwxMbGYtiwYTA1NZU6LCIivWPNC5EMjB07FlZWVhg9ejR27NiB0aNHw8rKCmPHjpU6NCIivdMqeXF3d4dCocjx9/XXXwMAXr58iaFDh6JcuXKwsLBAlSpVsHTp0kIJnKi4GDt2LGbPng17e3ssW7YMq1evxrJly2Bvb4/Zs2czgSGiYker5OXYsWO4d++e+m/v3r0AgE8++QQAMHLkSOzatQvr16/HpUuXMHLkSAwbNgx///237iMnKgbS09Mxf/58lClTBrdv30a/fv1gZ2eHfv364fbt2yhTpgzmz5+P9PR0qUMlItIbrdq8ODg4aDyeMWMGvLy84OvrCwCIjo5G79690bx5cwDAgAEDsHz5chw/fhydOnXK9TnT0tKQlpamfpyYmAgAyMjIQEZGhjbh5Vv2cfR1PCmwjPK0ePFiZGZmIiQkBEIIjTIqlUoEBwdjyJAhWLx4MYYPHy5xtAWXmZmp/teQzuPrDPE6fVNxKCOv1cI7Xl7ku8Fueno61q9fj1GjRkGhUAAAmjRpgq1bt6Jfv35wcXHBgQMHcPXqVSxcuPCtzzN9+nSEhITkWL5nzx5YWlrmN7x8ya5JMmQso7yEh4cDAMzMzLBjxw718uwympubq7fz9vbWf4A6duslAJggJiYGd85LHU3hMqTr9G0MuYy8VnUvOTk5z9vmO3kJCwvDs2fP0KdPH/WyRYsW4auvvkK5cuVgYmICIyMjrFy5Ek2aNHnr84wfPx6jRo1SP05MTISrqysCAgJgY2OT3/C0kpGRgb1798Lf3x9KpVIvx9Q3llGeYmNjsWPHDqSlpaFdu3Y5yrhy5UoAQIsWLdCuXTuJoy24MwlPgHPH0bBhQ9QsX0rqcAqFIV6nbyoOZeS1qnvZd17yIt/Jy6pVq9C2bVu4uLioly1atAgxMTHYunUr3NzccPDgQQwZMgTOzs5o1apVrs9jZmYGMzOzHMuVSqXeL3opjqlvLKO8DBs2DOPGjUNwcDD69++vLpdSqYRCoUBISAhMTEwwbNgwgyiziYmJ+l9DKM+7GNJ1+jaGXEZeq4VznLzKV1fp+Ph47Nu3D19++aV6WUpKCiZMmIB58+bho48+Qo0aNTB06FB89tlnmDNnTn4OQ1TsmZqaYuTIkXjw4AHKlSuHlStX4smTJ1i5ciXKlSuHBw8eYOTIkRzvhYiKlXzVvKxevRqOjo5o3769ell2A1sjI818yNjYGCqVqmBREhVjs2bNAgDMnz8fQ4YMUS83MTHBmDFj1OuJiIoLrZMXlUqF1atXo3fv3upqMwCwsbGBr68vxowZAwsLC7i5uSEyMhLr1q3DvHnzdBo0UXEza9YsTJkyRT3CbosWLTjCLhEVW1onL/v27UNCQgL69euXY92mTZswfvx49OjRA0+ePIGbmxumTp2KQYMG6SRYouLM1NQUw4cPh7e3N9q1a2fw99mJiN5G6+QlICAAQohc1zk5OWH16tUFDoqIiIjobTi3EREREckKkxciIiKSFSYvREREJCtMXoiIiEhWmLwQERGRrDB5ISIiIllh8kJERESywuSFiIiIZIXJCxEREckKkxciIiKSFSYvREREJCtMXoiIiEhWtJ6YkYqu5ORkXL58Odd1L1PScORcHOxKH0cJC7Nct6lcuTIsLS0LM8QCM/Qyvqt8gGGUkYiKDrl+pjJ5MSCXL19GnTp13rnNrHesO3HiBGrXrq3boHTM0MuYl/IB8i4jERUdcv1MZfJiQCpXrowTJ07kuu7KvWcY9ec5zPvEB5WcS751/6LO0Mv4rvIBhlFGIio65PqZyuTFgFhaWr41AzaKfwyzqBRUqV4Ttdzs9RyZ7hh6Gd9VPsAwykhERYdcP1PZYJeIiIhkhckLERERyQqTFyIiIpIVJi9EREQkK0xeiIiISFaYvBAREZGsMHkhIiIiWWHyQkRERLLC5IWIiIhkhckLERERyQqTFyIiIpIVJi9EREQkK0xeiIiISFa0Sl7c3d2hUChy/H399dfqbS5duoSOHTvC1tYW1tbWaNiwIRISEnQeOBERERVPJtpsfOzYMWRlZakfnz9/Hv7+/vjkk08AAHFxcWjSpAn69++PkJAQ2Nra4tKlSzA3N9dt1ERERFRsaZW8ODg4aDyeMWMGvLy84OvrCwD47rvv0K5dO8yaNUu9jaenpw7CJCIiInpFq+Tldenp6Vi/fj1GjRoFhUIBlUqF7du3Y+zYsWjdujVOnToFDw8PjB8/Hp07d37r86SlpSEtLU39ODExEQCQkZGBjIyM/IaXQ3JyMq5cuZLrupcpaThyLg7WJWNQwsIs120qVaoES0tLncWjb5mZmep/dfm6FiUsY9Fy83ESktKy3r/ha67ef67xr7aszIzhbm+Vr331Jfu8FfXzVxByK6O+r1U5XKeA/j9vtDmGQggh8nOQP/74A927d0dCQgJcXFxw//59ODs7w9LSElOmTIGfnx927dqFCRMmICIiQl0786ZJkyYhJCQkx/INGzboNFmIi4tDUFBQvvefO3cuvLy8dBaPvt16Ccw5Z4LRPplwLSF1NIWDZSw6HqYAU0/n+7dRgXxXKxOOFpIcmmRIqmtVDtepvj9vkpOT0b17dzx//hw2Njbv3DbfZ2zVqlVo27YtXFxcAAAqlQoA0KlTJ4wcORIAUKtWLRw5cgTLli17a/Iyfvx4jBo1Sv04MTERrq6uCAgIeG/w2khOTkaTJk1yXXf13nOM2XIRs7tURUVn21y3kXvNy5mEJ8C542jYsCFqli8ldTiFgmUsOi7cTQROx2BOVx94O+T9F2ZSahp2RR1Dm6b1YGWeey3o28Q+SsLozedQ78MmqOaiu88OXcvIyMDevXvh7+8PpVIpdTiFQk5l1Pe1KpfrFND/5032nZe8yFfyEh8fj3379iE0NFS9rHTp0jAxMUHVqlU1tq1SpQoOHTr01ucyMzODmVnOE69UKnV60dva2qJ+/fq5rjONfwyz6HRUr1UbtdzsdXbMosTExET9b1H/MMkvlrHoyI6zsrMtqpfN/QdBbjIyMvDfZaC+p4PW5ZPLa5NN159xRZEcyqjva1VO16m+Y9XmGPka52X16tVwdHRE+/bt1ctMTU1Rr169HO1Krl69Cjc3t/wchoiIiCgHrWteVCoVVq9ejd69e6uzsmxjxozBZ599hmbNmqnbvPzzzz84cOCAruIlIiKiYk7rmpd9+/YhISEB/fr1y7GuS5cuWLZsGWbNmgUfHx+sXLkSf/3111vbmhARERFpS+ual4CAALyrg1K/fv1yTWyIiIiIdIFzGxEREZGsMHkhIiIiWWHyQkRERLLC5IWIiIhkhckLERERyQqTFyIiIpIVJi9EREQkK0xeiIiISFaYvBAREZGsMHkhIiIiWWHyQkRERLLC5IWIiIhkhckLERERyYrWs0qT9G78l4SktEyt9ol7lKT+18REu9NuZWYCj9JWWu1TEPkpHyCvMpJhS05OxuXLl3Nd9zIlDUfOxcGu9HGUsDDLdZvKlSvD0tKyMEMssOJQRkNiaN8bTF5k5sZ/SfCbcyDf+wdtPpev/SJGN9fLl3tBywcU/TKS4bt8+TLq1Knzzm1mvWPdiRMnULt2bd0GpWPFoYyGwhC/N5i8yEx25rzgs1rwdiyR9/1S0rDtQDQ6NP8QVm/5JZSb2Icv8c3vp/NVE5If+S0fIJ8ykuGrXLkyTpw4keu6K/eeYdSf5zDvEx9Uci751v2LuuJQRkNhiN8bTF5kytuxBKqXtc3z9hkZGbjvANR2s4NSqSzEyHRD2/IB8isjGS5LS8u31ioYxT+GWVQKqlSviVpu9nqOTHeKQxkNjSF9b7DBLhEREckKkxciIiKSFSYvREREJCtMXoiIiEhWmLwQERGRrDB5ISIiIllhV2mZSctKhZH5HdxIvAIj87z318/MzMTdzLu49OSSViMl3kh8CSPzO0jLSgWgXddlIiKiwsDkRWbuJsXDymMxJhzN3/5Ldi3Reh8rD+BuUi3UQZn8HZSIiEiHmLzIjIuVG5JuDMPCz2rBS4uREjMzM3H40GE0btJYq5qXuIcvMeL303Dxc8tPuERERDrH5EVmzIzNoUotCw+bSqhqr91IiTdMbqBKqSpajZSoSn0OVeojmBmb5ydcIiIinWODXSIiIpIVJi9EREQkK0xeiIiISFa0Sl7c3d2hUChy/H399dc5th04cCAUCgUWLFigq1iJiIiItGuwe+zYMWRlZakfnz9/Hv7+/vjkk080tgsLC8O///4LFxcX3URJRERE9P9pVfPi4OAAJycn9d+2bdvg5eUFX19f9TZ37tzB0KFD8dtvv2nVq4WIiIgoL/LdVTo9PR3r16/HqFGjoFAoAAAqlQo9e/bEmDFjUK1atTw9T1paGtLS0tSPExMTAbzq2puRkaF1XDcfJyEpLev9G77m6v3nGv9qw8rMGO72Vlrvl1+ZmZnqf7V5fbK31fY1ze/x8isp7dWIvrFPL0Jlot3rmj2K8LmH57Qay+b60yQYmd9BUtpLZGRYahtyvuTnOgXkc63m9zzm9xwC0pzH/ND3e0oKciqjvq9VKa5TuXxvaLNtvpOXsLAwPHv2DH369FEvmzlzJkxMTDB8+PA8P8/06dMREhKSY/mePXtgaandiX2YAkw9nf+ha8ZuuZSv/b6rlQlHi3wfViu3XgKACQ4dOoT4vI9Rp7Z37169Hk9bJ1/chZXHEkw8kf/nWLIvf6MI7ziShfvWhX+rs6DXKVD0r9WCnsf8nENAv+cxv7LfUzExMbhzXupoCoecyijFtarv61Qu3xvJycl53jbfn6CrVq1C27Zt1e1aTpw4gYULF+LkyZPqmpi8GD9+PEaNGqV+nJiYCFdXVwQEBMDGxkarmC7cTQROx2BOVx94O+Q9g05KTcOuqGNo07QerMzN8rxf7KMkjN58DvU+bIJqLtrFml8X7iZizrkYNGmi3TEzMjKwd+9e+Pv7a3U7L7/Hyy+nWw/x6zpjzOvqA08tziHwKsv/N+ZfNGjYQLtfQo+SMGrzObTr1R61XR21DVlr+b1OAflcq/k9j/k9h4D+z2N+nUl4Apw7joYNG6Jm+VJSh1Mo5FRGfV+rUlyncvneyL7zkhf5Sl7i4+Oxb98+hIaGqpdFRUXh4cOHKF++vHpZVlYWgoKCsGDBAty8eTPX5zIzM4OZWc4PYaVSqXWbmewLqLKzLaqX1W702f8uA/U9HbQ6ZvbxTExM9Na+p6DH1PZ11XcZrcxKQJVaFt52VVG9jHYTQWZkZOCWyS34OPpoFatR5nOoUp/AyqyEXsqY3+sUkM+1mt/zmN9zCOj/POaXFJ8b+ianMur7WpXiOpXL94ZWx8jzlq9ZvXo1HB0d0b59e/Wynj17olWrVhrbtW7dGj179kTfvn3zcxgiIiKiHLROXlQqFVavXo3evXtrVJXZ29vD3t5eY1ulUgknJydUqlSp4JESERERIR8j7O7btw8JCQno169fYcRDRERE9E5a17wEBARACJGnbd/WzoWIiIgovzi3EREREckKkxciIiKSFSYvREREJCtMXoiIiEhWmLwQERGRrDB5ISIiIllh8kJERESywuSFiIiIZIXJCxEREckKkxciIiKSFSYvREREJCtMXoiIiEhWmLwQERGRrGg9q3RRlpaVCiPzO7iReAVG5iXyvF9mZibuZt7FpSeXYGKS95fkRuJLGJnfQVpWKgDbfESsvZSMLADA+TvPtdovKSUNxx8BTvFPYWVhluf9Yh++1Oo4BZXf8gHyKWN+r1NAPteqvq9TQP/nEQBu/JeEpLRMrfaJe5Sk/lebc5jNyswEHqWttN4vv/RdRn2Xz9A/UwHD/G40qOTlblI8rDwWY8LR/O2/ZNcSrfex8gDuJtVCHZTJ30G1FPf/L/xxoefysbcJfo09lq/jWpnp51IpWPkAOZSxoNcpUPSvVamuU0B/5/HGf0nwm3Mg3/sHbc7vNQ5EjG6uly94qcqor/IBhv+ZChjmd6NBJS8uVm5IujEMCz+rBS9H7bLLw4cOo3GTxlpll3EPX2LE76fh4ueWn3DzJaCaEwDAy7EELJTGed7vyr3nCNp8DnO7+qCSs3aZsD5/CeW3fIB8ypjf6xSQz7UqxXUK6Pc8ZtdGLPisFry1OI9JKWnYdiAaHZp/mK/apW9+P611TUh+6buM+i4fYPifqYBhfjcaVPJiZmwOVWpZeNhUQlX7vF9MGRkZuGFyA1VKVYFSqczzfqrU51ClPoKZsXl+ws2XUlam+Lx+ea33y8x89WHg5WCF6mX1c4srP/JbPkA+ZczvdQrI51o19Ov0dd6OJbSKNSMjA/cdgNpudlqdQykZchmLw7VqiN+NbLBLREREssLkhYiIiGSFyQsRERHJCpMXIiIikhUmL0RERCQrTF6IiIhIVpi8EBERkawweSEiIiJZYfJCREREssLkhYiIiGSFyQsRERHJCpMXIiIikhUmL0RERCQrWiUv7u7uUCgUOf6+/vprZGRk4Ntvv4WPjw+srKzg4uKCXr164e7du4UVOxERERVDWiUvx44dw71799R/e/fuBQB88sknSE5OxsmTJzFx4kScPHkSoaGhuHr1Kjp27FgogRMREVHxZKLNxg4ODhqPZ8yYAS8vL/j6+kKhUKiTmWyLFy9G/fr1kZCQgPLlyxc8WiIiIir2tEpeXpeeno7169dj1KhRUCgUuW7z/PlzKBQKlCxZ8q3Pk5aWhrS0NPXjxMREAEBGRgYyMjK0iikzM1P9rzb7Zm+rr+NJQU6x5pdcyvgi5dX1fibhiTrmvEpKTcPxR0Dp649gZW6W5/1iHyUBKPqvjVzOIQAkpb2EkfkdxD69CJWJVZ73y8zMxN3Muzj38BxMTLT7CL7+NAlG5neQlPYSGRmW2oasNX2XUd/lKwg5Xav5/czR9+eNNtsqhBAiz1u/5o8//kD37t2RkJAAFxeXHOtTU1PRpEkTVK5cGevXr3/r80yaNAkhISE5lm/YsAGWltpdvLdeAnPOmWC0TyZcS2i1a77o+3gFIadY80suZYx+oMCm68aSHPu7WplwtJDk0Hkil3MIACdf3EVo1hJJjh1oPAS1rXN+7uqaVGXUV/kKQk7XqlSfOdp+3iQnJ6N79+54/vw5bGxs3rltvmteVq1ahbZt2+aauGRkZODzzz+HSqXCkiXvvvDHjx+PUaNGqR8nJibC1dUVAQEB7w3+TRfuJmLOuRg0adIE1Vzyvm9GRgb27t0Lf39/KJXKQj+eFM4kPAHOHUfDhg1Rs3wpqcMpFHIpY8OkdPhceghPBytYKLX7QLl6/znGbrmEWV2qoKKTrVb7WpkZw90+77+epSCXcwgATrce4td1xpjX1QeeDtrVSvwb8y8aNGygfc3LoySM2nwO7Xq1R21XR21D1pq+y6jv8hWEnK7V/H7m6PvzJvvOS17kK3mJj4/Hvn37EBoammNdRkYGPv30U9y4cQPh4eHvTUDMzMxgZpazOkqpVGqVSABQv0lMTEy03jc/xyzo8fRJTrHml1zKWKakEj0+9CjQc1R0skUtN3sdRVR0yOUcAoCVWQmoUsvC264qqpfJ+wd7RkYGbpncgo+jj9ZlNMp8DlXqE1iZldDL66PvMuq7fAUhp2u1oJ85+vq80er7Nz8HWL16NRwdHdG+fXuN5dmJy7Vr1xAREQF7e8P7cCUiIiJpaZ28qFQqrF69Gr1799aoDszMzETXrl1x8uRJbNu2DVlZWbh//z4AoFSpUjA1NdVd1ERERFRsaZ287Nu3DwkJCejXr5/G8tu3b2Pr1q0AgFq1ammsi4iIQPPmzfMdJBEREVE2rZOXgIAA5NZByd3dPdflRERERLrEuY2IiIhIVpi8EBERkawweSEiIiJZYfJCREREssLkhYiIiGSFyQsRERHJCpMXIiIikhUmL0RERCQrTF6IiIhIVpi8EBERkawweSEiIiJZYfJCREREssLkhYiIiGRF61mli7KUjCwAwPk7z7XaLyklDccfAU7xT2FlYZbn/WIfvtTqOEREcsLPVCqqDCp5ifv/F/640HP52NsEv8Yey9dxrcwM6mUkIgLAz1QqugzqCgmo5gQA8HIsAQulcZ73u3LvOYI2n8Pcrj6o5Gyr1TGtzEzgUdpKq32IiOSAn6lUVBlU8lLKyhSf1y+v9X6ZmZkAAC8HK1Qvq90bjYjIUPEzlYoqNtglIiIiWWHyQkRERLLC5IWIiIhkhckLERERyQqTFyIiIpIVJi9EREQkK0xeiIiISFaYvBAREZGsMHkhIiIiWWHyQkRERLLC5IWIiIhkhckLERERyQqTFyIiIpIVrZIXd3d3KBSKHH9ff/01AEAIgUmTJsHFxQUWFhZo3rw5Lly4UCiBExERUfGkVfJy7Ngx3Lt3T/23d+9eAMAnn3wCAJg1axbmzZuHH3/8EceOHYOTkxP8/f3x4sUL3UdORERExZJWyYuDgwOcnJzUf9u2bYOXlxd8fX0hhMCCBQvw3XffITAwENWrV8fatWuRnJyMDRs2FFb8REREVMyY5HfH9PR0rF+/HqNGjYJCocD169dx//59BAQEqLcxMzODr68vjhw5goEDB+b6PGlpaUhLS1M/TkxMBABkZGQgIyMjv+FpJTMzU/2vvo5ZGJKTk3HlypVc11299xxp92Nx/rQp0h/Y5rpNpUqVYGlpWZghFlhxKOO7GMq1+jZyKt+LlFefW2cSnqjjzouk1DQcfwSUvv4IVuZmWh0z9lESgKL/+sjpPOYXy6h72hwj38lLWFgYnj17hj59+gAA7t+/DwAoU6aMxnZlypRBfHz8W59n+vTpCAkJybF8z549evuSufUSAEwQExODO+f1cshCERcXh6CgoHdu03Pt29fNnTsXXl5eOo5Kt4pDGd/FUK7Vt5FT+aIfKAAY47u/L+ZjbxP8Gnsq38c+Fn0I8Rb53r3Qyek85hfLqHvJycl53jbfycuqVavQtm1buLi4aCxXKBQaj4UQOZa9bvz48Rg1apT6cWJiIlxdXREQEAAbG5v8hqeVMwlPgHPH0bBhQ9QsX0ovxywMycnJaNKkSa7rXqakYXfUMbRuWg8lLHL/tSeHWoniUMZ3MZRr9W3kVL6GSenwufQQng5WsFAa53m/q/efY+yWS5jVpQoqOuVeQ/guVmbGcLe30no/fZLTecwvllH3su+85EW+kpf4+Hjs27cPoaGh6mVOTk4AXtXAODs7q5c/fPgwR23M68zMzGBmlvOLRqlUQqlU5ic8rZmYmKj/1dcxC4OtrS3q16+f67qMjAy8ePYETRs1ZBllzFCu1beRU/nKlFSix4ce+d6/opMtarnZ6zCiokNO5zG/WEbd0+YY+RrnZfXq1XB0dET79u3Vyzw8PODk5KTugQS8ahcTGRmJRo0a5ecwRERERDloXfOiUqmwevVq9O7dW52VAa9uF33zzTeYNm0aKlSogAoVKmDatGmwtLRE9+7ddRo0ERERFV9aJy/79u1DQkIC+vXrl2Pd2LFjkZKSgiFDhuDp06do0KAB9uzZA2tra50ES0RERKR18hIQEAAhRK7rFAoFJk2ahEmTJhU0LiIiIqJccW4jIiIikhUmL0RERCQrTF6IiIhIVpi8EBERkawweSEiIiJZYfJCREREssLkhYiIiGSFyQsRERHJCpMXIiIikhUmL0RERCQrTF6IiIhIVpi8EBERkawweSEiIiJZ0XpWablKTk7G5cuXc1135d4zpN2PxaXzFlA9LpnrNpUrV4alpWUhRkj07usUMIxrtaDvRaDol5EMA783iq5ik7xcvnwZderUeec23de+fd2JEydQu3ZtHUdFpCkv1ykg72u1oO9FoOiXkQwDvzeKrmKTvFSuXBknTpzIdd3LlDRsj4hGe78PUcLC7K37ExW2d12ngGFcqwV9L2Y/B1Fh4/dG0VVskhdLS8u3ZsAZGRl4+t9DfFi/LpRKpZ4jI/o/77pOAcO4VvleJLngtVp0scEuERERyQqTFyIiIpIVJi9EREQkK0xeiIiISFaYvBAREZGsMHkhIiIiWWHyQkRERLLC5IWIiIhkhckLERERyQqTFyIiIpIVJi9EREQkK0xeiIiISFaYvBDJRHp6OhYtWoSff/4ZixYtQnp6utQh6VRWVhYiIyNx8OBBREZGIisrS+qQiKiI0jp5uXPnDr744gvY29vD0tIStWrV0pgy/OXLlxg6dCjKlSsHCwsLVKlSBUuXLtVp0ETFzdixY2FlZYXRo0djx44dGD16NKysrDB27FipQ9OJ0NBQeHt7w9/fH/PmzYO/vz+8vb0RGhoqdWhEVASZaLPx06dP0bhxY/j5+WHnzp1wdHREXFwcSpYsqd5m5MiRiIiIwPr16+Hu7o49e/ZgyJAhcHFxQadOnXQdP5HBGzt2LGbPno0yZcogJCQEZmZmSEtLQ3BwMGbPng0AmDVrlsRR5l9oaCi6du2KDh064Ndff8Xt27dRrlw5zJo1C127dsXmzZsRGBgodZhEVIRoVfMyc+ZMuLq6YvXq1ahfvz7c3d3RsmVLeHl5qbeJjo5G79690bx5c7i7u2PAgAGoWbMmjh8/rvPgiQxdeno65s+fjzJlyuD27dvo168f7Ozs0K9fP9y+fRtlypTB/PnzZXsLKSsrC0FBQejQoQPCwsLQoEEDWFhYoEGDBggLC0OHDh0wevRo3kIiIg1a1bxs3boVrVu3xieffILIyEiULVsWQ4YMwVdffaXepkmTJti6dSv69esHFxcXHDhwAFevXsXChQtzfc60tDSkpaWpHycmJgIAMjIykJGRkZ8yaS37OPo6nhRYRnlavHgxMjMzERISAiGERhmVSiWCg4MxZMgQLF68GMOHD5c4Wu1FRkbi5s2b+PXXX5GVlZXjHI4ZMwbNmjVDREQEfH19pQxVZzIzM9X/yvlaTU5OxpUrV3Jdd/Xec6Tdj8X506ZIf2Cb6zaVKlWCpaVlYYZYqAzl86YonUdtXkutkpfr169j6dKlGDVqFCZMmICjR49i+PDhMDMzQ69evQAAixYtwldffYVy5crBxMQERkZGWLlyJZo0aZLrc06fPh0hISE5lu/Zs0fvF/bevXv1ejwpsIzyEh4eDgAwMzPDjh071Muzy2hubq7eztvbW/8BFtDBgwcBALdv38bjx4/Vy7PLl5KSAgDYuXMnkpKS9B9gIbj1EgBMEBMTgzvnpY4m/+Li4hAUFPTObXquffu6uXPnatTay5XcP2+K0nlMTk7O87ZaJS8qlQp169bFtGnTAAAffPABLly4gKVLl2okLzExMdi6dSvc3Nxw8OBBDBkyBM7OzmjVqlWO5xw/fjxGjRqlfpyYmAhXV1cEBATAxsZGm/DyLSMjA3v37oW/vz+USqVejqlvLKM8xcbGYseOHUhLS0O7du1ylHHlypUAgBYtWqBdu3YSR6s9KysrzJs3D+XKlUODBg1ylC8mJgYA0LZtW4OpeTmT8AQ4dxwNGzZEzfKlpA4n35KTk9/6o/RlShp2Rx1D66b1UMLCLNdtDKHmxRA+b4rSecy+85IXWiUvzs7OqFq1qsayKlWq4K+//gLw6lfShAkTsGXLFrRv3x4AUKNGDZw+fRpz5szJNXkxMzODmVnOF0WpVOr9gpDimPrGMsrLsGHDMG7cOAQHB6N///7qcimVSigUCoSEhMDExATDhg2TZZn9/Pzg7u6OWbNmISwsTL1cqVTC2NgYs2fPhoeHB/z8/GBsbCxdoDpkYmKi/leO5yybra0t6tevn+u6jIwMvHj2BE0bNZR1GfNC7p83Rek8anMMrRrsNm7cOMe9satXr8LNzQ3A/7VTMTLSfFpjY2OoVCptDkVEAExNTTFy5Eg8ePAA5cqVw8qVK/HkyROsXLkS5cqVw4MHDzBy5EiYmppKHWq+GBsbY+7cudi2bRs6d+6MmJgYpKSkICYmBp07d8a2bdswZ84cg0lciEg3tKp5GTlyJBo1aoRp06bh008/xdGjR/Hzzz/j559/BgDY2NjA19cXY8aMgYWFBdzc3BAZGYl169Zh3rx5hVIAIkOX3Q16/vz5GDJkiHq5iYkJxowZI+tu0gAQGBiIzZs3IygoCM2aNVMv9/DwYDdpIsqVVslLvXr1sGXLFowfPx6TJ0+Gh4cHFixYgB49eqi32bRpE8aPH48ePXrgyZMncHNzw9SpUzFo0CCdB09UXMyaNQtTpkzB4sWLER4ejhYtWmDYsGGyrXF5U2BgIDp16oSIiAjs3LkTbdu2NahbRUSkW1olLwDQoUMHdOjQ4a3rnZycsHr16gIFRUQ5mZqaYvjw4fD29ka7du1kfZ89N8bGxvD19UVSUhJ8fX2ZuBDRW3FuIyIiIpIVJi9EREQkK0xeiIiISFaYvBAREZGsMHkhIiIiWWHyQkRERLLC5IWIiIhkhckLERERyQqTFyIi0pmsrCxERkbi4MGDiIyMRFZWltQhkQFi8kJERDoRGhoKb29v+Pv7Y968efD394e3tzdCQ0OlDo0MDJMXIiIqsNDQUHTt2hU+Pj6IiorCxo0bERUVBR8fH3Tt2pUJDOkUkxciIiqQrKwsBAUFoUOHDggLC0ODBg1gYWGBBg0aICwsDB06dMDo0aN5C4l0RuuJGYmI6N2Sk5Nx+fLlXNddufcMafdjcem8BVSPS+a6TeXKlWFpaVmIEepWVFQUbt68iY0bN8LIyEgjSTEyMsL48ePRqFEjREVFoXnz5tIFSgaDyQsRkY5dvnwZderUeec23de+fd2JEydQu3ZtHUdVeO7duwcAqF69eq7rs5dnb0dUUExeiIh0rHLlyjhx4kSu616mpGF7RDTa+32IEhZmb91fTpydnQEA58+fR8OGDXOsP3/+vMZ2RAXF5IWISMcsLS3fWnOSkZGBp/89xIf160KpVOo5ssLRtGlTuLu7Y9q0aQgLC9NYp1KpMH36dHh4eKBp06bSBEgGhw12iYioQIyNjTF37lxs27YNnTt3RkxMDFJSUhATE4POnTtj27ZtmDNnDoyNjaUOlQwEa16IiKjAAgMDsXnzZgQFBaFZs2bq5R4eHti8eTMCAwMljI4MDZMXIiLSicDAQHTq1AkRERHYuXMn2rZtCz8/P9a4kM4xeSEiIp0xNjaGr68vkpKS4Ovry8SFCgXbvBAREZGsMHkhIiIiWWHyQkRERLLC5IWIiIhkhckLERERyQqTFyIiIpIVJi9EREQkK0xeiIiISFaYvBAREZGsFLkRdoUQAIDExES9HTMjIwPJyclITEw0mFle38QyGgZDL6Ohlw9gGQ0Fy6h72d/72XnAuxS55OXFixcAAFdXV4kjISIiIn178eIFbG1t37mNQuQlxdEjlUqFu3fvwtraGgqFQi/HTExMhKurK27dugUbGxu9HFPfWEbDYOhlNPTyASyjoWAZdU8IgRcvXsDFxQVGRu9u1VLkal6MjIxQrlw5SY5tY2NjsBdhNpbRMBh6GQ29fADLaChYRt16X41LNjbYJSIiIllh8kJERESywuQFgJmZGYKDg2FmZiZ1KIWGZTQMhl5GQy8fwDIaCpZRWkWuwS4RERHRu7DmhYiIiGSFyQsRERHJCpMXIiIikhUmL0RERCQrRW6QOiIiIpKGSqVCbGwsHj58CJVKpbGuWbNmEkWVU7FMXjIzMzF16lT069ePcyhRkVVcrlMhBBISEuDo6AgLCwupw6ECOn78OC5dugSFQoHKlSujbt26UoekExkZGahUqRK2bduGqlWrSh1OoYiJiUH37t0RHx+fY3JEhUKBrKwsiSLLqdh2lS5RogTOnz8Pd3d3qUMpFMXhjVYcGPp1Crz6pWdubo4LFy6gQoUKUodTaPbv34/9+/fn+ov2l19+kSgq3bl9+za6deuGw4cPo2TJkgCAZ8+eoVGjRti4caNBJOBly5bFvn37UKVKFalDKRS1atVCxYoVERISAmdn5xzzC+Z16H59KLZtXlq1aoUDBw5IHUahUSqVSEtL09vkllJJSkrCxIkT0ahRI3h7e8PT01PjT+4M/ToFXs1nVqFCBTx+/FjqUApNSEgIAgICsH//fvz33394+vSpxp8h6NevHzIyMnDp0iU8efIET548waVLlyCEQP/+/aUOTyeGDRuGmTNnIjMzU+pQCsW1a9cwbdo0VKlSBSVLloStra3GX1FSLG8bAUDbtm0xfvx4nD9/HnXq1IGVlZXG+o4dO0oUme5kv9FWrlwJExPDPNVffvklIiMj0bNnz1x/KchdcbhOAWDWrFkYM2YMli5diurVq0sdjs4tW7YMa9asQc+ePaUOpdBERUXhyJEjqFSpknpZpUqVsHjxYjRu3FjCyHTn33//xf79+7Fnzx74+PjkeD+GhoZKFJluNGjQALGxsfD29pY6lPcqtreN3jXddlG7t5dfXbp0wf79+1GiRAmDfKMBQMmSJbF9+3aD+XB8U3G4TgHAzs4OycnJyMzMhKmpaY62L0+ePJEoMt2wt7fH0aNH4eXlJXUohaZSpUr49ddfUb9+fY3lR48eRffu3REbGytRZLrTt2/fd65fvXq1niIpHFu2bMH333+PMWPGwMfHB0qlUmN9jRo1JIosJ8P8OZ4Hb95zNkQlS5bExx9/LHUYhcrOzg6lSpWSOoxCUxyuUwBYsGCB1CEUqi+//BIbNmzAxIkTpQ6l0MyaNQvDhg3DTz/9hDp16kChUOD48eMYMWIE5syZI3V4OiH35OR9sr8v+vXrp16mUCgghChyP5aKbc3L61JTU2Fubi51GJQP69evx99//421a9fC0tJS6nAKFa9T+RoxYgTWrVuHGjVqoEaNGjl+0c6bN0+iyHTn9dqz7NvU2f9/s9ZXzjVpmZmZOHDgAOLi4tC9e3dYW1vj7t27sLGxQYkSJaQOr0Di4+Pfud7NzU1PkbxfsU1esrKyMG3aNCxbtgwPHjzA1atX4enpiYkTJ8Ld3d1gGpgZ8hsNAD744APExcVBCAF3d/ccXwonT56UKDLdKC7XKQDExcVh9erViIuLw8KFC+Ho6Ihdu3bB1dUV1apVkzq8AvHz83vrOoVCgfDwcD1GUzjWrl2b52179+5diJEUnvj4eLRp0wYJCQlIS0tTvx+/+eYbpKamYtmyZVKHWGwU29tGU6dOxdq1azFr1ix89dVX6uU+Pj6YP3++QXwpvPlG8/f3h7W1NWbNmmUwb7TOnTtLHUKhKg7XKQBERkaibdu2aNy4MQ4ePIipU6fC0dERZ8+excqVK7F582apQyyQiIgIqUModHJNSLQxYsQI1K1bF2fOnIG9vb16eZcuXfDll19KGJluXbx4EQkJCUhPT9dYXqQ6CIhiysvLS+zbt08IIUSJEiVEXFycEEKIS5cuiZIlS0oZms506tRJfPHFFyItLU2jjAcOHBDe3t4SR0d5URyuUyGEaNiwoZg7d64QQrOcR48eFS4uLlKGRlrIzMwUmzdvFv/73//ElClTRGhoqMjMzJQ6LJ2xt7cXly9fFkJoXqc3btwQFhYWUoamE3FxcaJGjRpCoVAIIyMjoVAo1P83MjKSOjwNxbbm5c6dO7l2B1OpVMjIyJAgIt07dOgQDh8+DFNTU43lbm5uuHPnjkRRkTaKw3UKAOfOncOGDRtyLHdwcDCY8V+OHTuGP//8M9dftIbQ8y82Nhbt2rXDnTt3UKlSJQghcPXqVbi6umL79u0G0dNKpVLl2mj19u3bsLa2liAi3RoxYgQ8PDywb98+eHp64ujRo3j8+DGCgoKKXKPrYjtIXbVq1RAVFZVj+Z9//okPPvhAgoh0z9DfaMCrNiFz5sxB/fr14eTkhFKlSmn8yV1xuE6BVz3j7t27l2P5qVOnULZsWQki0q1NmzahcePGuHjxIrZs2YKMjAxcvHgR4eHhRW7wr/waPnw4vLy8cOvWLZw8eRKnTp1CQkICPDw8MHz4cKnD0wl/f3+NnnEKhQIvX75EcHAw2rVrJ11gOhIdHY3JkyfDwcEBRkZGMDIyQpMmTTB9+vSidw6lrvqRytatW4Wtra2YMWOGsLS0FLNnzxZffvmlMDU1FXv27JE6PJ349NNPxVdffSWEeFXFef36dfHixQvRokUL0adPH4mj042JEycKZ2dnMXv2bGFubi7+97//if79+wt7e3uxcOFCqcMrsOJwnQohxJgxY0STJk3EvXv3hLW1tbh27Zo4dOiQ8PT0FJMmTZI6vALz8fERP/74oxDi/243qFQq8dVXX4kffvhB4uh0w9LSUpw9ezbH8tOnTwsrKysJItK9O3fuiIoVK4oqVaoIExMT0bBhQ2Fvby8qVaokHjx4IHV4BVayZEn1rTBPT08RHh4uhBAiNja2yN0WK7bJixBC7Nq1SzRr1kxYWVkJCwsL0bhxY7F7926pw9IZQ3+jCfHqDbZt2zYhxKsvhdjYWCGEEAsXLhTdunWTMjSdMfTrVAgh0tPTRffu3dX32ZVKpTAyMhJffPGFQbSZsLS0FDdu3BBCvGo3kf0lf/HiReHk5CRhZLpjZ2cnDh8+nGP5oUOHhJ2dnQQRFY7k5GSxatUq8fXXX4vBgweLFStWiOTkZKnD0okmTZqILVu2CCGE6Natm2jTpo04dOiQ6NWrl6hWrZq0wb2h2HaVLi5SUlKwadMmnDhxAiqVCrVr10aPHj0MZvZeKysrXLp0CeXLl4ezszO2b9+O2rVr4/r16/jggw/w/PlzqUMkLcTFxeHUqVNQqVT44IMPDGaiRldXV+zYsQM+Pj6oWbMmxo0bh27duiE6Ohpt2rQxiOu0V69eOHnyJFatWqUeZffff//FV199hTp16mDNmjXSBkjvtXv3biQlJSEwMBDXr19Hhw4dcPnyZdjb2+P3339HixYtpA5Rrdg22M2Wnp6e6yyv5cuXlygi3Tl48CAaNWqEvn37agxrnZmZiYMHD6JZs2YSRqcb5cqVw71791C+fHl4e3tjz549qF27No4dOwYzMzOpwyMteXl5GUTDzjc1bdoUe/fuhY+PDz799FOMGDEC4eHh2Lt3L1q2bCl1eDqxaNEi9O7dGx9++KF6vKXMzEx07NjRoEZQvnr1Kg4cOJDr98YPP/wgUVS60bp1a/X/PT09cfHiRTx58gR2dnZFbt64Ylvzcu3aNfTr1w9HjhzRWC6K4DDI+WVsbIx79+7B0dFRY/njx4/h6OhoEGUcN24cbGxsMGHCBGzevBndunWDu7s7EhISMHLkSMyYMUPqELWmzQeFnEcqfV1WVhbWrFmD/fv35/qlIPdB3J48eYLU1FS4uLhApVJhzpw5OHToELy9vTFx4kTY2dlJHaLOxMbGqmeTrlq1qiwm+curFStWYPDgwShdujScnJw03qcKhUL2g2LKSbFNXho3bgwTExOMGzcu19mIa9asKVFkumNkZIQHDx7AwcFBY/nVq1dRt25dJCYmShRZ4YmJicGRI0fg7e1dtAZU0sLrI5U+fvwYU6ZMQevWrfHhhx8CeNUjYPfu3Zg4cSJGjhwpVZg6NXToUKxZswbt27fP9f04f/58iSKjvJo8eTJGjx6dY5qOlJQUzJ49W/a1EsCrYSaGDBmCb7/9VupQCkVqaioWL16MiIiIXH9EFKXkrNgmL1ZWVjhx4gQqV64sdSg6FxgYCAD4+++/0aZNG43bJ1lZWTh79iwqVaqEXbt2SRUi5dHHH38MPz8/DB06VGP5jz/+iH379iEsLEyawHSsdOnSWLdunUF0N32Xhw8f5vqlUJRm682v4lDTa2Njg9OnT8PT01PqUApF9+7dsXfvXnTt2hVlypTJ8SMiODhYoshyKrZtXqpWrYr//vtP6jAKRfa4EUIIWFtbazTONTU1RcOGDTWGmpe7O3fu4PDhw7l+KRS5sQm0tHv3bsycOTPH8tatW2PcuHESRFQ4TE1NDer2wptOnDiB3r17q2+nvM5QblNn33J/05kzZwxizCUA+OSTT7Bnzx4MGjRI6lAKxfbt27Fjxw40btxY6lDeq1glL6/fJpk5cybGjh2LadOmwcfHJ8eEfjY2NvoOT2eyp213d3fHmDFjDHq25dWrV2PQoEEwNTWFvb19jnvQck9e7O3tsWXLFowZM0ZjeVhYmMbcKnIXFBSEhQsX4scffyxyDQN1oW/fvqhYsSJWrVqV6y9aOctuo6VQKFCxYkWNsmVlZeHly5ey/rJftGiR+v/ZbZRiYmJy/d6Q++dN2bJlZTOAabG6bWRkZKTxxsrtl4IhNdht0aIFQkNDUbJkSY3liYmJ6Ny5s+wbQQKvuqAOGjQI48ePh5GR4Q0YvWbNGvTv3x9t2rRRt3mJiYnBrl27sHLlSvTp00faAAsg+/ZmtvDwcJQqVQrVqlXL8aUg9+Hzra2tcerUKYOsXVq7di2EEOjXrx8WLFigMWKwqakp3N3d1deuHHl4eORpO4VCgevXrxdyNIVr586dWLRoEZYtWwY3Nzepw3mnYlXzUhxmdn1dZGRkjjlUgFeNsnIbcl6OkpOT8fnnnxtk4gIAffr0QZUqVbBo0SKEhoaqe3AcPnwYDRo0kDq8AnlzWPwuXbpIFEnha9myJc6cOWOQyUv2bNIeHh7qjhCG5MaNG1KHoDd169ZFamoqPD09YWlpmeNHRFHq3Visal6Ki7NnzwIAatWqpf41my0rKwu7du3C8uXLcfPmTYki1J2xY8eiVKlSBtX+gwzPf//9h969e6N+/fqoXr16ji8FufaMe93JkyehVCrh4+MD4FWHgdWrV6Nq1aqYNGlSjgliqehp1aoVEhIS0L9//1xvb2YnqkVBsU1eVq9ejRIlSuCTTz7RWP7nn38iOTm5SJ0kbb1+eyy302thYYHFixejX79++g5N57KystChQwekpKTkeg963rx5EkWWf9p0YZdz26zX3bhxA5mZmTlG1L127RqUSiXc3d2lCUxHtm7dip49e+LFixc51hnKbep69eph3Lhx+Pjjj3H9+nVUrVoVgYGBOHbsGNq3b28QA9V17doVdevWzfFjafbs2Th69Cj+/PNPiSLTDUtLS0RHR8tiqBDDrGvPgxkzZqB06dI5ljs6OmLatGkSRKQ7N27cQFxcHIQQOHr0KG7cuKH+u3PnDhITEw0icQGAadOmYffu3Xjw4AHOnTuHU6dOqf9Onz4tdXj5UrJkSdjZ2b3zL3sbQ9GnT58cA0YCr4aXl3O7nmzDhw9Hz549ce/ePahUKo0/Q0hcgFfjR9WqVQvAqx+Bvr6+2LBhA9asWYO//vpL2uB0JDIyEu3bt8+xvE2bNjh48KAEEelW5cqVkZKSInUYeWJYNye1EB8fn2tDLDc3NyQkJEgQke5kN7R6s9uwIZo3bx5++eUXg/iCy1bc2mYBwKlTp3LtntmwYcMcY9zI0ePHjzFy5EiUKVNG6lAKjRBC/Zmzb98+dOjQAcCrRvWGMizFy5cvc739pVQqDWLQzxkzZiAoKAhTp04t8r1wi23y4ujoiLNnz+aojj5z5oysu6Bu3boVbdu2hVKpxNatW9+5rSHcZzczM5PFmATa8PX1lToEvVMoFLneUnn+/LlB1EwEBgYiIiLCIOdtyla3bl1MmTIFrVq1QmRkJJYuXQrgVU2woSRt1atXx++//55jtOBNmzahatWqEkWlO23atAGAHPNtFcVeuMU2efn8888xfPhwWFtbqycojIyMxIgRI/D5559LHF3+de7cGffv34ejoyM6d+781u2K2oWYXyNGjMDixYs1xmIwNFFRUVi+fDmuX7+OP//8E2XLlsWvv/4KDw8PNGnSROrwdKJp06aYPn06Nm7cCGNjYwCv2jNNnz7dIMpYsWJFjB8/HocOHTLI8UGAV1M4fPHFFwgLC8N3332n7lm1efNmNGrUSOLodGPixIn4+OOPERcXp55hef/+/di4caPs27sA8qr1LbYNdtPT09GzZ0/8+eef6q59KpUKvXr1wtKlSzkjsUx06dIF4eHhsLe3N8jxQf766y/07NkTPXr0wK+//oqLFy/C09MTS5YswbZt27Bjxw6pQ9SJCxcuwNfXFyVLlkTTpk0BvEraEhMTER4ejurVq0scYcG8a6wQQxgf5F1SU1NhYmJiMF2ot2/fjmnTpuH06dOwsLBAjRo1EBwcXCxrTKVUbJOXbNeuXVNfhD4+PkV+YB7S1Ldv33euzx5tWK4++OADjBw5Er169YK1tTXOnDkDT09PnD59Gm3atMH9+/elDlFn7t69ix9//BFnzpxRfykMHTrUYIaWN3Senp44duxYjtvuz549Q+3atQ06QTMkcqnpNYxUOB+yZ0CtUKGCRvdMQ5gBNa+3UAyhqlruycn7XLlyRX1b83U2NjZ49uyZ/gMqJAkJCXB1dc21p19CQgLKly8vQVS6l56ejhs3bsDLy8tgaiKy3bx5M9db0Wlpabh9+7YEEemeoSdor9f0njx5EmlpaQCAFy9eYNq0aUWqprfY1rwY8gyob1ZR37p1C87OzhofloZUVZ2ZmYkDBw4gLi4O3bt3h7W1Ne7evQsbGxuUKFFC6vAKxMvLC8uXL0erVq00al7WrVuHGTNm4OLFi1KHqBOG/H4EXo0EPWzYMKxduxbAq27Fnp6eGD58OFxcXGQ9yGJ2x4DOnTtj7dq1GiMnZ2VlYf/+/di7dy+uXLkiVYg6Y2RkpG5T+LoHDx6gfPny6i97uZJTTa9hpf5aMOQZUN8cztra2hqRkZEGOY17fHw82rRpg4SEBKSlpcHf3x/W1taYNWsWUlNTsWzZMqlDLJCBAwdixIgR+OWXX6BQKHD37l1ER0dj9OjRsq4dfNPb3o8vX76Eubm5BBHp1vjx43HmzBkcOHBA3aMDeDWiaXBwsKyTl9c7Brw5uGf2AINz587Vc1S69XrPzd27d+eaoMl9IEVAXjW9xS55MfQZUIubESNGoG7dujm6uHfp0gVffvmlhJHpxtixY/H8+XP4+fkhNTUVzZo1g5mZGUaPHm0Q45+MGjUKwKuawIkTJ2rMgJ6VlYV///1XPfCZnIWFheH3339Hw4YNNT5zqlatiri4OAkjK7jssV08PDxw/PhxWQ818TbZCZpCoTDYBA0AnJ2dERsbmyMRO3ToUJH78VvskpcFCxaoZ0ANCQkxuBlQi5tDhw7h8OHDOQaOcnNzw507dySKSremTp2K7777DhcvXoRKpULVqlVlfzss26lTpwC8qnk5d+6cxnk0NTVFzZo1MXr0aKnC05lHjx7luNUAAElJSbnWOMlNRkYG3N3d8fjxY4NMXl5P0I4dO5br6OyGQE41vcUueXl9BtRGjRrl6FpL8vK24dVv374Na2trCSIqHJaWlqhbt67UYehc9rgSffv2xcKFC4vUCJ66VK9ePWzfvh3Dhg0DAHXCsmLFCoP4saRUKnH+/HmDSMTexdBnmJZTTW+xbbD7upSUFGRkZGgsk/OH6JvDVJcrVw6HDh3KURUo5zJm++yzz2Bra4uff/4Z1tbWOHv2LBwcHNCpUyeUL19elr2RAgMDsWbNGtjY2CAwMPCd28p9HJvi4siRI2jTpg169OiBNWvWYODAgbhw4QKio6MRGRmJOnXqSB1igQUFBUGpVGLGjBlSh6JTixYtwoABA2Bubv7enpyG0IMTeNXAvKjX9Bbb5CU5ORljx47FH3/8gcePH+dYL+feDa/PKg3kbAxZFId6zq+7d+/Cz88PxsbGuHbtGurWrYtr166hdOnSOHjwYK5V9UVd3759sWjRIlhbW6NPnz7v/DUrx+QsW3FL0s6dO4c5c+bgxIkTUKlUqF27Nr799lv4+PhIHZpODBs2DOvWrYO3tzfq1q0LKysrjfVynOEd0GzLU9wGG8weJLJSpUqoUqWK1OFoKHa3jbKNGTMGERERWLJkCXr16oWffvoJd+7cwfLly2X/y0FOQzwXlIuLC06fPo1NmzapvxT69++PHj16wMLCQurw8qVLly7qHjZr1qyRNphCZGtrq07MbGxsDP6Wg4+Pj7qrtCE6f/48ateuDeBVV/DXyfncvn6ryNBvG3366ado1qwZhg4dipSUFNSrVw83btyAEAKbNm3Cxx9/LHWIasW25qV8+fJYt24dmjdvDhsbG5w8eRLe3t749ddfsXHjxiI1GE9hmzFjBgYNGoSSJUtKHQrh1Zgn9+/fh4ODw1vHPyF5OXnyJJRKpbqW5e+//8bq1atRtWpVTJo0KdeZiqlo+ffff7F161ZkZmaiZcuWCAgIkDoknXNycsLu3btRs2ZNbNiwAcHBwThz5gzWrl2Ln3/+Wd3AvigwkjoAqTx58kRdBWhjY4MnT54AAJo0aYKDBw9KGZreTZs2TV1+uVm7di22b9+ufjx27FiULFkSjRo1Qnx8vISR5Z+DgwNiYmIAvH38E0MhhMDs2bPRuHFj1K9fHxMmTEBqaqrUYencwIED1bUR169fx2effQZLS0v8+eefGDt2rMTR6d7t27cNprcfAGzZsgWNGzfGwoULsXz5crRt2xYLFiyQOiyde/78uXqcs127duHjjz+GpaUl2rdvj2vXrkkcnaZim7x4enri5s2bAF6NtfDHH38AAP75559iVwMh58q3adOmqW8PRUdH48cff8SsWbNQunRpjBw5UuLo8mfQoEHo1KkTjI2NoVAo4OTkBGNj41z/5G7GjBkYN24crKys4OzsjHnz5hlMo8fXXb16VT1ezZ9//glfX19s2LABa9aswV9//SVtcDqiUqkwefJk2Nraws3NDeXLl0fJkiXxv//9T93VWK6mTZuGPn364NmzZ3j27BlCQkIwZcoUqcPSOVdXV0RHRyMpKQm7du1S1y49ffq06A0WKYqpefPmiYULFwohhAgPDxcWFhbC1NRUKBQKsWDBAomj068SJUqIuLg4qcPIFwsLCxEfHy+EEGLs2LGiZ8+eQgghzp8/L0qXLi1laAVy6dIl8c8//wiFQiHWrFkjwsLCcv2Tu4oVK4qffvpJ/Xjnzp3CzMxMqFQqCaPSPWtra3H16lUhhBCtWrVSf8bEx8cLc3NzKUPTmXHjxgkHBwexZMkScebMGXH69Gnx008/CQcHBzFhwgSpwysQa2trceXKFfXj1NRUYWxsLB49eiRhVLr3008/CRMTE1GyZElRs2ZNkZWVJYQQYtGiRaJ58+YSR6ep2CYvb4qPjxd//fWXOHPmjNSh6J2ckxcHBwdx8uRJIYQQtWrVEmvXrhVCCBEbGyusrKykDE0nJk2aJJKSkqQOo9CYmZmpk08hhFCpVMLU1FTcvn1bwqh0z8/PT/Tq1UusW7dOKJVKce3aNSGEEAcOHBBubm7SBqcjzs7O4u+//86xPCwsTLi4uEgQke4oFArx4MEDjWVy/tx8l+PHj4vQ0FDx4sUL9bJt27aJQ4cOSRhVTsWut1F4eDiGDh2KmJgYjXFOypcvD1tbWzRq1AjLli1D06ZNJYyS8srf3x9ffvklPvjgA1y9ehXt27cHAFy4cMEg5hqJjIzEiBEjNIbNB151YezcuTPCw8Mlikw30tPTNXqFKRQKmJqayn6CuzctWLAAPXr0QFhYGL777jt4e3sDADZv3oxGjRpJHJ1uPHnyBJUrV86xvHLlyrJtU/e6N+c0UqlU2L9/P86fP69e1rFjRylC06k6derkGHco+3O1KCl2vY06duwIPz+/t7aHWLRoESIiIrBlyxY9Ryad12cPlZtnz57h+++/x61btzB48GD1pHfBwcEwNTXFd999J3GEBfO23kYPHz5E2bJlcwyuKDdGRkYYMGCARnL2008/4YsvvtD4opDrGCHvk5qaCmNjY4MY6btBgwZo0KBBjoHchg0bhmPHjqkbocuRkdH7m4caythZt2/fxtatW5GQkID09HSNdUXpfVjskhc3Nzfs2rXrrQPuXL58GQEBAUhISNBzZNJp164dVq1aBWdnZ6lDof/v7NmzAIBatWohPDxcY6bzrKws7Nq1C8uXL1c3Oper5s2bv7c3lUKhkH0NU3EQGRmJ9u3bo3z58vjwww+hUChw5MgR3Lp1Czt27GBttgzs378fHTt2hIeHB65cuYLq1avj5s2bEEKgdu3aRep9WOySF3Nzc5w/f15dbfum2NhY+Pj4ICUlRc+R6cabUwO8iyFMD5AtOTk5118KNWrUkCiignl9lOTc3qIWFhZYvHgx+vXrp+/QKB+ysrIwf/58/PHHH7lep4ZwWwV4NeL1Tz/9hMuXL0MIgapVq2LIkCFwcXGROjS9at++PVauXCm7H4T169dHmzZtMHnyZHWNvKOjI3r06IE2bdpg8ODBUoeoVuzavJQtWxbnzp17a/Jy9uxZ2V1wrytZsmSexwUxhCrOR48eoU+fPti1a1eu6+VaxuxRLT09PXH06FE4ODio15mamsLR0dEgukpry8bGBqdPn5bdLc6QkBCsXLkSo0aNwsSJE/Hdd9/h5s2bCAsLK3Kz9RaEi4sLpk6dKnUYkjt48KAsfwBfunQJGzduBACYmJggJSUFJUqUwOTJk9GpUycmL1Jq164dfvjhB7Rt2zZHv/WUlBQEBwejQ4cOEkVXcK9PDXDz5k2MGzcOffr0Uc9cGx0djbVr12L69OlShahT33zzDZ49e4aYmBj4+flhy5YtePDgAaZMmYK5c+dKHV6+ubm5AYDsx8fQNblWFP/2229YsWIF2rdvj5CQEHTr1g1eXl6oUaMGYmJiDGZsm2fPnuHo0aN4+PBhjmu3V69eEkVFeWVlZaVuLO/i4oK4uDhUq1YNAPDff/9JGVoOxe620YMHD1C7dm0YGxtj6NChqFSpEhQKBS5duoSffvoJWVlZOHnyJMqUKSN1qAXWsmVLfPnll+jWrZvG8g0bNuDnn3/GgQMHpAlMh5ydnfH333+jfv36sLGxwfHjx1GxYkVs3boVs2bNwqFDh6QOsUDWrVv3zvXF7QtBro3LrayscOnSJZQvXx7Ozs7Yvn07ateujevXr+ODDz7A8+fPpQ6xwP755x/06NEDSUlJsLa21qgBVigUBnNrLC/kep127twZ7du3x1dffYWxY8diy5Yt6NOnD0JDQ2FnZ4d9+/ZJHeL/kaSDtsRu3rwp2rZtK4yMjIRCoRAKhUIYGRmJtm3bihs3bkgdns5YWFioB8Z63ZUrV4SFhYUEEemetbW1+py5ubmpxyK4fv26QZSxZMmSGn9WVlZCoVAIMzMzYWdnJ3V4eifXsTUqVqwoYmJihBBCNGnSREyfPl0IIcSmTZuEg4ODlKHpTIUKFcSIESMMelyivJLrdRoXF6ce6ywpKUkMHjxY+Pj4iC5duoibN29KHJ2mYnfbCHhVJb9jxw48ffoUsbGxEEKgQoUKsLOzkzo0nXJ1dcWyZcty3D5Zvnw5XF1dJYpKtypVqoQrV67A3d0dtWrVwvLly+Hu7o5ly5bJuu1StqdPn+ZYdu3aNQwePBhjxoyRICLKjy5dumD//v1o0KABRowYgW7dumHVqlVISEiQ7TQWb7pz5w6GDx+eY0wiko/Xa4osLS2xZMkSCaN5t2J326g42bFjBz7++GN4eXmhYcOGAICYmBjExcXhr7/+Qrt27SSOsOB+++03ZGRkoE+fPjh16hRat26Nx48fw9TUFGvWrMFnn30mdYiF4vjx4/jiiy9w+fJlqUPRK7k22H1TTEwMjhw5Am9vb4MY2AwAAgMD8fnnn+PTTz+VOhTJyfW20ZuuX7+OlJQUVKlSJU9j3egTkxcDd+vWLSxdulSj6+KgQYMMpublTcnJybh8+TLKly+P0qVLSx1OoTl16hR8fX216hpf1CQmJmrdXd9QvhQMxdatW9X/f/ToESZPnoy+ffvCx8cnx8B7hpKk5cX06dMxePBg2Uzym5GRgSlTpuDkyZNo2LAhxo0bhy+++EI9YXGlSpWwY8eOIjVqOZMXoiLs9S8H4FVvm3v37uHHH3+Eq6srdu7cKVFkBff66MEtWrRAaGjoez/sDx06hHr16sHMzEw/QerI48ePYW9vD+DVD4oVK1YgJSUFHTt2lPXgbXn9NW4oo8+++X7MplAoYG5uDm9vb3h4eOg5qoILCgrCr7/+io4dOyIiIgLVq1fHlStXEBISAiMjI/zvf/+Dj48PfvvtN6lD/T+StbYhvTh48KDo0aOH+PDDD9WT3a1bt05ERUVJHFnBXb16VWzevFlcv35dCPFq8rCmTZuKunXriilTphjEzMTZDcpfb1hepkwZ0a1bN3H37l2pwysQGxsbcfHiRSHEq3I+fPhQ4oh07+zZs8LNzU0YGRmJSpUqiVOnTokyZcqIEiVKCBsbG2FsbCy2bNkidZiUR9nvwdzel9n/NmvWTDx58kTqULVSvnx5sX37diHEqw4dCoVC7NixQ73+wIEDomzZslKFl6uidROLdOqvv/5C69atYWFhgZMnT6r777948QLTpk2TOLqC2bJlC6pWrYru3bujSpUqWLduHT7++GNYWVmhTJkymDRpEmbNmiV1mAWmUqmgUqnw4MEDPHz4EFlZWbh//z42bNgg+wbJrVq1gp+fH/z8/AC8atTaokWLXP/kauzYsfDx8UFkZCSaN2+ODh06oF27dnj+/DmePn2KgQMHYsaMGVKHWSD//vtvjhrAdevWwcPDA46OjhgwYIDBTLS5d+9e1KtXD3v37sXz58/x/Plz7N27F/Xr18e2bdtw8OBBPH78GKNHj5Y6VK3cvXsXNWvWBABUrFgRZmZmGgO5VqxYEffv35cqvNxJnT1R4alVq5ZYu3atEEKz6172rz85q1OnjpgwYYJQqVTil19+ERYWFmL+/Pnq9cuXLxeVK1eWLkAdePr0qRgyZIiwt7cXRkZGwsjISNjb24uvv/5aPH36VOrwCiw5OVksXbpUjB49WigUCjFgwADxzTff5PonV/b29uqupy9evBAKhUIcO3ZMvf7SpUvC1tZWouh0o3Xr1mLGjBnqx2fPnhUmJibiyy+/FHPnzhVOTk4iODhYugB1qFq1auLw4cM5lh86dEhUrVpVCCHE3r17haurq75DKxCFQiEePHigfvxmV+/79+8LIyMjKUJ7q2LZVbq4uHLlCpo1a5ZjuY2NDZ49e6b/gHToypUr+P3336FQKNC7d2989dVXaNWqlXp9QEAAvvnmG+kCLKAnT57gww8/xJ07d9CjRw9UqVIFQghcunQJa9aswf79+3HkyBFZd++3sLDAoEGDALzqPTVz5kzZNHDMqydPnsDJyQkAUKJECVhZWWlMsmlnZ4cXL15IFZ5OnDlzBlOmTFE/3rRpExo0aIAVK1YAeDVkQ3BwMCZNmiRRhLoTFxeXayNzGxsbXL9+HQBQoUKFIjcabV7s3r1bPZO7SqXC/v37cf78eQAokt8XTF4MmLOzM2JjY3O0ED906JDse2tkj+IJvGo0aGFhoTG+hIWFhayrqidPngxTU1PExcXlGO158uTJCAgIwOTJkzF//nyJItSt7Gkt0tPTcePGDXh5ecHExDA+nt6cayyvc4/JxdOnTzWu0cjISLRp00b9uF69erh165YUoelcnTp1MGbMGKxbt04939ijR48wduxY1KtXD8CrcZjKlSsnZZj50rt3b43HAwcO1Hhc1K5bw/h0oFwNHDgQI0aMwC+//AKFQoG7d+8iOjoao0ePlv1kcAqFIsfw40XtzVUQYWFhWL58ea7TVDg5OWHWrFkYNGiQwSQvKSkpGDp0KNauXQsAuHr1Kjw9PTF8+HC4uLhg3LhxEkeYf3369FH3jkpNTcWgQYNgZWUFALJOsLOVKVMGN27cgKurK9LT03Hy5EmEhISo17948SJHt2m5WrVqFTp16oRy5crB1dUVCoUCCQkJ8PT0xN9//w0AePnyJSZOnChxpNqR4xxq7Cpt4L777jvMnz8fqampAAAzMzOMHj0a//vf/ySOrGCMjIxga2urTliePXsGGxsbdddNIQQSExNl2z3TzMwMcXFxb/0Fd/v2bXh7e6vPq9yNGDEChw8fxoIFC9CmTRucPXsWnp6e2Lp1K4KDg3Hq1CmpQ8yXvn375mm71atXF3IkhWfgwIE4d+4cZs6cibCwMKxduxZ3796FqakpgFcDSS5YsADHjh2TOFLdEEJg9+7duHr1KoQQqFy5Mvz9/YvcIG6FqX379li5cqWknQaYvBQDycnJuHjxIlQqFapWrYoSJUpIHVKBZf9Cf583q0LlomzZsvj999/RpEmTXNdHRUXh888/x507d/QcWeFwc3PD77//joYNG2oMRBcbG4vatWvLejA+bdy+fRsuLi6y+iJ89OgRAgMDcfjwYZQoUQJr165Fly5d1OtbtmyJhg0bYurUqRJGSbpUFAaLZPJiwPr164eFCxeq24ZkS0pKwrBhw/DLL79IFJn+bdy4ER07dlRX1xd1/fv3R2xsLPbu3av+BZstLS0NrVu3hpeXF1atWiVRhLplaWmJ8+fPw9PTU+OD8cyZM2jWrJlBzLqcF3Ke/uD58+coUaIEjI2NNZY/efIEJUqUyHEdy9X+/fuxf/9+PHz4MMftluLymVoUkhf5pPektbVr1yIlJSXH8pSUFKxbt06CiKQzcOBAPHjwQOow8iwkJARXrlxBhQoVMGvWLGzduhVbt27FjBkzUKFCBVy6dMkgem9kq1evHrZv365+nH07cMWKFfjwww+lCkvv5Pxb0tbWNkfiAgClSpUymMQlJCQEAQEB2L9/P/777z88ffpU44/0hw12DVBiYiKEEBBC4MWLFzA3N1evy8rKwo4dO+Do6ChhhPonty+FcuXKITo6GkOGDMH48ePV8SsUCvj7+6unBzAU06dPR5s2bXDx4kVkZmZi4cKFuHDhAqKjoxEZGSl1eEQAgGXLlmHNmjXo2bOn1KEUe0xeDFDJkiXVvW8qVqyYY71CodDoDUBFk4eHB3bu3ImnT5/i2rVrAABvb2+NcUIMRaNGjXD48GHMmTMHXl5e2LNnD2rXro3o6Gj4+PhIHR4RgFdd+Rs1aiR1GAQmLwYpIiICQgi0aNECf/31l8aXnampKdzc3ODi4iJhhKQNOzs71K9fX+owCp2Pj0+eG2ITSeHLL7/Ehg0bZNcV2hAxeTFAvr6+AKAee0FOPReo+EhMTFSPVvq+3kS5jWpqiAxprCJDlJqaip9//hn79u1DjRo1coxfM2/ePIki068JEyZIXgPM5MWAubm5AXjVVTohIQHp6eka62vUqCFFWEQAXtUo3bt3D46OjupbnW8SQkChUMh2vB5tya1tVnFz9uxZ1KpVCwDUQ+dnk2viuXXr1jxv27FjRwDA+PHjCyucPGPyYsAePXqEvn375pjxNVtx+UIAXiVyhjLKp6EIDw9X/3rLnh6guLt48SJv6RZhhniddu7cWeOxQqHQSKJfT8qK0ncGx3kxYD169MDNmzexYMEC+Pn5YcuWLXjw4AGmTJmCuXPnon379lKHWGCenp44duwY7O3tNZY/e/YMtWvXVk+WRqRvgYGBed42NDS0ECMhypt9+/bh22+/xbRp0/Dhhx9CoVDgyJEj+P777zFt2jT4+/tLHaIaa14MWHh4OP7++2/Uq1cPRkZGcHNzg7+/P2xsbDB9+nSDSF5u3ryZ66+BtLQ0gxl91lCdPXs2z9vK8RZn9gy9wKvbQVu2bIGtrS3q1q0LADhx4gSePXumVZJD+hcYGIg1a9bAxsbmvedK7knoN998g2XLlmmM7N26dWtYWlpiwIABuHTpkoTRaWLyYsCSkpLU47mUKlUKjx49QsWKFeHj44OTJ09KHF3BvH6f9vWp3IFXVZv79+/PMZs2FS21atXKUUWdG7m2eXl9vqJvv/0Wn376KZYtW6YeyC0rKwtDhgwpNo2R5er1OdRsbGxk27YlL+Li4jQ+S7PZ2tri5s2b+g/oHXjbyIDVq1cPU6ZMQevWrdG5c2d1jcuiRYuwefNmxMXFSR1ivmX3oMrty0+pVMLd3R1z585Fhw4dpAiP8iA+Pj7P22Y3PpcrBwcHHDp0CJUqVdJYfuXKFTRq1AiPHz+WKDKi/9OsWTMolUqsX79ePeni/fv30bNnT6SnpxepASNZ82LAvvnmG9y7dw8AEBwcjNatW+O3336Dqakp1qxZI21wBZQ9p4iHhweOHTuG0qVLSxwRaUvuCYk2MjMzcenSpRzJy6VLl3LMj0NFV4sWLRAaGoqSJUtqLE9MTETnzp0RHh4uTWA6smrVKgQGBsLNzQ3ly5cHACQkJKBixYoICwuTNrg3sOalGElOTsbly5dRvnx5g/6yf/bsWY4PFyr6fv31Vyxbtgw3btxAdHQ03NzcsGDBAnh4eKBTp05Sh1cgo0aNwpo1azBhwgQ0bNgQABATE4MZM2agV69exWZ8ELkzMjLC/fv3c0yv8vDhQ5QtWxYZGRkSRaY7KpUK+/btw+XLlyGEQNWqVdGqVasid7uMNS/FiKWlJWrXri11GDo1c+ZMuLu747PPPgMAfPLJJ/jrr7/g7OyMHTt2oGbNmhJHSHmxdOlS/PDDD/jmm28wdepUdRuXkiVLYsGCBbJPXubMmQMnJyfMnz9fXRvq7OyMsWPHIigoSOLo6H1eb1x+8eJF3L9/X/04KysLu3btQtmyZaUITWcyMzNhbm6O06dPIyAgAAEBAVKH9E6seTFgWVlZWLNmzVunb5d7FSfwqqv0+vXr0ahRI+zduxeffvopfv/9d/zxxx9ISEjAnj17pA6R8qBq1aqYNm0aOnfuDGtra5w5cwaenp44f/48mjdvjv/++0/qEHUmezRhNtSVDyMjI3XNQ25fmRYWFli8eDH69eun79B0ysvLC6GhobL40ceaFwM2YsQIrFmzBu3bt0f16tWLXLWfLty7d089u/K2bdvw6aefIiAgAO7u7mjQoIHE0VFe3bhxAx988EGO5WZmZkhKSpIgosLDpEV+bty4ASEEPD09cfToUTg4OKjXmZqawtHRUd2LTM6+//57jB8/HuvXr5d8+P/3YfJiwDZt2oQ//vgD7dq1kzqUQmNnZ4dbt27B1dUVu3btwpQpUwC8+nUkx+61xZWHhwdOnz6doxHvzp07UaVKFYmi0p0HDx5g9OjR6lrQN3+981ot2tzc3JCRkYFevXqhVKlSBtvYfNGiRYiNjYWLiwvc3NxgZWWlsb4oDbHB5MWAmZqawtvbW+owClVgYCC6d++OChUq4PHjx2jbti0A4PTp0wZfdkMyZswYfP3110hNTYUQAkePHsXGjRsxbdo0rFq1SurwCqxPnz5ISEjAxIkT4ezsbJC1oIZOqVTi77//xg8//CB1KIXmzakCijK2eTFgc+fOxfXr1/Hjjz8a7IdlRkYGFi1ahISEBPTp00d962HBggUoUaIEvvzyS4kjpLxasWIFpkyZglu3bgEAypYti5CQELRu3Vr2jSGtra0RFRWlntSP5Klv377w8fHBqFGjpA6l2GPyYsC6dOmCiIgIlCpVCtWqVcsxMaHch7LOyMjAgAEDMHHiRHh6ekodDunIf//9B5VKhaysLEybNg0rV65ESkqK1GEVSNWqVfHbb7/l2q6H5GPq1KmYM2cOWrZsiTp16uS4rTJ8+HCJIit+mLwYsL59+75z/evDl8tVyZIlcfLkSSYvMvXs2TN8/fXX2LNnD5RKJcaNG4ehQ4ciJCQEc+bMQdWqVTFq1Ch069ZN6lALZM+ePZg7dy6WL1/OaStkzMPD463rFAqFLCeCLVWqFK5evYrSpUvDzs7unbX0T5480WNk78bkhWSN1bjyNmTIEPzzzz/47LPPsGvXLly6dAmtW7dGamoqgoOD4evrK3WIOmFnZ4fk5GRkZmbC0tIyRy1oUfpSoOJl7dq1+Pzzz2FmZoa1a9e+c9vevXvrKar3Y/JCssZqXHlzc3PDqlWr0KpVK1y/fh3e3t4YPnw4FixYIHVoOiWnLwUiOWDyYsA++OCDXKsAFQoFzM3N4e3tjT59+sDPz0+C6HTDEKtxixOlUon4+Hi4uLgAeDUK9NGjR1G9enWJIyPK3e3bt7F161YkJCQgPT1dY50hTPOgUqkQGxub68CmzZo1kyiqnNhV2oC1adMGS5cuhY+PD+rXrw8hBI4fP46zZ8+iT58+uHjxIlq1aoXQ0FDZDr9+48YNqUOgAlCpVBq3UIyNjXPUnhmKrKwshIWF4dKlS1AoFKhatSo6duxoEIObFRf79+9Hx44d4eHhgStXrqB69eq4efMmhBAGMfVKTEwMunfvjvj4+BxjESkUiiI1HhFrXgzYV199hfLly2PixIkay6dMmYL4+HisWLECwcHB2L59O44fPy5RlFScGRkZoW3btjAzMwMA/PPPP2jRokWOBEbuPeNiY2PRrl073LlzB5UqVYIQAlevXoWrqyu2b98OLy8vqUOkPKhfvz7atGmDyZMnq6excHR0RI8ePdCmTRsMHjxY6hALpFatWqhYsSJCQkJyHY/I1tZWoshyYvJiwGxtbXHixIkcg7XFxsaiTp06eP78OS5fvox69erhxYsXEkWpvVGjRuF///sfrKys3ttQ1xCqcQ3Z+3rEZZN7z7h27dpBCIHffvtNPez648eP8cUXX8DIyAjbt2+XOELKC2tra5w+fRpeXl6ws7PDoUOHUK1aNZw5cwadOnXCzZs3pQ6xQKysrHDmzBlZDPDJ20YGzNzcHEeOHMlxIR45cgTm5uYAXlXbZ//qlYtTp07h8uXL+OCDD3Dq1Km3bmeoA/MZErknJXkVGRmJmJgYjfli7O3tMWPGDDRu3FjCyEgbVlZWSEtLAwC4uLggLi4O1apVAwCDmDy0QYMGiI2NZfJC0ho2bBgGDRqEEydOoF69elAoFDh69ChWrlyJCRMmAAB2794tu4GzIiIiYGxsjHv37iEiIgIA8Nlnn2HRokUoU6aMxNER5WRmZpZr7ebLly9hamoqQUSUHw0bNsThw4dRtWpVtG/fHkFBQTh37hxCQ0PRsGFDqcPLl7Nnz6r/P2zYMAQFBeH+/fvw8fHJ0aW/Ro0a+g7vrXjbyMD99ttv+PHHH3HlyhUAQKVKlTBs2DB0794dAJCSkqLufSQnRkZGuH//PhwdHQG8mqn39OnTHKyOiqRevXrh5MmTWLVqFerXrw8A+Pfff/HVV1+hTp06WLNmjbQBUp5cv34dL1++RI0aNZCcnIzRo0fj0KFD8Pb2xvz582U5YaORkREUCkWOBrrZstexwS6RDryZvGQ3nmPyQkXRs2fP0Lt3b/zzzz/qX7OZmZno2LEj1qxZU6QaQlLxEh8fn+dti1JyxttGJEsKhSJHmxa2caGiqmTJkvj7778RGxuLS5cuQQiBqlWryqJtAf0fT09PHDt2DPb29hrLnz17htq1a8tyXCk3Nzf069cPCxcuhLW1tdTh5BlrXgyMXOep0FZx6WJLREXHmzW+2R48eIDy5curG/PKTXYbwjfLVZSx5sXAzJ8/X509z58/32BrI94cTv2LL76QKBKi9+vatSvq1q2LcePGaSyfPXs2jh49ij///FOiyCgvtm7dqv7/7t27NW7zZWVlYf/+/bKecFOOdRiseSEiKmQODg4IDw+Hj4+PxvJz586hVatWePDggUSRUV4YGRkBQK4NW5VKJdzd3TF37lx06NBBivAKzMjICA8ePICDg4PUoeQZa14M2MmTJ6FUKtUfmH///TdWr16NqlWrYtKkSeyiSaQnb+sSrVQqkZiYKEFEpI3sOX48PDxw7NgxlC5dWuKIdK9ixYrvrakvSk0NmLwYsIEDB2LcuHHw8fHB9evX8dlnnyEwMBB//vknkpOTDW7mXqKiqnr16vj999/xww8/aCzftGkTqlatKlFUlFf//vsvnjx5ojGX2rp16xAcHIykpCR07twZixcvlt2An68LCQmRVa833jYyYLa2tjh58iS8vLwwc+ZMhIeHY/fu3Th8+DA+//xz3Lp1S+oQiYqFrVu34uOPP0b37t3RokULAK8m+du4cSP+/PNPdO7cWdoA6Z3atGkDPz8/fPvttwBe3e6rXbs2+vTpgypVqmD27NkYOHAgJk2aJG2g+fS2hshFGWteDJgQQl3duW/fPvX9WFdXV4MYyppILjp27IiwsDBMmzYNmzdvhoWFBWrUqIF9+/bB19dX6vDoPc6cOYMpU6aoH2/atAkNGjTAihUrALz6TA0ODpZt8iLHjh1MXgxY3bp1MWXKFLRq1QqRkZFYunQpAODGjRscRp9Iz9q3b4/27dtLHQblw9OnTzU+MyMjI9GmTRv143r16sm6JluON2CMpA6ACs+CBQtw8uRJDB06FN999516QKzNmzejUaNGEkdHVLw8e/ZMPa9YdsPHkydP4s6dOxJHRu9TpkwZdXuX9PR0nDx5Eh9++KF6/YsXL3LMAyQnKpVKVreMALZ5KZZSU1NhbGws6zcbkZycPXsWrVq1gq2tLW7evIkrV67A09MTEydORHx8PNatWyd1iPQOAwcOxLlz5zBz5kyEhYVh7dq1uHv3rroH2W+//YYFCxbg2LFjEkdafLDmxcBl/9obP368+tfexYsX8fDhQ4kjIyo+Ro0ahT59+uDatWsak6C2bdsWBw8elDAyyospU6bA2NgYvr6+WLFiBVasWKHR9f2XX35BQECAhBEWP6x5MWBnz55Fy5YtUbJkSf7aI5LQ6z3/Xp9END4+HpUqVUJqaqrUIVIePH/+HCVKlICxsbHG8idPnqBEiRIcO0uPWPNiwEaNGoW+ffvy1x6RxMzNzXMdjO7KlSuyGtW0uLO1tc2RuACv5pRj4qJfTF4M2LFjxzBw4MAcy8uWLYv79+9LEBFR8dSpUydMnjwZGRkZAF51TU1ISMC4cePw8ccfSxwdkfwweTFg/LVHVDTMmTMHjx49gqOjI1JSUuDr6wsvLy+UKFECU6dOlTo8ItlhmxcDNmDAADx69Ah//PEHSpUqhbNnz8LY2BidO3dGs2bNOD0AkZ6Fh4fj5MmTUKlUqFOnDlq2bCl1SESyxOTFgCUmJqJdu3a4cOECXrx4ARcXF9y/fx8ffvghduzYASsrK6lDJDJo2XPitG3bVr1s7dq1CA4ORnJyskHMiUMkBSYvxUBERAROnDgBlUqF2rVro1WrVlKHRFQstG3bFs2bN9eYE6dOnTro3bu3QcyJQyQVTg9goFQqFdasWYPQ0FDcvHkTCoUCHh4ecHJyghBClnNZEMnN6dOn8b///U/9eNOmTahfv77BzIlDJBU22DVAQgh07NgRX375Je7cuQMfHx9Uq1YN8fHx6NOnD7p06SJ1iETFgqHPiUMkFda8GKA1a9bg4MGD2L9/P/z8/DTWhYeHo3Pnzli3bh169eolUYRExUP2nDiurq7qOXFCQkLU6+U+Jw6RVFjzYoA2btyICRMm5EhcAKBFixYYN24cfvvtNwkiIype2rRpg3HjxiEqKgrjx4+HpaUlmjZtql5/9uxZeHl5SRghkTwxeTFAZ8+e1aiaflPbtm1x5swZPUZEVDxxThyiwsHeRgbI1NQU8fHxcHZ2znX93bt34eHhgbS0ND1HRlQ8cU4cIt1imxcDlJWVBROTt59aY2NjZGZm6jEiouLN1tY21+WlSpXScyREhoHJiwESQqBPnz5vHfiKNS5ERCRnTF4MUO/evd+7DXsaERGRXLHNCxEREckKexsRERGRrDB5ISIiIllh8kJERESywuSFiIiIZIXJCxEVWdkzop8+fVrqUIioCGHyQkSFpk+fPlAoFFAoFDAxMUH58uUxePBgPH36VOrQiEjGmLwQUaFq06YN7t27h5s3b2LlypX4559/MGTIEKnDIiIZY/JCRIXKzMwMTk5OKFeuHAICAvDZZ59hz549AACVSoXJkyejXLlyMDMzQ61atbBr1653Pt/FixfRrl07lChRAmXKlEHPnj3x33//6aMoRFREMHkhIr25fv06du3aBaVSCQBYuHAh5s6dizlz5uDs2bNo3bo1OnbsiGvXruW6/7179+Dr64tatWrh+PHj2LVrFx48eIBPP/1Un8UgIolxegAiKlTbtm1DiRIlkJWVhdTUVADAvHnzAABz5szBt99+i88//xwAMHPmTERERGDBggX46aefcjzX0qVLUbt2bUybNk297JdffoGrqyuuXr2KihUr6qFERCQ1Ji9EVKj8/PywdOlSJCcnY+XKlbh69SqGDRuGxMRE3L17F40bN9bYvnHjxjhz5kyuz3XixAlERESgRIkSOdbFxcUxeSEqJpi8EFGhsrKygre3NwBg0aJF8PPzQ0hICMaMGQMAUCgUGtsLIXIsy6ZSqfDRRx9h5syZOdY5OzvrOHIiKqrY5oWI9Co4OBhz5szBy5cv4eLigkOHDmmsP3LkCKpUqZLrvrVr1/5/7dkxrilAGIbh757WDjQUNGxCxxaUtAoJEVYgsRStUq9RaRQUFqBQ6BTi1CdR3Mq5k/s8yZR/8k/3TibH4zH1ej2NRuPHqVQqn1gf+AeIF+CjOp1O2u12lstlZrNZVqtV1ut1TqdTFotFDodDxuPx29nRaJTb7ZZ+v5/9fp/L5ZLtdpvhcJjn8/nhmwC/xbcR8HGTySSDwSDn8zn3+z3T6TTX6zWtViubzSbNZvPtXLVazW63y3w+T7fbzePxSK1WS6/Xy9eXtxj8L/68Xq/Xby8BAPC3PFUAgKKIFwCgKOIFACiKeAEAiiJeAICiiBcAoCjiBQAoingBAIoiXgCAoogXAKAo4gUAKMo3F01CxsXEpdsAAAAASUVORK5CYII=" }, "metadata": {} } @@ -353,40 +397,35 @@ "metadata": {} }, { - "cell_type": "code", - "execution_count": 44, + "cell_type": "markdown", "source": [ - "print(list(df['Weight'])[:20])" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "[180.0, 215.0, 210.0, 210.0, 188.0, 176.0, 209.0, 200.0, 231.0, 180.0, 188.0, 180.0, 185.0, 160.0, 180.0, 185.0, 197.0, 189.0, 185.0, 219.0]\n" - ] - } + "> **Note**: This diagram suggests, that on average, height of first basemen is higher that height of second basemen. Later we will learn how we can test this hypothesis more formally, and how to demonstrate that our data is statistically significant to show that. \r\n", + "\r\n", + "Age, height and weight are all continuous random variables. What do you think their distribution is? A good way to find out is to plot the histogram of values: " ], "metadata": {} }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 211, "source": [ - "mean = df['Weight'].mean()\r\n", - "var = df['Weight'].var()\r\n", - "std = df['Weight'].std()\r\n", - "print(f\"Mean = {mean}\\nVariance = {var}\\nStandard Deviation = {std}\")" + "df['Weight'].hist(bins=15)\r\n", + "plt.suptitle('Weight distribution of MLB Players')\r\n", + "plt.xlabel('Weight')\r\n", + "plt.ylabel('Count')\r\n", + "plt.show()" ], "outputs": [ { - "output_type": "stream", - "name": "stdout", - "text": [ - "Mean = 201.6892545982575\n", - "Variance = 440.6426848120547\n", - "Standard Deviation = 20.991490771549664\n" - ] + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-23T14:13:07.869650\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHgCAYAAABDx6wqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGB0lEQVR4nO3de3xU1b3///fkNhBIAiHmVkJAFFqBolzEA2gSIdxBRCtKVbBYORVoEdB6KRKsCsWKKBRse7gpRqj+AKl4wAAJF4EKQSpQi6gBFIKUiwkQHIZk/f7wmzkMuYckk6y8no/HPGDWXnvv9VnJbN7s2XvGYYwxAgAAsJSfrwcAAABQnQg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDuoNd599105HA4tX768yLKOHTvK4XBo3bp1RZa1bt1anTp1qtC+Ro0apZYtW1ZqnCkpKXI4HDp58mSZfV988UWtWrWqUvspdOjQITkcDi1evLjIGCoiLy9PKSkpysjIqNB6xe2rZcuWGjRoUIW2U5bU1FTNnj272GUOh0MpKSlVur+qtmHDBnXp0kWNGjWSw+Eo8ede+PMsraZf/OIXnj6XS0xMVPv27UsdR+HPq/Dh5+enmJgYDRgwQB999FG5amnZsqXXNho3bqxu3brpjTfeKDKexMTEcm0T8CXCDmqNxMREORwOpaene7WfPn1ae/fuVaNGjYos++abb/TVV18pKSmpQvuaMmWKVq5cedVjLktVhJ3iPPzww9q+fXuF1snLy9O0adMqHHYqs6/KKC3sbN++XQ8//HC1j6GyjDG65557FBgYqNWrV2v79u1KSEgodZ2QkBAtXrxYBQUFXu3nzp3TO++8o9DQ0Ksa09q1a7V9+3Zt3bpVr7zyio4fP67ExETt3r27XOv36NFD27dv1/bt27V48WI5HA6NHDlS8+fPv6pxAb4Q4OsBAIUiIiLUvn37Iv8Yb9q0SQEBARo9enSRsFP4vKJhp3Xr1lc1Vl9r3ry5mjdvXq37yMvLU3BwcI3sqyy33HKLT/dflmPHjun06dO688471atXr3KtM3z4cP3P//yPNmzYoOTkZE/78uXLlZ+fr6FDh2rp0qWVHlPnzp0VEREhSerevbtuvvlmtW7dWu+++265zoQ2adLEa9579+6t+Ph4zZo1S7/61a8qPa6aVPg7DHBmB7VKUlKSDhw4oOzsbE9bRkaGunbtqgEDBigzM1Nnz571Wubv769bb71V0g//w543b55uvPFGNWzYUE2bNtXdd9+tr776yms/xb2N9d1332n06NEKDw9X48aNNXDgQH311Vclvt3w7bff6r777lNYWJiioqL0i1/8Qjk5OZ7lDodD58+f15IlSzxvB5R1yv/YsWO65557FBISorCwMA0fPlzHjx8v0q+4t5Y2btyoxMRENWvWTA0bNlSLFi101113KS8vT4cOHdI111wjSZo2bZpnPKNGjfLa3u7du3X33XeradOmnkBY2ltmK1eu1E9/+lM1aNBA1157rV577TWv5YVnBA4dOuTVnpGRIYfD4Qm2iYmJWrNmjQ4fPuz19snlc3nlz2Dfvn2644471LRpUzVo0EA33nijlixZUux+3n77bT3zzDOKjY1VaGioevfurQMHDhRb05W2bt2qXr16KSQkRMHBwerevbvWrFnjWZ6SkuIJg7/97W/lcDjK9RZp27Zt1b17dy1cuNCrfeHChRo2bJjCwsLKNb7yKtxeYGBgpdZv0qSJ2rZtq8OHD5fab9q0aerWrZvCw8MVGhqqTp06acGCBbr8O6cLX2d5eXlF1r/99tvVrl07z/PyvqYL3+LbvHmzunfvruDgYP3iF7+QVPprA/UDYQe1SuEZmsvP7qSnpyshIUE9evSQw+HQli1bvJZ16tTJcyAfM2aMJkyYoN69e2vVqlWaN2+e9u/fr+7du+vbb78tcb8FBQUaPHiwUlNT9dvf/lYrV65Ut27d1K9fvxLXueuuu9SmTRv9f//f/6cnn3xSqampeuyxxzzLt2/froYNG2rAgAGetwPmzZtX4vYuXLig3r1768MPP9T06dP1zjvvKDo6WsOHDy9z3g4dOqSBAwcqKChICxcu1Nq1azVjxgw1atRIFy9eVExMjNauXSvph39oCsczZcoUr+0MGzZM1113nd555x29/vrrpe5zz549mjBhgh577DGtXLlS3bt3129+8xv98Y9/LHO8V5o3b5569Oih6Ohoz9hKe+vswIED6t69u/bv36/XXntNK1as0A033KBRo0Zp5syZRfo//fTTOnz4sP7nf/5Hf/nLX3Tw4EENHjxY+fn5pY5r06ZNuv3225WTk6MFCxbo7bffVkhIiAYPHuy5tuzhhx/WihUrJEnjx4/X9u3by/0W6ejRo7Vq1SqdOXPGU9e2bds0evTocq1fmvz8fF26dEkXL17UF198obFjx8rpdOruu++u1PbcbrcOHz7sCc0lOXTokMaMGaO//e1vWrFihYYNG6bx48fr97//vafPb37zG505c0apqale6/7rX/9Senq6xo4d62mryGs6Oztb999/v0aMGKEPPvhAjz76aJmvDdQTBqhFTp8+bfz8/MwjjzxijDHm5MmTxuFwmLVr1xpjjLn55pvN5MmTjTHGHDlyxEgyTzzxhDHGmO3btxtJ5uWXX/ba5tdff20aNmzo6WeMMSNHjjTx8fGe52vWrDGSzPz5873WnT59upFkpk6d6mmbOnWqkWRmzpzp1ffRRx81DRo0MAUFBZ62Ro0amZEjR5ar9vnz5xtJ5r333vNq/+Uvf2kkmUWLFhUZQ6F3333XSDJ79uwpcfv/+c9/itRy5faeffbZEpddLj4+3jgcjiL7S05ONqGhoeb8+fPGGGMWLVpkJJmsrCyvfunp6UaSSU9P97QNHDjQ62dyuSvHfe+99xqn02mOHDni1a9///4mODjYfPfdd177GTBggFe/v/3tb0aS2b59e7H7K3TLLbeYyMhIc/bsWU/bpUuXTPv27U3z5s09P+usrCwjybz00kulbu/KvmfPnjWNGzc2c+fONcYY8/jjj5tWrVqZgoICM3bs2CLznpCQYNq1a1fq9gt/Xlc+QkNDzYoVK8ocnzE//HwHDBhg3G63cbvdJisry4wcOdJIMo8//rjXeBISEkrcTn5+vnG73ea5554zzZo183ptJCQkmBtvvNGr/69+9SsTGhrqme+KvKYTEhKMJLNhwwavvuV5bcB+nNlBrdK0aVN17NjRc2Zn06ZN8vf3V48ePSRJCQkJnut0rrxe5/3335fD4dD999+vS5cueR7R0dFe2yzOpk2bJEn33HOPV/t9991X4jpDhgzxev7Tn/5U33//vU6cOFH+gi+Tnp6ukJCQItsdMWJEmeveeOONCgoK0iOPPKIlS5YUOcVfXnfddVe5+7Zr104dO3b0ahsxYoRyc3PLfRFsZW3cuFG9evVSXFycV/uoUaOUl5dX5KxQcT8rSaW+JXP+/Hn94x//0N13363GjRt72v39/fXAAw/om2++KfdbYSVp3Lixfvazn2nhwoW6dOmS3njjDT300EMVvtOuOOvXr9fOnTv18ccf6/3331fv3r117733lvus0wcffKDAwEAFBgaqVatW+tvf/qbx48fr+eefL3W9jRs3qnfv3goLC5O/v78CAwP17LPP6tSpU16vjd/85jfas2eP5w6x3Nxcvfnmmxo5cqRnviv6mm7atKluv/12r7aqem2gbiPsoNZJSkrS559/rmPHjik9PV2dO3f2HPwSEhL0ySefKCcnR+np6QoICFDPnj0l/XANjTFGUVFRnoN04WPHjh2l3ip+6tQpBQQEKDw83Ks9KiqqxHWaNWvm9dzpdEr64e2oyjh16lSx+4uOji5z3datW2v9+vWKjIzU2LFj1bp1a7Vu3VqvvvpqhcYQExNT7r7Fjauw7dSpUxXab0WdOnWq2LHGxsYWu//K/KzOnDkjY0yF9lMZo0eP1u7du/XCCy/oP//5j+c6qqvVsWNHdenSRV27dtXAgQP1zjvv6LrrrvN6i6g0PXv21M6dO7Vr1y7961//0nfffafXXntNQUFBJa7z8ccfq0+fPpKkv/71r/roo4+0c+dOPfPMM5K85/uOO+5Qy5Yt9ac//UnSD9d3nT9/3mt8FX1NF/ezqqrXBuo27sZCrZOUlKRZs2YpIyNDGRkZGjBggGdZYbDZvHmz58LlwiAUERHhuaan8B+zyxXXVqhZs2a6dOmSTp8+7RV4irs4uLo0a9ZMH3/8cZH28o7h1ltv1a233qr8/Hzt2rVLc+bM0YQJExQVFaV77723XNuoyBmF4sZV2FYYLho0aCBJcrlcXv3K8xlFpWnWrJnXReyFjh07Jkmeu5CuRtOmTeXn51ft++nRo4fatm2r5557TsnJyUXOVlUVPz8/tWvXTu+8845OnDihyMjIUvuHhYWpS5cuFdrHsmXLFBgYqPfff9/zs5dU7Mcv+Pn5aezYsXr66af18ssva968eerVq5fatm3r6VPR13RJv79V8dpA3caZHdQ6t912m/z9/fXuu+9q//79XncwhYWFee66OXTokNct54MGDZIxRkePHlWXLl2KPDp06FDiPgs/E+XKDzRctmzZVdXidDrLfaYnKSlJZ8+e1erVq73ar7yIsyz+/v7q1q2b53/MhW8pXe2Zpyvt379f//znP73aUlNTFRIS4rm1ufCupE8//dSr35U1Fo6vvGPr1auXNm7c6Akdhd544w0FBwdXya3qjRo1Urdu3bRixQqvcRUUFGjp0qVq3ry52rRpc9X7kaTf/e53Gjx4sCZNmlQl2ytOfn6+9u7dK6fTedWf4VMSh8OhgIAA+fv7e9ouXLigN998s9j+Dz/8sIKCgvTzn/9cBw4c0Lhx47yWX81rujglvTZgP87soNYpvF111apV8vPz81yvUyghIcHz4XOXh50ePXrokUce0UMPPaRdu3bptttuU6NGjZSdna2tW7eqQ4cOJX4+SL9+/dSjRw9NmjRJubm56ty5s7Zv3+75xFg/v8r9v6BDhw7KyMjQ3//+d8XExCgkJMTrf66Xe/DBB/XKK6/owQcf1AsvvKDrr79eH3zwQbGfGn2l119/XRs3btTAgQPVokULff/9955bmnv37i3phw+xi4+P13vvvadevXopPDxcERERlf4k6djYWA0ZMkQpKSmKiYnR0qVLlZaWpj/84Q+ezzbp2rWr2rZtq8mTJ+vSpUtq2rSpVq5cqa1btxY7VytWrND8+fPVuXNn+fn5lXhmYerUqXr//feVlJSkZ599VuHh4Xrrrbe0Zs0azZw5s8pu254+fbqSk5OVlJSkyZMnKygoSPPmzdO+ffv09ttvV8m1NZJ0//336/777y9X39zcXL377rtF2q+55hqvDzLMzMz0zMO3336rhQsX6t///rcee+wxr7MuVWngwIGaNWuWRowYoUceeUSnTp3SH//4xxLPqjZp0kQPPvig5s+fr/j4eA0ePNhr+dW8pguV57WBesCnl0cDJXjiiSeMJNOlS5ciy1atWmUkmaCgIM9dP5dbuHCh6datm2nUqJFp2LChad26tXnwwQfNrl27PH2uvBvLmB/uBHvooYdMkyZNTHBwsElOTjY7duwwksyrr77q6Vd4t8t//vMfr/WLu/Noz549pkePHiY4ONhIKvXOFWOM+eabb8xdd91lGjdubEJCQsxdd91ltm3bVubdWNu3bzd33nmniY+PN06n0zRr1swkJCSY1atXe21//fr15qabbjJOp9NI8twpVlJNxe3LmB/u1hk4cKB59913Tbt27UxQUJBp2bKlmTVrVpH1P//8c9OnTx8TGhpqrrnmGjN+/HjP3W+X3411+vRpc/fdd5smTZoYh8PhtU8VcxfZ3r17zeDBg01YWJgJCgoyHTt29JojY/7vbqx33nnHq73wjqgr+xdny5Yt5vbbb/f8Pt1yyy3m73//e7Hbq+jdWKUp6W4sFXOn1eW/W8XdjRUeHm66detmFi5caPLz88scY+HPtyzF3Y21cOFC07ZtW+N0Os21115rpk+fbhYsWFDsXXnGGJORkWEkmRkzZpS4n/K8pku6U628rw3YzWHMZZ/0BMBLamqqfv7zn+ujjz5S9+7dfT0cwDqTJk3S/Pnz9fXXXxe5kByoKryNBfw/b7/9to4ePaoOHTrIz89PO3bs0EsvvaTbbruNoANUsR07dujzzz/XvHnzNGbMGIIOqhVndoD/5/3331dKSoq++OILnT9/XjExMRo6dKief/75arugE6ivHA6HgoODNWDAAC1atMjrs4yAqkbYAQAAVuPWcwAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqwX4egC1QUFBgY4dO6aQkBA5HA5fDwcAAJSDMUZnz55VbGys/PxKPn9D2JF07NgxxcXF+XoYAACgEr7++ms1b968xOWEHUkhISGSfpis0NBQH4+marndbn344Yfq06ePAgMDfT2cGkf99bt+iTmo7/VLzIHN9efm5iouLs7z73hJCDuS562r0NBQK8NOcHCwQkNDrfslLw/qr9/1S8xBfa9fYg7qQ/1lXYLCBcoAAMBqhB0AAGA1n4ad6dOnq2vXrgoJCVFkZKSGDh2qAwcOePUxxiglJUWxsbFq2LChEhMTtX//fq8+LpdL48ePV0REhBo1aqQhQ4bom2++qclSAABALeXTsLNp0yaNHTtWO3bsUFpami5duqQ+ffro/Pnznj4zZ87UrFmzNHfuXO3cuVPR0dFKTk7W2bNnPX0mTJiglStXatmyZdq6davOnTunQYMGKT8/3xdlAQCAWsSnFyivXbvW6/miRYsUGRmpzMxM3XbbbTLGaPbs2XrmmWc0bNgwSdKSJUsUFRWl1NRUjRkzRjk5OVqwYIHefPNN9e7dW5K0dOlSxcXFaf369erbt2+N1wUAAGqPWnU3Vk5OjiQpPDxckpSVlaXjx4+rT58+nj5Op1MJCQnatm2bxowZo8zMTLndbq8+sbGxat++vbZt21Zs2HG5XHK5XJ7nubm5kn64Yt3tdldLbb5SWI9tdZUX9dfv+iXmoL7XLzEHNtdf3ppqTdgxxmjixInq2bOn2rdvL0k6fvy4JCkqKsqrb1RUlA4fPuzpExQUpKZNmxbpU7j+laZPn65p06YVaf/www8VHBx81bXURmlpab4egk9Rf/2uX2IO6nv9EnNgY/15eXnl6ldrws64ceP06aefauvWrUWWXXn/vDGmzHvqS+vz1FNPaeLEiZ7nhR9K1KdPHys/ZyctLU3JycnWfr5Caai/ftcvMQf1vX6JObC5/sJ3ZspSK8LO+PHjtXr1am3evNnr456jo6Ml/XD2JiYmxtN+4sQJz9me6OhoXbx4UWfOnPE6u3PixAl179692P05nU45nc4i7YGBgdb9IhSyubbyoP76Xb/EHNT3+iXmwMb6y1uPT+/GMsZo3LhxWrFihTZu3KhWrVp5LW/VqpWio6O9Tr1dvHhRmzZt8gSZzp07KzAw0KtPdna29u3bV2LYAQAA9YdPz+yMHTtWqampeu+99xQSEuK5xiYsLEwNGzaUw+HQhAkT9OKLL+r666/X9ddfrxdffFHBwcEaMWKEp+/o0aM1adIkNWvWTOHh4Zo8ebI6dOjguTsLAADUXz4NO/Pnz5ckJSYmerUvWrRIo0aNkiQ98cQTunDhgh599FGdOXNG3bp104cffuj1pV+vvPKKAgICdM899+jChQvq1auXFi9eLH9//5oqBQAA1FI+DTvGmDL7OBwOpaSkKCUlpcQ+DRo00Jw5czRnzpwqHB0AALAB340FAACsRtgBAABWqxW3ngOouJZPrimzj9PfaObNUvuUdXLll/7ZVOV1aMbAKtkOANQUzuwAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKwW4Mudb968WS+99JIyMzOVnZ2tlStXaujQoZ7lDoej2PVmzpypxx9/XJKUmJioTZs2eS0fPny4li1bVm3jBi7X8sk1vh4CAKAUPj2zc/78eXXs2FFz584tdnl2drbXY+HChXI4HLrrrru8+v3yl7/06vfnP/+5JoYPAADqAJ+e2enfv7/69+9f4vLo6Giv5++9956SkpJ07bXXerUHBwcX6QsAACD5OOxUxLfffqs1a9ZoyZIlRZa99dZbWrp0qaKiotS/f39NnTpVISEhJW7L5XLJ5XJ5nufm5kqS3G633G531Q/ehwrrsa2u8qqJ+p3+ptq2fbWcfsbrz6pQ136XeA3U7/ol5sDm+stbk8MYUyuO1A6Ho8g1O5ebOXOmZsyYoWPHjqlBgwae9r/+9a9q1aqVoqOjtW/fPj311FO67rrrlJaWVuK+UlJSNG3atCLtqampCg4OvupaAABA9cvLy9OIESOUk5Oj0NDQEvvVmbDz4x//WMnJyZozZ06p28nMzFSXLl2UmZmpTp06FdunuDM7cXFxOnnyZKmTVRe53W6lpaUpOTlZgYGBvh5OjauJ+tunrKuW7VYFp5/R77sUaMouP7kKir/gv6L2pfStku3UFF4D9bt+iTmwuf7c3FxFRESUGXbqxNtYW7Zs0YEDB7R8+fIy+3bq1EmBgYE6ePBgiWHH6XTK6XQWaQ8MDLTuF6GQzbWVR3XW78qvmhBRnVwFjiobZ139PeI1UL/rl5gDG+svbz114nN2FixYoM6dO6tjx45l9t2/f7/cbrdiYmJqYGQAAKC28+mZnXPnzumLL77wPM/KytKePXsUHh6uFi1aSPrhFNU777yjl19+ucj6X375pd566y0NGDBAERER+te//qVJkybppptuUo8ePWqsDgAAUHv5NOzs2rVLSUlJnucTJ06UJI0cOVKLFy+WJC1btkzGGN13331F1g8KCtKGDRv06quv6ty5c4qLi9PAgQM1depU+fv710gNAACgdvNp2ElMTFRZ10c/8sgjeuSRR4pdFhcXV+TTkwEAAC5XJ67ZAQAAqCzCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwWoAvd75582a99NJLyszMVHZ2tlauXKmhQ4d6lo8aNUpLlizxWqdbt27asWOH57nL5dLkyZP19ttv68KFC+rVq5fmzZun5s2b11QZQL3S8sk1PtnvoRkDfbJfAHWfT8/snD9/Xh07dtTcuXNL7NOvXz9lZ2d7Hh988IHX8gkTJmjlypVatmyZtm7dqnPnzmnQoEHKz8+v7uEDAIA6wKdndvr376/+/fuX2sfpdCo6OrrYZTk5OVqwYIHefPNN9e7dW5K0dOlSxcXFaf369erbt2+VjxkAANQtPg075ZGRkaHIyEg1adJECQkJeuGFFxQZGSlJyszMlNvtVp8+fTz9Y2Nj1b59e23btq3EsONyueRyuTzPc3NzJUlut1tut7saq6l5hfXYVld51UT9Tn9Tbdu+Wk4/4/VnXVbZnyGvgfpdv8Qc2Fx/eWtyGGNqxVHQ4XAUuWZn+fLlaty4seLj45WVlaUpU6bo0qVLyszMlNPpVGpqqh566CGv4CJJffr0UatWrfTnP/+52H2lpKRo2rRpRdpTU1MVHBxcpXUBAIDqkZeXpxEjRignJ0ehoaEl9qvVZ3aGDx/u+Xv79u3VpUsXxcfHa82aNRo2bFiJ6xlj5HA4Slz+1FNPaeLEiZ7nubm5iouLU58+fUqdrLrI7XYrLS1NycnJCgwM9PVwalxN1N8+ZV21bLcqOP2Mft+lQFN2+clVUPJroi7Yl1K5t6V5DdTv+iXmwOb6C9+ZKUutDjtXiomJUXx8vA4ePChJio6O1sWLF3XmzBk1bdrU0+/EiRPq3r17idtxOp1yOp1F2gMDA637RShkc22FirtLyOlvNPNm6aYXNsqVX13/2Nf+EOEqcFRj/TXjan9/68NroDT1vX6JObCx/vLWU6c+Z+fUqVP6+uuvFRMTI0nq3LmzAgMDlZaW5umTnZ2tffv2lRp2AABA/eHTMzvnzp3TF1984XmelZWlPXv2KDw8XOHh4UpJSdFdd92lmJgYHTp0SE8//bQiIiJ05513SpLCwsI0evRoTZo0Sc2aNVN4eLgmT56sDh06eO7OAgAA9ZtPw86uXbuUlJTkeV54Hc3IkSM1f/587d27V2+88Ya+++47xcTEKCkpScuXL1dISIhnnVdeeUUBAQG65557PB8quHjxYvn7+9d4PQAAoPbxadhJTExUaTeDrVtX9oWfDRo00Jw5czRnzpyqHBoAALBEnbpmBwAAoKIIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaj4NO5s3b9bgwYMVGxsrh8OhVatWeZa53W799re/VYcOHdSoUSPFxsbqwQcf1LFjx7y2kZiYKIfD4fW49957a7gSAABQW/k07Jw/f14dO3bU3LlziyzLy8vT7t27NWXKFO3evVsrVqzQ559/riFDhhTp+8tf/lLZ2dmex5///OeaGD4AAKgDAny58/79+6t///7FLgsLC1NaWppX25w5c3TzzTfryJEjatGihac9ODhY0dHR1TpWAABQN/k07FRUTk6OHA6HmjRp4tX+1ltvaenSpYqKilL//v01depUhYSElLgdl8sll8vleZ6bmyvph7fO3G53tYzdVwrrsa2u4jj9TdE2P+P1Z31jU/2V/R2uT6+B4tT3+iXmwOb6y1uTwxhTK46CDodDK1eu1NChQ4td/v3336tnz5768Y9/rKVLl3ra//rXv6pVq1aKjo7Wvn379NRTT+m6664rclbocikpKZo2bVqR9tTUVAUHB191LQAAoPrl5eVpxIgRysnJUWhoaIn96kTYcbvd+tnPfqYjR44oIyOj1IIyMzPVpUsXZWZmqlOnTsX2Ke7MTlxcnE6ePFnqtusit9uttLQ0JScnKzAw0NfDqVbtU9YVaXP6Gf2+S4Gm7PKTq8Dhg1H5lk3170vpW6n16tNroDj1vX6JObC5/tzcXEVERJQZdmr921hut1v33HOPsrKytHHjxjLDSKdOnRQYGKiDBw+WGHacTqecTmeR9sDAQOt+EQrZXFshV37J/5i7ChylLredDfVf7e9vfXgNlKa+1y8xBzbWX956anXYKQw6Bw8eVHp6upo1a1bmOvv375fb7VZMTEwNjBAAANR2Pg07586d0xdffOF5npWVpT179ig8PFyxsbG6++67tXv3br3//vvKz8/X8ePHJUnh4eEKCgrSl19+qbfeeksDBgxQRESE/vWvf2nSpEm66aab1KNHD1+VBQAAahGfhp1du3YpKSnJ83zixImSpJEjRyolJUWrV6+WJN14441e66WnpysxMVFBQUHasGGDXn31VZ07d05xcXEaOHCgpk6dKn9//xqrAwAA1F4+DTuJiYkq7frosq6djouL06ZNm6p6WAAAwCJ8NxYAALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgtUqFnWuvvVanTp0q0v7dd9/p2muvvepBAQAAVJVKhZ1Dhw4pPz+/SLvL5dLRo0evelAAAABVJaAinVevXu35+7p16xQWFuZ5np+frw0bNqhly5ZVNjgAAICrVaGwM3ToUEmSw+HQyJEjvZYFBgaqZcuWevnll6tscAAAAFerQmGnoKBAktSqVSvt3LlTERER1TIoAACAqlKhsFMoKyurqscBAABQLSoVdiRpw4YN2rBhg06cOOE541No4cKFVz0wAACAqlCpsDNt2jQ999xz6tKli2JiYuRwOKp6XAAAAFWiUmHn9ddf1+LFi/XAAw9U9XgAAACqVKU+Z+fixYvq3r17VY8FAACgylUq7Dz88MNKTU2t6rEAAABUuUq9jfX999/rL3/5i9avX6+f/vSnCgwM9Fo+a9asKhkcAADA1apU2Pn000914403SpL27dvntYyLlQEAQG1SqbCTnp5e1eMAAACoFpW6ZgcAAKCuqNSZnaSkpFLfrtq4cWOlBwQAAFCVKhV2Cq/XKeR2u7Vnzx7t27evyBeEAgAA+FKlws4rr7xSbHtKSorOnTt3VQMCAACoSlV6zc7999/P92IBAIBapUrDzvbt29WgQYNy99+8ebMGDx6s2NhYORwOrVq1ymu5MUYpKSmKjY1Vw4YNlZiYqP3793v1cblcGj9+vCIiItSoUSMNGTJE33zzTVWUAwAALFCpt7GGDRvm9dwYo+zsbO3atUtTpkwp93bOnz+vjh076qGHHtJdd91VZPnMmTM1a9YsLV68WG3atNHzzz+v5ORkHThwQCEhIZKkCRMm6O9//7uWLVumZs2aadKkSRo0aJAyMzPl7+9fmfIA1EItn1xTqfWc/kYzb5bap6yTK7/inwN2aMbASu0XQO1RqbATFhbm9dzPz09t27bVc889pz59+pR7O/3791f//v2LXWaM0ezZs/XMM894wtWSJUsUFRWl1NRUjRkzRjk5OVqwYIHefPNN9e7dW5K0dOlSxcXFaf369erbt2+x23a5XHK5XJ7nubm5kn640Nrtdpd7/HVBYT221VUcp78p2uZnvP6sb+p7/dLVz0Fdf+3Up2NASer7HNhcf3lrchhjasVR0OFwaOXKlRo6dKgk6auvvlLr1q21e/du3XTTTZ5+d9xxh5o0aaIlS5Zo48aN6tWrl06fPq2mTZt6+nTs2FFDhw7VtGnTit1XSkpKsctSU1MVHBxctYUBAIBqkZeXpxEjRignJ0ehoaEl9qvUmZ1CmZmZ+uyzz+RwOHTDDTd4hZKrdfz4cUlSVFSUV3tUVJQOHz7s6RMUFOQVdAr7FK5fnKeeekoTJ070PM/NzVVcXJz69OlT6mTVRW63W2lpaUpOTi7yHWa2aZ+yrkib08/o910KNGWXn1wF9e+rTOp7/dLVz8G+lOLPENcV9ekYUJL6Pgc211/4zkxZKhV2Tpw4oXvvvVcZGRlq0qSJjDHKyclRUlKSli1bpmuuuaYymy3WlR9eaIwp8/u3yurjdDrldDqLtAcGBlr3i1DI5toKlXY9hqvAUanrNWxR3+uXKj8Htrxu6sMxoCz1fQ5srL+89VTqbqzx48crNzdX+/fv1+nTp3XmzBnt27dPubm5+vWvf12ZTRYRHR0tSUXO0Jw4ccJztic6OloXL17UmTNnSuwDAADqt0qFnbVr12r+/Pn6yU9+4mm74YYb9Kc//Un/+7//WyUDa9WqlaKjo5WWluZpu3jxojZt2qTu3btLkjp37qzAwECvPtnZ2dq3b5+nDwAAqN8q9TZWQUFBsaeOAgMDVVBQUO7tnDt3Tl988YXneVZWlvbs2aPw8HC1aNFCEyZM0Isvvqjrr79e119/vV588UUFBwdrxIgRkn64K2z06NGaNGmSmjVrpvDwcE2ePFkdOnTw3J0FAADqt0qFndtvv12/+c1v9Pbbbys2NlaSdPToUT322GPq1atXubeza9cuJSUleZ4XXjQ8cuRILV68WE888YQuXLigRx99VGfOnFG3bt304Ycfej5jR/rhqysCAgJ0zz336MKFC+rVq5cWL17MZ+wAAABJlQw7c+fO1R133KGWLVsqLi5ODodDR44cUYcOHbR06dJybycxMVGl3fnucDiUkpKilJSUEvs0aNBAc+bM0Zw5cypSAgAAqCcqFXbi4uK0e/dupaWl6d///reMMbrhhht46wgAANQ6FbpAeePGjbrhhhs897UnJydr/Pjx+vWvf62uXbuqXbt22rJlS7UMFAAAoDIqFHZmz56tX/7yl8V+8F5YWJjGjBmjWbNmVdngAAAArlaFws4///lP9evXr8Tlffr0UWZm5lUPCgAAoKpUKOx8++23pX5aYUBAgP7zn/9c9aAAAACqSoXCzo9+9CPt3bu3xOWffvqpYmJirnpQAAAAVaVCYWfAgAF69tln9f333xdZduHCBU2dOlWDBg2qssEBAABcrQrdev673/1OK1asUJs2bTRu3Di1bdtWDodDn332mf70pz8pPz9fzzzzTHWNFQAAoMIqFHaioqK0bds2/epXv9JTTz3l+UBAh8Ohvn37at68eXwBJwAAqFUq/KGC8fHx+uCDD3TmzBl98cUXMsbo+uuvV9OmTatjfAAAAFelUp+gLElNmzZV165dq3IsAAAAVa5CFygDAADUNYQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAq9X6sNOyZUs5HI4ij7Fjx0qSRo0aVWTZLbfc4uNRAwCA2iLA1wMoy86dO5Wfn+95vm/fPiUnJ+tnP/uZp61fv35atGiR53lQUFCNjhEAANRetT7sXHPNNV7PZ8yYodatWyshIcHT5nQ6FR0dXe5tulwuuVwuz/Pc3FxJktvtltvtvsoR1y6F9dhWV3Gc/qZom5/x+rO+qe/1S1c/B3X9tVOfjgElqe9zYHP95a3JYYypM0fBixcvKjY2VhMnTtTTTz8t6Ye3sVatWqWgoCA1adJECQkJeuGFFxQZGVnidlJSUjRt2rQi7ampqQoODq628QMAgKqTl5enESNGKCcnR6GhoSX2q1Nh529/+5tGjBihI0eOKDY2VpK0fPlyNW7cWPHx8crKytKUKVN06dIlZWZmyul0Frud4s7sxMXF6eTJk6VOVl3kdruVlpam5ORkBQYG+no41ap9yroibU4/o993KdCUXX5yFTh8MCrfqu/1S1c/B/tS+lbDqGpOfToGlKS+z4HN9efm5ioiIqLMsFPr38a63IIFC9S/f39P0JGk4cOHe/7evn17denSRfHx8VqzZo2GDRtW7HacTmexQSgwMNC6X4RCNtdWyJVf8j9krgJHqcttV9/rlyo/B9dP+bAaRlO2QzMGVun26sMxoCz1fQ5srL+89dSZsHP48GGtX79eK1asKLVfTEyM4uPjdfDgwRoaGQAAqM3qTNhZtGiRIiMjNXBg6f/bOXXqlL7++mvFxMTU0MhwpZZPrvH1EAAA8Kj1n7MjSQUFBVq0aJFGjhypgID/y2fnzp3T5MmTtX37dh06dEgZGRkaPHiwIiIidOedd/pwxAAAoLaoE2d21q9fryNHjugXv/iFV7u/v7/27t2rN954Q999951iYmKUlJSk5cuXKyQkxEejBQAAtUmdCDt9+vRRcTeNNWzYUOvWFb0DBwAAoFCdeBsLAACgsgg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqtTrspKSkyOFweD2io6M9y40xSklJUWxsrBo2bKjExETt37/fhyMGAAC1Ta0OO5LUrl07ZWdnex579+71LJs5c6ZmzZqluXPnaufOnYqOjlZycrLOnj3rwxEDAIDaJMDXAyhLQECA19mcQsYYzZ49W88884yGDRsmSVqyZImioqKUmpqqMWPGlLhNl8sll8vleZ6bmytJcrvdcrvdVVyBbxXWU5N1Of1Nje2rLE4/4/VnfVPf65fq7hxU1WvWF8eA2qa+z4HN9Ze3JocxptYeAVJSUvTSSy8pLCxMTqdT3bp104svvqhrr71WX331lVq3bq3du3frpptu8qxzxx13qEmTJlqyZEmp2502bVqR9tTUVAUHB1dLLQAAoGrl5eVpxIgRysnJUWhoaIn9anXY+d///V/l5eWpTZs2+vbbb/X888/r3//+t/bv368DBw6oR48eOnr0qGJjYz3rPPLIIzp8+LDWrVtX4naLO7MTFxenkydPljpZdZHb7VZaWpqSk5MVGBhYI/tsn1Ly3Nc0p5/R77sUaMouP7kKHL4eTo2r7/VLdXcO9qX0rZLt+OIYUNvU9zmwuf7c3FxFRESUGXZq9dtY/fv39/y9Q4cO+q//+i+1bt1aS5Ys0S233CJJcji8D17GmCJtV3I6nXI6nUXaAwMDrftFKFSTtbnya98/KK4CR60cV02p7/VLdW8Oqvr1avPxrbzq+xzYWH9566n1FyhfrlGjRurQoYMOHjzouY7n+PHjXn1OnDihqKgoXwwPAADUQnUq7LhcLn322WeKiYlRq1atFB0drbS0NM/yixcvatOmTerevbsPRwkAAGqTWv021uTJkzV48GC1aNFCJ06c0PPPP6/c3FyNHDlSDodDEyZM0Isvvqjrr79e119/vV588UUFBwdrxIgRvh46AACoJWp12Pnmm29033336eTJk7rmmmt0yy23aMeOHYqPj5ckPfHEE7pw4YIeffRRnTlzRt26ddOHH36okJAQH48cAADUFrU67CxbtqzU5Q6HQykpKUpJSamZAQEAgDqnTl2zAwAAUFGEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwWq3+biwAqK9aPrmmSrbj9DeaebPUPmWdXPmOMvsfmjGwSvYL1Cac2QEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWC/D1AFB9Wj65Rk5/o5k3S+1T1smV7/D1kAAAqHGc2QEAAFYj7AAAAKsRdgAAgNUIOwAAwGq1OuxMnz5dXbt2VUhIiCIjIzV06FAdOHDAq8+oUaPkcDi8HrfccouPRgwAAGqbWh12Nm3apLFjx2rHjh1KS0vTpUuX1KdPH50/f96rX79+/ZSdne15fPDBBz4aMQAAqG1q9a3na9eu9Xq+aNEiRUZGKjMzU7fddpun3el0Kjo6uqaHBwAA6oBaHXaulJOTI0kKDw/3as/IyFBkZKSaNGmihIQEvfDCC4qMjCxxOy6XSy6Xy/M8NzdXkuR2u+V2u6th5L7h9Ddy+pkf/v7//qxvqL9+1y8xBxWt36ZjYKHCmmysrTxsrr+8NTmMMXXiCGCM0R133KEzZ85oy5Ytnvbly5ercePGio+PV1ZWlqZMmaJLly4pMzNTTqez2G2lpKRo2rRpRdpTU1MVHBxcbTUAAICqk5eXpxEjRignJ0ehoaEl9qszYWfs2LFas2aNtm7dqubNm5fYLzs7W/Hx8Vq2bJmGDRtWbJ/izuzExcXp5MmTpU5WXdM+ZZ2cfka/71KgKbv85Cqof5+gTP31u36JOaho/ftS+tbAqGqW2+1WWlqakpOTFRgY6Ovh1Dib68/NzVVERESZYadOvI01fvx4rV69Wps3by416EhSTEyM4uPjdfDgwRL7OJ3OYs/6BAYGWvWLcPnXQ7gKHPX66yKov37XLzEH5a3fpmPglWw7xleUjfWXt55aHXaMMRo/frxWrlypjIwMtWrVqsx1Tp06pa+//loxMTE1MEIAsEvLJ9f4ZL+HZgz0yX5RP9TqW8/Hjh2rpUuXKjU1VSEhITp+/LiOHz+uCxcuSJLOnTunyZMna/v27Tp06JAyMjI0ePBgRURE6M477/Tx6AEAQG1Qq8/szJ8/X5KUmJjo1b5o0SKNGjVK/v7+2rt3r9544w199913iomJUVJSkpYvX66QkBAfjBgAANQ2tTrslHXtdMOGDbVu3boaGg0AAKiLavXbWAAAAFeLsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGC1AF8PwHYtn1zj6yEAAFCvcWYHAABYjTM7AACfq86z4E5/o5k3S+1T1smV7/BadmjGwGrbL2oPzuwAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFaz5kMF582bp5deeknZ2dlq166dZs+erVtvvdXXwwIAoIia/Cqhyz9U8cALg2psv7WJFWd2li9frgkTJuiZZ57RJ598oltvvVX9+/fXkSNHfD00AADgY1ac2Zk1a5ZGjx6thx9+WJI0e/ZsrVu3TvPnz9f06dN9PDoAQG1V376s2Vf1+vprOep82Ll48aIyMzP15JNPerX36dNH27ZtK3Ydl8sll8vleZ6TkyNJOn36tNxud5WOL+DS+SrdXoX3X2CUl1egALef8gscZa9gGeqv3/VLzEF9r19iDmpD/adOnaqW7Z49e1aSZIwpvaOp444ePWokmY8++sir/YUXXjBt2rQpdp2pU6caSTx48ODBgwcPCx5ff/11qVmhzp/ZKeRweKdVY0yRtkJPPfWUJk6c6HleUFCg06dPq1mzZiWuU1fl5uYqLi5OX3/9tUJDQ309nBpH/fW7fok5qO/1S8yBzfUbY3T27FnFxsaW2q/Oh52IiAj5+/vr+PHjXu0nTpxQVFRUses4nU45nU6vtiZNmlTXEGuF0NBQ637JK4L663f9EnNQ3+uXmANb6w8LCyuzT52/GysoKEidO3dWWlqaV3taWpq6d+/uo1EBAIDaos6f2ZGkiRMn6oEHHlCXLl30X//1X/rLX/6iI0eO6L//+799PTQAAOBjVoSd4cOH69SpU3ruueeUnZ2t9u3b64MPPlB8fLyvh+ZzTqdTU6dOLfK2XX1B/fW7fok5qO/1S8xBfa9fkhzGlHW/FgAAQN1V56/ZAQAAKA1hBwAAWI2wAwAArEbYAQAAViPs1EGbN2/W4MGDFRsbK4fDoVWrVhXp89lnn2nIkCEKCwtTSEiIbrnlFq9vgXe5XBo/frwiIiLUqFEjDRkyRN98800NVlF5ZdV/7tw5jRs3Ts2bN1fDhg31k5/8RPPnz/fqU5frnz59urp27aqQkBBFRkZq6NChOnDggFcfY4xSUlIUGxurhg0bKjExUfv37/fqY/McuN1u/fa3v1WHDh3UqFEjxcbG6sEHH9SxY8e8tlNX56A8vwOXGzNmjBwOh2bPnu3Vbnv9Nh8HyzMHth8LK4KwUwedP39eHTt21Ny5c4td/uWXX6pnz5768Y9/rIyMDP3zn//UlClT1KBBA0+fCRMmaOXKlVq2bJm2bt2qc+fOadCgQcrPz6+pMiqtrPofe+wxrV27VkuXLtVnn32mxx57TOPHj9d7773n6VOX69+0aZPGjh2rHTt2KC0tTZcuXVKfPn10/vz/fenszJkzNWvWLM2dO1c7d+5UdHS0kpOTPV+aJ9k9B3l5edq9e7emTJmi3bt3a8WKFfr88881ZMgQr+3U1Tkoz+9AoVWrVukf//hHsR+nb3P9th8HyzMHth8LK6QqvowTviPJrFy50qtt+PDh5v777y9xne+++84EBgaaZcuWedqOHj1q/Pz8zNq1a6trqNWiuPrbtWtnnnvuOa+2Tp06md/97nfGGLvqN8aYEydOGElm06ZNxhhjCgoKTHR0tJkxY4anz/fff2/CwsLM66+/boyxfw6K8/HHHxtJ5vDhw8YYu+agpPq/+eYb86Mf/cjs27fPxMfHm1deecWzzPb669Nx0Jji56C+HQtLw5kdyxQUFGjNmjVq06aN+vbtq8jISHXr1s3rrZ7MzEy53W716dPH0xYbG6v27dtr27ZtPhh11erZs6dWr16to0ePyhij9PR0ff755+rbt68k++rPycmRJIWHh0uSsrKydPz4ca/6nE6nEhISPPXZPgcl9XE4HJ7vwbNpDoqrv6CgQA888IAef/xxtWvXrsg6NtdfH4+Dxf0O1LdjYWkIO5Y5ceKEzp07pxkzZqhfv3768MMPdeedd2rYsGHatGmTJOn48eMKCgpS06ZNvdaNiooq8oWqddFrr72mG264Qc2bN1dQUJD69eunefPmqWfPnpLsqt8Yo4kTJ6pnz55q3769JHlquPKLcC+vz/Y5uNL333+vJ598UiNGjPB8EaItc1BS/X/4wx8UEBCgX//618WuZ3P99e04WNLvQH06FpbFiq+LwP8pKCiQJN1xxx167LHHJEk33nijtm3bptdff10JCQklrmuMkcPhqJFxVqfXXntNO3bs0OrVqxUfH6/Nmzfr0UcfVUxMjHr37l3ienWx/nHjxunTTz/V1q1biyy7spby1GfbHEg/XKx87733qqCgQPPmzStze3VtDoqrPzMzU6+++qp2795d4VpsqL++HQdLeg3Up2NhWTizY5mIiAgFBATohhtu8Gr/yU9+4rkLITo6WhcvXtSZM2e8+pw4caLI2YC65sKFC3r66ac1a9YsDR48WD/96U81btw4DR8+XH/84x8l2VP/+PHjtXr1aqWnp6t58+ae9ujoaEkq8j+zy+uzfQ4Kud1u3XPPPcrKylJaWprnrI5kxxyUVP+WLVt04sQJtWjRQgEBAQoICNDhw4c1adIktWzZUpLd9den42BJc1CfjoXlQdixTFBQkLp27VrkFsTPP//c88WonTt3VmBgoNLS0jzLs7OztW/fPnXv3r1Gx1vV3G633G63/Py8f7X9/f09/9ur6/UbYzRu3DitWLFCGzduVKtWrbyWt2rVStHR0V71Xbx4UZs2bfLUZ/scSP8XdA4ePKj169erWbNmXsvr8hyUVf8DDzygTz/9VHv27PE8YmNj9fjjj2vdunWS7K6/PhwHy5qD+nAsrJCavR4aVeHs2bPmk08+MZ988omRZGbNmmU++eQTz10mK1asMIGBgeYvf/mLOXjwoJkzZ47x9/c3W7Zs8Wzjv//7v03z5s3N+vXrze7du83tt99uOnbsaC5duuSrssqtrPoTEhJMu3btTHp6uvnqq6/MokWLTIMGDcy8efM826jL9f/qV78yYWFhJiMjw2RnZ3seeXl5nj4zZswwYWFhZsWKFWbv3r3mvvvuMzExMSY3N9fTx+Y5cLvdZsiQIaZ58+Zmz549Xn1cLpdnO3V1DsrzO3ClK+/GMsbu+m0/DpZnDmw/FlYEYacOSk9PN5KKPEaOHOnps2DBAnPdddeZBg0amI4dO5pVq1Z5bePChQtm3LhxJjw83DRs2NAMGjTIHDlypIYrqZyy6s/OzjajRo0ysbGxpkGDBqZt27bm5ZdfNgUFBZ5t1OX6i6tdklm0aJGnT0FBgZk6daqJjo42TqfT3HbbbWbv3r1e27F5DrKyskrsk56e7tlOXZ2D8vwOXKm4sGN7/TYfB8szB7YfCyvCYYwxVX++CAAAoHbgmh0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQBWWrx4sZo0aVKhdUaNGqWhQ4dWy3gA+A5hB4DPvf766woJCdGlS5c8befOnVNgYKBuvfVWr75btmyRw+HQ559/Xuo2hw8fXmafymjZsqVmz55d5dsFUH0IOwB8LikpSefOndOuXbs8bVu2bFF0dLR27typvLw8T3tGRoZiY2PVpk2bUrfZsGFDRUZGVtuYAdQdhB0APte2bVvFxsYqIyPD05aRkaE77rhDrVu31rZt27zak5KSdPHiRT3xxBP60Y9+pEaNGqlbt25e6xf3Ntbzzz+vyMhIhYSE6OGHH9aTTz6pG2+8sch4/vjHPyomJkbNmjXT2LFj5Xa7JUmJiYk6fPiwHnvsMTkcDjkcjqqcBgDVhLADoFZITExUenq653l6eroSExOVkJDgab948aK2b9+upKQkPfTQQ/roo4+0bNkyffrpp/rZz36mfv366eDBg8Vu/6233tILL7ygP/zhD8rMzFSLFi00f/78Iv3S09P15ZdfKj09XUuWLNHixYu1ePFiSdKKFSvUvHlzPffcc8rOzlZ2dnbVTwSAKkfYAVArJCYm6qOPPtKlS5d09uxZffLJJ7rtttuUkJDgOWOzY8cOXbhwQYmJiXr77bf1zjvv6NZbb1Xr1q01efJk9ezZU4sWLSp2+3PmzNHo0aP10EMPqU2bNnr22WfVoUOHIv2aNm2quXPn6sc//rEGDRqkgQMHasOGDZKk8PBw+fv7KyQkRNHR0YqOjq62+QBQdQg7AGqFpKQknT9/Xjt37tSWLVvUpk0bRUZGKiEhQTt37tT58+eVkZGhFi1aaPfu3TLGqE2bNmrcuLHnsWnTJn355ZfFbv/AgQO6+eabvdqufC5J7dq1k7+/v+d5TEyMTpw4UbXFAqhRAb4eAABI0nXXXafmzZsrPT1dZ86cUUJCgiQpOjparVq10kcffaT09HTdfvvtKigokL+/vzIzM72CiSQ1bty4xH1ceY2NMaZIn8DAwCLrFBQUVLYsALUAZ3YA1BpJSUnKyMhQRkaGEhMTPe0JCQlat26dduzYoaSkJN10003Kz8/XiRMndN1113k9SnprqW3btvr444+92i6/+6u8goKClJ+fX+H1APgOYQdArZGUlKStW7dqz549njM70g9h569//au+//57JSUlqU2bNvr5z3+uBx98UCtWrFBWVpZ27typP/zhD/rggw+K3fb48eO1YMECLVmyRAcPHtTzzz+vTz/9tMJ3VLVs2VKbN2/W0aNHdfLkyauqF0DNIOwAqDWSkpJ04cIFXXfddYqKivK0JyQk6OzZs2rdurXi4uIkSYsWLdKDDz6oSZMmqW3bthoyZIj+8Y9/eJZf6ec//7meeuopTZ48WZ06dVJWVpZGjRqlBg0aVGiMzz33nA4dOqTWrVvrmmuuqXyxAGqMwxT3pjUA1APJycmKjo7Wm2++6euhAKhGXKAMoF7Iy8vT66+/rr59+8rf319vv/221q9fr7S0NF8PDUA148wOgHrhwoULGjx4sHbv3i2Xy6W2bdvqd7/7nYYNG+broQGoZoQdAABgNS5QBgAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACs9v8D3R0KHIuDgGgAAAAASUVORK5CYII=" + }, + "metadata": {} } ], "metadata": {} @@ -1023,10 +1062,12 @@ "metadata": {} }, { - "cell_type": "code", - "execution_count": null, - "source": [], - "outputs": [], + "cell_type": "markdown", + "source": [ + "## Conclusion\r\n", + "\r\n", + "In this notebook, we have learnt how to perform basic operations on data to compute statistical functions. We now know how to use sound apparatus of math and statistics in order to prove some hypotheses, and how to compute confidence intervals for random variable given data sample. " + ], "metadata": {} } ], diff --git a/1-Introduction/04-stats-and-probability/solution/assignment.ipynb b/1-Introduction/04-stats-and-probability/solution/assignment.ipynb new file mode 100644 index 0000000..da16d87 --- /dev/null +++ b/1-Introduction/04-stats-and-probability/solution/assignment.ipynb @@ -0,0 +1,945 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "## Introduction to Probability and Statistics\r\n", + "## Assignment\r\n", + "\r\n", + "In this assignment, we will use the dataset of diabetes patients taken [from here](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html)." + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "source": [ + "import pandas as pd\r\n", + "import numpy as np\r\n", + "import matplotlib.pyplot as plt\r\n", + "\r\n", + "df = pd.read_csv(\"../../../data/diabetes.tsv\",sep='\\t')\r\n", + "df.head()" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " AGE SEX BMI BP S1 S2 S3 S4 S5 S6 Y\n", + "0 59 2 32.1 101.0 157 93.2 38.0 4.0 4.8598 87 151\n", + "1 48 1 21.6 87.0 183 103.2 70.0 3.0 3.8918 69 75\n", + "2 72 2 30.5 93.0 156 93.6 41.0 4.0 4.6728 85 141\n", + "3 24 1 25.3 84.0 198 131.4 40.0 5.0 4.8903 89 206\n", + "4 50 1 23.0 101.0 192 125.4 52.0 4.0 4.2905 80 135" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AGESEXBMIBPS1S2S3S4S5S6Y
059232.1101.015793.238.04.04.859887151
148121.687.0183103.270.03.03.89186975
272230.593.015693.641.04.04.672885141
324125.384.0198131.440.05.04.890389206
450123.0101.0192125.452.04.04.290580135
\n", + "
" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "\r\n", + "In this dataset, columns as the following:\r\n", + "* Age and sex are self-explanatory\r\n", + "* BMI is body mass index\r\n", + "* BP is average blood pressure\r\n", + "* S1 through S6 are different blood measurements\r\n", + "* Y is the qualitative measure of disease progression over one year\r\n", + "\r\n", + "Let's study this dataset using methods of probability and statistics.\r\n", + "\r\n", + "### Task 1: Compute mean values and variance for all values" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "source": [ + "df.describe()" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " AGE SEX BMI BP S1 S2 \\\n", + "count 442.000000 442.000000 442.000000 442.000000 442.000000 442.000000 \n", + "mean 48.518100 1.468326 26.375792 94.647014 189.140271 115.439140 \n", + "std 13.109028 0.499561 4.418122 13.831283 34.608052 30.413081 \n", + "min 19.000000 1.000000 18.000000 62.000000 97.000000 41.600000 \n", + "25% 38.250000 1.000000 23.200000 84.000000 164.250000 96.050000 \n", + "50% 50.000000 1.000000 25.700000 93.000000 186.000000 113.000000 \n", + "75% 59.000000 2.000000 29.275000 105.000000 209.750000 134.500000 \n", + "max 79.000000 2.000000 42.200000 133.000000 301.000000 242.400000 \n", + "\n", + " S3 S4 S5 S6 Y \n", + "count 442.000000 442.000000 442.000000 442.000000 442.000000 \n", + "mean 49.788462 4.070249 4.641411 91.260181 152.133484 \n", + "std 12.934202 1.290450 0.522391 11.496335 77.093005 \n", + "min 22.000000 2.000000 3.258100 58.000000 25.000000 \n", + "25% 40.250000 3.000000 4.276700 83.250000 87.000000 \n", + "50% 48.000000 4.000000 4.620050 91.000000 140.500000 \n", + "75% 57.750000 5.000000 4.997200 98.000000 211.500000 \n", + "max 99.000000 9.090000 6.107000 124.000000 346.000000 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AGESEXBMIBPS1S2S3S4S5S6Y
count442.000000442.000000442.000000442.000000442.000000442.000000442.000000442.000000442.000000442.000000442.000000
mean48.5181001.46832626.37579294.647014189.140271115.43914049.7884624.0702494.64141191.260181152.133484
std13.1090280.4995614.41812213.83128334.60805230.41308112.9342021.2904500.52239111.49633577.093005
min19.0000001.00000018.00000062.00000097.00000041.60000022.0000002.0000003.25810058.00000025.000000
25%38.2500001.00000023.20000084.000000164.25000096.05000040.2500003.0000004.27670083.25000087.000000
50%50.0000001.00000025.70000093.000000186.000000113.00000048.0000004.0000004.62005091.000000140.500000
75%59.0000002.00000029.275000105.000000209.750000134.50000057.7500005.0000004.99720098.000000211.500000
max79.0000002.00000042.200000133.000000301.000000242.40000099.0000009.0900006.107000124.000000346.000000
\n", + "
" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "source": [ + "# Another way\r\n", + "pd.DataFrame([df.mean(),df.var()],index=['Mean','Variance']).head()" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " AGE SEX BMI BP S1 S2 \\\n", + "Mean 48.51810 1.468326 26.375792 94.647014 189.140271 115.439140 \n", + "Variance 171.84661 0.249561 19.519798 191.304401 1197.717241 924.955494 \n", + "\n", + " S3 S4 S5 S6 Y \n", + "Mean 49.788462 4.070249 4.641411 91.260181 152.133484 \n", + "Variance 167.293585 1.665261 0.272892 132.165712 5943.331348 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AGESEXBMIBPS1S2S3S4S5S6Y
Mean48.518101.46832626.37579294.647014189.140271115.43914049.7884624.0702494.64141191.260181152.133484
Variance171.846610.24956119.519798191.3044011197.717241924.955494167.2935851.6652610.272892132.1657125943.331348
\n", + "
" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "source": [ + "# Or, more simply, for the mean (variance can be done similarly)\r\n", + "df.mean()" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "AGE 48.518100\n", + "SEX 1.468326\n", + "BMI 26.375792\n", + "BP 94.647014\n", + "S1 189.140271\n", + "S2 115.439140\n", + "S3 49.788462\n", + "S4 4.070249\n", + "S5 4.641411\n", + "S6 91.260181\n", + "Y 152.133484\n", + "dtype: float64" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "### Task 2: Plot boxplots for BMI, BP and Y depending on gender" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 17, + "source": [ + "for col in ['BMI','BP','Y']:\r\n", + " df.boxplot(column=col,by='SEX')\r\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-23T15:11:06.698534\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAHNCAYAAADWsJtQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA06ElEQVR4nO3de3RU5b3/8c/kwmQCSSRASICQREEuBrCABaySoCaKBxYh4g214JVCwHJAacFag6uSHoqprlJRsQZs5SIYKUaJSZWEIOQY0lKBFqwaEISIRiHkQszl+f3hL3MYEyCT22Sb92utWek8+9nPfGc22/l072fPthljjAAAACzCy9MFAAAAuIPwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAkhas2aNbDaby6NXr16KjY1VRkaGp8tzioyM1MyZM91er6KiQsnJycrJyWn1mn6oYmNjFRsbe9F+NptNc+fObfN6jh49qjlz5ujyyy+Xw+FQcHCwhg0bpgcffFBHjx519ktOTm7wb/ncx+HDhyVJubm58vLy0pIlSxq81ieffKJu3bpp2rRpbf6+gObw8XQBQEeSlpamwYMHyxij4uJirVy5UpMnT9bWrVs1efJkT5fXbBUVFVq6dKkkNekLGR3LsWPHNHLkSF1yySVauHChBg0apNOnT+tf//qXXnvtNX366acKDw93WSczM1NBQUENxgoLC5MkxcTE6OGHH9by5cuVkJCgH//4x5Kkuro6zZgxQ/7+/lq1alXbvzmgGQgvwDmio6M1evRo5/ObbrpJ3bt31/r16y0dXtpbRUWF/P39PV3GD8bq1av11Vdf6YMPPlBUVJSzPSEhQUuWLFFdXV2DdUaNGqWePXtecNyUlBRt27ZNM2bM0D/+8Q/5+flpxYoVev/99/X666+rV69erf5egNbAaSPgAvz8/NSlSxf5+vq6tH/99deaM2eO+vbtqy5duujSSy/VY489pqqqKknS2bNn9aMf/UgDBgzQ6dOnnesVFxcrNDRUsbGxqq2tlSTNnDlT3bp104EDB3T99dera9eu6tWrl+bOnauKioqL1vjZZ5/p7rvvVkhIiOx2u4YMGaKnn37a+YV2+PBh55fQ0qVLnacPLnb66cCBA4qPj5e/v7969eqlpKQkvfXWW7LZbC6nn2JjYxUdHa0dO3bo6quvlr+/v+67774m1SZJOTk5Dcasr9tms2nNmjXONnc+K2OMnnvuOV155ZVyOBzq3r27pk2bpk8//bRBv+XLlysiIkJ+fn4aOXKktm3bdtHP/fteeOEFXX755bLb7Ro6dKg2bNjg8l58fHyUkpLSYL0dO3bIZrNp06ZN5x27pKREXl5eCgkJaXS5l1fz/lPucDi0Zs0affTRR1qyZIn279+vX//617rrrruUmJjYrDGBdmEAmLS0NCPJ5Ofnm+rqavPtt9+ao0ePmocffth4eXmZzMxMZ9/KykozfPhw07VrV7NixQqTlZVlHn/8cePj42NuvvlmZ7+PPvrIBAQEmMTERGOMMbW1tea6664zISEh5vjx485+M2bMMF26dDH9+/c3Tz31lMnKyjLJycnGx8fHTJo0yaXOiIgIM2PGDOfzkydPmr59+5pevXqZ559/3mRmZpq5c+caSWb27NnGGGPOnj1rMjMzjSRz//33m927d5vdu3ebjz/++Lyfx/Hjx02PHj1M//79zZo1a8zbb79t7rnnHhMZGWkkme3btzv7xsTEmODgYBMeHm7+8Ic/mO3bt5vc3Nwm1WaMMdu3b28wpjHGFBUVGUkmLS2tWZ/Vgw8+aHx9fc3ChQtNZmamWbdunRk8eLDp3bu3KS4udvZ74oknnJ/Ntm3bzIsvvmj69u1rQkNDTUxMzHk/o3qSTHh4uBk6dKhZv3692bp1q7npppuMJLNp0yZnv6lTp5r+/fubmpoal/VvvfVW06dPH1NdXX3e1/jLX/5iJJn4+HiTmZlpTp8+fd6+9e+nuLjYVFdXuzy+/9r1Fi1aZLy8vExUVJTp06eP+frrry/6vgFPIrwA5v/Cy/cfdrvdPPfccy59n3/+eSPJvPbaay7t//M//2MkmaysLGfbxo0bjSTzzDPPmF//+tfGy8vLZbkx330hSzLPPvusS/tTTz1lJJmdO3c6274fXn75y18aSeZ///d/XdadPXu2sdls5tChQ8YYY7788ksjyTzxxBNN+jweffRRY7PZzIEDB1zab7zxxkbDiyTz7rvvuvRtam3uhpemfFa7d+82kszTTz/t0u/o0aPG4XCYRYsWGWOM+eabb4yfn5+ZOnWqS7/333/fSGpyeHE4HC6BqKamxgwePNgMGDDA2Vb/Pt944w1n2+eff258fHzM0qVLL/gadXV1ZtasWcbLy8tIMjabzQwZMsT893//tykqKnLpWx9eGntcdtlljY5fWVlpgoKCjCSzefPmi75nwNM4bQSc45VXXlFBQYEKCgqccwGSkpK0cuVKZ5/33ntPXbt2bXAlRv1pmHfffdfZdtttt2n27Nl69NFH9Zvf/EZLlixRXFxco6991113uTyfPn26JGn79u3nrfe9997T0KFDnZMtz63FGKP33nvv4m+6Ebm5uYqOjtbQoUNd2u+8885G+3fv3l3XXXddu9QmXfyzysjIkM1m0913362amhrnIzQ0VCNGjHCeotq9e7fOnj3bYLyrr75aERERTa7n+uuvV+/evZ3Pvb29dfvtt+vjjz/WsWPHJH13em3EiBH64x//6Oz3/PPPy2az6aGHHrrg+DabTc8//7w+/fRTPffcc7r33ntVXV2t3//+97riiiuUm5vbYJ2//e1vzn/L9Y8tW7Y0On5aWppOnz4tLy8vZWdnN/l9A57ChF3gHEOGDGkwYffIkSNatGiR7r77bl1yySUqKSlRaGiobDaby7ohISHy8fFRSUmJS/t9992nVatWqUuXLnr44YcbfV0fHx/16NHDpS00NFSSGox3rpKSEkVGRjZo79Onz0XXvZCSkhKXiaH1zv2CPlf9FSztUVtTPqsvvvhCxpjz1nvppZe69K9fv7Exm+JC65eUlKhfv36SpIcfflgPPPCADh06pEsvvVSrV6/WtGnTmvxaERERmj17tvP5a6+9pjvvvFOPPvqoPvjgA5e+I0aMuOiEXUn69NNP9eijj2rq1KkaPny4li5dqmnTpumGG25oUk2AJ3DkBbiI4cOHq7KyUh999JEkqUePHs4vx3OdPHlSNTU1Ll8Y5eXluueee5y/zfHAAw80+ho1NTUNvsyLi4udr3c+PXr00IkTJxq0Hz9+XJKa9OV1vnG/+OKLBu31NX3f94OcO7X5+flJknOyc72vvvqq0ddqymfVs2dP2Ww27dy5s8HRh3OPQNT3b+x9ne+9NuZC65+7/aZPn64ePXroj3/8ozZt2qTi4mIlJSU1+XW+77bbbtPw4cO1f//+Zq1vjNG9994rh8Oh559/Xo899phGjBihBx54QGfOnGl2XUBbI7wAF7F3715Jcl6xc/3116usrKzBIfhXXnnFubzez372M3322WdKT0/Xn/70J23dulW///3vG32dV1991eX5unXrJF34d1muv/56/etf/9Lf//73BrXYbDZNmDBBkmS32yVJlZWVF3in/ycmJkb79+/Xv/71L5f2c6+guZim1lZ/dObDDz906bd169bzjn2xz2rSpEkyxujzzz/X6NGjGzyGDRsmSRo7dqz8/PwajLdr1y4dOXKkye/13XffdQl7tbW12rhxoy677DLnURfpu6D20EMPae3atUpNTdWVV16pn/zkJxcdv7EQKEllZWU6evSo82iWu5599lnt2LFDq1atUkhIiHx9fbVmzRodP35cjz76aLPGBNqFJyfcAB1F/YTdtLQ059U4GRkZ5r777jOSXCZ01l9tFBAQYFJTU012drZ54oknjK+vr8vVRqtXr24w4XTu3LnG19fXZRLrha6gmThxokud57vaKDQ01Lz44ovmnXfeMQ8//LCx2Wxmzpw5DdYdNGiQeeedd0xBQUGDiZ7n+vzzz12uNtq2bZu55557TEREhJFkcnNznX1jYmLMFVdc0WAMd2q74YYbTPfu3c3q1atNVlaW+cUvfmEGDhzo1tVG3/+sHnroIePv728effRR8+abb5r33nvPvPrqq2b27Nkuk7B/9atfOa82yszMNKtXr261q402bNjQoP+xY8eMj4+PkWReeumli45vjDFJSUnmyiuvNCkpKWbbtm0mJyfHpKWlmVGjRhlJ5uWXX3b2rZ+wm5mZ6fy3fO6j/kqlQ4cOGYfDYe64444Gr1c/RnZ2dpPqA9ob4QUwjV9tFBQUZK688kqTmppqzp4969K/pKTE/OxnPzNhYWHGx8fHREREmMWLFzv7ffjhh8bhcLgEDWO+u2x51KhRJjIy0nzzzTfGmO++kLt27Wo+/PBDExsbaxwOhwkODjazZ882ZWVlLut/P7wYY8yRI0fM9OnTTY8ePYyvr68ZNGiQ+d3vfmdqa2td+v3tb38zP/rRj4zdbjeSGozzffv37zc33HCD8fPzM8HBweb+++83a9euNZLMP//5T2e/84UXd2o7ceKEmTZtmgkODjZBQUHm7rvvNnv27Gk0vDT1szLGmJdfftmMGTPGdO3a1TgcDnPZZZeZn/70p2bPnj3OPnV1dSYlJcWEh4ebLl26mOHDh5s333zTxMTENDm8JCUlmeeee85cdtllxtfX1wwePNi8+uqr510nNjbWBAcHm4qKiouOb4wx+fn5JikpyYwYMcIEBwcbb29v06tXL3PTTTeZt99+26Xvha42qg8ktbW1Zty4cSY0NNSUlJQ0eL1vv/3WjBgxwkRERJjS0tIm1Qi0J5sx3ztxD6BdzZw5U5s3b1ZZWZmnS7mohx56SOvXr1dJSYm6dOnS7q9vpc/qfE6ePKmIiAjNmzdPy5cv93Q5gCVxtRGARj355JPq06ePLr30UpWVlSkjI0MvvfSSfvWrX3kkuFjdsWPH9Omnn+p3v/udvLy89POf/9zTJQGWRXgB0ChfX1/97ne/07Fjx1RTU6OBAwcqNTWVL91meumll/Tkk08qMjJSr776qvr27evpkgDL4rQRAACwFC6VBgAAlkJ4AQAAlkJ4AdBm1qxZI5vN5vLo1auXYmNjlZGR4dK3fnn9PaK+78knn3T2OXz4sLN95syZ6tatWxu+CwAdDeEFQJtLS0vT7t27tWvXLr344ovy9vbW5MmT9eabb7r0CwgI0KZNmxr8NL0xRmvWrFFgYGB7lg2ggyK8AGhz0dHRGjt2rMaNG6epU6cqIyNDdrtd69evd+k3ZcoUGWMa3IbgvffeU1FRkW6//fb2LBtAB0V4AdDu/Pz81KVLF/n6+rq0BwUFaerUqXr55Zdd2l9++WX95Cc/0eWXX96eZQLooAgvANpcbW2tampqVF1drWPHjmn+/PkqLy/X9OnTG/S9//77lZ+fr3//+9+SpFOnTik9PV33339/e5cNoIMivABoc2PHjpWvr6+6dOmi8PBwvfDCC1q5cqVuvPHGBn0nTJigqKgo59GXdevWycfHR7feemt7lw2ggyK8AGhzr7zyigoKClRQUKBt27ZpxowZSkpK0sqVKxv0rb/i6M9//rNqamr0pz/9SbfddhtXFAFwIrwAaHNDhgzR6NGjNXr0aN1000164YUXFB8fr0WLFunUqVMN+t9777368ssvtWzZMv3973/nlBEAF4QXAB4xfPhwVVZW6qOPPmqwLDw8XDfccIOWLl2qQYMG6eqrr/ZAhQA6Km7MCMAj9u7dK0nq1atXo8sXLlwoh8PBXBcADRBeALS5/fv3q6amRpJUUlKi9PR0ZWdna+rUqYqKimp0nfj4eMXHx7dnmQAsgvACoM3de++9zv8dFBSkqKgopaamas6cOR6sCoBV2YwxxtNFAAAANBUTdgEAgKUQXgAAgKUQXgAAgKUQXgAAgKUQXgAAgKUQXgAAgKV0uN95qaur0/HjxxUQECCbzebpcgAAQDswxujMmTPq06ePvLwufGylw4WX48ePKzw83NNlAAAADzh69Kj69et3wT4dLrwEBARI+q74wMBAD1eD9lZdXa2srCzFx8fL19fX0+UAaEfs/51baWmpwsPDnTngQjpceKk/VRQYGEh46YSqq6vl7++vwMBA/uMFdDLs/5DUpCkjTNgFAACWQngBAACWQngBAACWQngBAACWQngBAACWQngBAACWQngBAACWQngBAACWQngBAHhcbW2tcnNztWPHDuXm5qq2ttbTJaEDI7wAADwqPT1dAwYMUFxcnFJTUxUXF6cBAwYoPT3d06WhgyK8AAA8Jj09XdOmTdOwYcOUl5en9evXKy8vT8OGDdO0adMIMGgU4QUA4BG1tbVauHChJk2apC1btmjMmDFyOBwaM2aMtmzZokmTJumRRx7hFBIaILwAADwiLy9Phw8f1pIlS+Tl5fp15OXlpcWLF6uoqEh5eXkeqhAdFeEFAOARJ06ckCRFR0c3ury+vb4fUI/wAgDwiLCwMEnS/v37G11e317fD6hHeAEAeMS1116ryMhILVu2THV1dS7L6urqlJKSoqioKF177bUeqhAdFeEFAOAR3t7eevrpp5WRkaGEhATl5+ersrJS+fn5SkhIUEZGhlasWCFvb29Pl4oOxsfTBQAAOq/ExERt3rxZCxcu1Pjx453tUVFR2rx5sxITEz1YHToqwgsAwKMSExM1ZcoUbd++Xdu2bdPEiRM1YcIEjrjgvAgvAACP8/b2VkxMjMrLyxUTE0NwwQUx5wUdBvc2AQA0BeEFHQL3NgEANBXhBR7HvU0AAO4gvMCjuLcJAMBdhBd4FPc2AQC4i/ACj+LeJgAAdxFe4FHc2wQA4C7CCzyKe5sAANxFeIFHcW8TAIC7+IVdeBz3NgEAuIPwgg6Be5sAAJqK8IIOg3ubAACagjkvAADAUggvAADAUggvAADAUggvAADAUggvAADAUggvAADAUggvAADAUloUXlJSUmSz2TR//nxnmzFGycnJ6tOnjxwOh2JjY3XgwIGW1gkAACCpBeGloKBAL774ooYPH+7Svnz5cqWmpmrlypUqKChQaGio4uLidObMmRYXCwAA0KzwUlZWprvuukurV69W9+7dne3GGD3zzDN67LHHlJiYqOjoaK1du1YVFRVat25dqxUNAAA6r2bdHiApKUn/9V//pRtuuEG/+c1vnO1FRUUqLi5WfHy8s81utysmJka7du3SrFmzGoxVVVWlqqoq5/PS0lJJUnV1taqrq5tTHiysfpuz7YHOh/2/c3Nnu7sdXjZs2KDCwkLt2bOnwbLi4mJJUu/evV3ae/furSNHjjQ6XkpKipYuXdqgPSsrS/7+/u6Whx+I7OxsT5cAwEPY/zunioqKJvd1K7wcPXpUP//5z5WVlSU/P7/z9rPZbC7PjTEN2uotXrxYCxYscD4vLS1VeHi44uPjFRgY6E55+AGorq5Wdna24uLi5Ovr6+lyALQj9v/Orf7MS1O4FV4KCwt18uRJjRo1ytlWW1urHTt2aOXKlTp06JCk747AhIWFOfucPHmywdGYena7XXa7vUG7r68v/3g7MbY/0Hmx/3dO7mxztybsXn/99dq3b5/27t3rfIwePVp33XWX9u7dq0svvVShoaEuh/y+/fZb5ebm6uqrr3bnpQAAABrl1pGXgIAARUdHu7R17dpVPXr0cLbPnz9fy5Yt08CBAzVw4EAtW7ZM/v7+mj59eutVDQAAOq1mXW10IYsWLVJlZaXmzJmjb775RmPGjFFWVpYCAgJa+6UAAEAn1OLwkpOT4/LcZrMpOTlZycnJLR0aAACgAe5tBADwuNraWuXm5mrHjh3Kzc1VbW2tp0tCB0Z4AQB4VHp6ugYMGKC4uDilpqYqLi5OAwYMUHp6uqdLQwdFeAEAeEx6erqmTZumYcOGKS8vT+vXr1deXp6GDRumadOmEWDQKMILAMAjamtrtXDhQk2aNElbtmzRmDFj5HA4NGbMGG3ZskWTJk3SI488wikkNEB4AQB4RF5eng4fPqwlS5bIy8v168jLy0uLFy9WUVGR8vLyPFQhOirCCwDAI06cOCFJDX4/rF59e30/oB7hBQDgEfW3kdm/f3+jy+vbz73dDCARXgAAHnLttdcqMjJSy5YtU11dncuyuro6paSkKCoqStdee62HKkRHRXgBAHiEt7e3nn76aWVkZCghIUH5+fmqrKxUfn6+EhISlJGRoRUrVsjb29vTpaKDafXbAwAA0FSJiYnavHmzFi5cqPHjxzvbo6KitHnzZiUmJnqwOnRUhBcAgEclJiZqypQp2r59u7Zt26aJEydqwoQJHHHBeRFeAAAe5+3trZiYGJWXlysmJobgggtizgsAwOO4txHcQXgBAHgU9zaCuwgvAACP4d5GaA7mvKDdVFRU6ODBgxfsU1ZZpV37PlH3nnvUzWG/6JiDBw+Wv79/a5UIoB2de2+j119/Xbm5uSooKFDPnj31+uuv65ZbbtEjjzyiKVOmMAcGLggvaDcHDx7UqFGjmtR3eRPHLCws1MiRI5tfFACPqb+30axZs3T55Zfr8OHDkqTU1FRFRkbqoYce0ptvvqm8vDzFxsZ6tFZ0LIQXtJvBgwersLDwgn0OnTilBZv2KfXWYRoUdkmTxgRgTfX3LFq8eLEmT56sP//5zzp27Jj69eun5cuXa8mSJS79gHqEF7Qbf3//ix4l8TpSIntepYZEj9CVET3aqTIAnhASEiJJuuaaaxo9bTRhwgS9//77zn5APcILAMCjvvrqq0ZPG/n5+Xm2MHRYhBcAgEecPHlS0nfz4Xr37q1Vq1bJz89PZ8+eVXJysjPM1PcD6hFeAAAeUX86aMiQIaqoqNDs2bOdyyIjIzV48GAdPHiQ00ZogN95AQB4VI8ePfSf//xH2dnZWrBggbKzs/XRRx+pRw/mvaFxhBcAgEfUnw7auXOnbrnlFtntdl111VWy2+265ZZb9P7777v0A+oRXgAAHhEWFiZJSklJ0b59+zR+/HjdeeedGj9+vPbv369ly5a59APqEV4AAB5x7bXXKjIyUrt27dJHH33kctro0KFD2r17t6KionTttdd6ulR0MIQXAIBHeHt76+mnn1ZGRkajp40yMjK0YsUKbg2ABrjaCADgMYmJidq8ebMWLlyo8ePHO9ujoqK0efNmJSYmerA6dFSEFwCARyUmJmrKlCnavn27tm3bpokTJ2rChAkcccF5EV4AAB7n7e2tmJgYlZeXKyYmhuCCC2LOCwAAsBTCCwAAsBTCCwDA42pra5Wbm6sdO3YoNzdXtbW1ni4JHRjhBQDgUenp6RowYIDi4uKUmpqquLg4DRgwQOnp6Z4uDR0U4QUA4DHp6emaNm2ahg0bpry8PK1fv155eXkaNmyYpk2bRoBBowgvAACPqK2t1cKFCzVp0iRt2bJFY8aMkcPh0JgxY7RlyxZNmjRJjzzyCKeQ0ADhBQDgEXl5eTp8+LCWLFkiLy/XryMvLy8tXrxYRUVFysvL81CF6KgILwAAjzhx4oQkKTo6utHl9e31/YB6hBcAgEfU3y16//79jS6vb+eu0vg+wgsAwCPq7yq9bNky1dXVuSyrq6tTSkoKd5VGowgvAACPOPeu0gkJCcrPz1dlZaXy8/OVkJDAXaVxXtzbCADgMdxVGs1BeAEAeBR3lYa7CC8AAI/jrtJwB3NeAACApXDkBQDQ5ioqKnTw4MEL9imrrNKufZ+oe8896uawX3TMwYMHy9/fv7VKhIUQXgAAbe7gwYMaNWpUk/oub+KYhYWFGjlyZPOLgmURXgAAbW7w4MEqLCy8YJ9DJ05pwaZ9Sr11mAaFXdKkMdE5EV4AAG3O39//okdJvI6UyJ5XqSHRI3RlRI92qgxWxIRdAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKW6Fl1WrVmn48OEKDAxUYGCgxo0bp23btjmXz5w5UzabzeUxduzYVi8aAAB0Xm79wm6/fv3029/+VgMGDJAkrV27VlOmTNE//vEPXXHFFZKkm266SWlpac51unTp0orlAgCAzs6t8DJ58mSX50899ZRWrVql/Px8Z3ix2+0KDQ1t8phVVVWqqqpyPi8tLZUkVVdXq7q62p3y8ANQU1Pj/Mv2BzoX9v/OzZ1t3ux7G9XW1mrTpk0qLy/XuHHjnO05OTkKCQnRJZdcopiYGD311FMKCQk57zgpKSlaunRpg/asrCxudd4JHS2TJB/l5+fr8/2ergZAe2L/79wqKiqa3NdmjDHuDL5v3z6NGzdOZ8+eVbdu3bRu3TrdfPPNkqSNGzeqW7duioiIUFFRkR5//HHV1NSosLBQdru90fEaO/ISHh6ur776SoGBge6Uhh+Af372taat3qPND47WiP7Bni4HQDti/+/cSktL1bNnT50+ffqi3/9uH3kZNGiQ9u7dq1OnTun111/XjBkzlJubq6FDh+r222939ouOjtbo0aMVERGht956S4mJiY2OZ7fbGw02vr6+8vX1dbc8WJyPj4/zL9sf6FzY/zs3d7a52+GlS5cuzgm7o0ePVkFBgZ599lm98MILDfqGhYUpIiJC//nPf9x9GQAAgEa1+HdejDEup33OVVJSoqNHjyosLKylLwMAACDJzSMvS5Ys0cSJExUeHq4zZ85ow4YNysnJUWZmpsrKypScnKxbbrlFYWFhOnz4sJYsWaKePXtq6tSpbVU/AADoZNwKL1988YXuuecenThxQkFBQRo+fLgyMzMVFxenyspK7du3T6+88opOnTqlsLAwTZgwQRs3blRAQEBb1Q8AADoZt8LLn/70p/Muczgceuedd1pcEAAAwIVwbyMAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGApboWXVatWafjw4QoMDFRgYKDGjRunbdu2OZcbY5ScnKw+ffrI4XAoNjZWBw4caPWiAQBA5+VWeOnXr59++9vfas+ePdqzZ4+uu+46TZkyxRlQli9frtTUVK1cuVIFBQUKDQ1VXFyczpw50ybFAwCAzset8DJ58mTdfPPNuvzyy3X55ZfrqaeeUrdu3ZSfny9jjJ555hk99thjSkxMVHR0tNauXauKigqtW7eureoHAACdjE9zV6ytrdWmTZtUXl6ucePGqaioSMXFxYqPj3f2sdvtiomJ0a5duzRr1qxGx6mqqlJVVZXzeWlpqSSpurpa1dXVzS0PFlVTU+P8y/YHOhf2/87NnW3udnjZt2+fxo0bp7Nnz6pbt2564403NHToUO3atUuS1Lt3b5f+vXv31pEjR847XkpKipYuXdqgPSsrS/7+/u6WB4s7WiZJPsrPz9fn+z1dDYD2xP7fuVVUVDS5r9vhZdCgQdq7d69OnTql119/XTNmzFBubq5zuc1mc+lvjGnQdq7FixdrwYIFzuelpaUKDw9XfHy8AgMD3S0PFvfPz76W9u3R2LFjNaJ/sKfLAdCO2P87t/ozL03hdnjp0qWLBgwYIEkaPXq0CgoK9Oyzz+oXv/iFJKm4uFhhYWHO/idPnmxwNOZcdrtddru9Qbuvr698fX3dLQ8W5+Pj4/zL9gc6F/b/zs2dbd7i33kxxqiqqkpRUVEKDQ1Vdna2c9m3336r3NxcXX311S19GQAAAEluHnlZsmSJJk6cqPDwcJ05c0YbNmxQTk6OMjMzZbPZNH/+fC1btkwDBw7UwIEDtWzZMvn7+2v69OltVT8AAOhk3AovX3zxhe655x6dOHFCQUFBGj58uDIzMxUXFydJWrRokSorKzVnzhx98803GjNmjLKyshQQENAmxaPjKPqqXOVVNS0e55Mvy51/6w8ht1RXu4+ienZtlbEAAJ5nM8YYTxdxrtLSUgUFBen06dNM2LWIoq/KNWFFjqfLuKDtj8QSYIAObu+REiWsyteW2WN1ZUQPT5eDdubO93/r/F9bdGr1R1yeuf1KDQjp1rKxKquUkbNbk2LHqauj4URud318skzzN+5tlaNCAICOgfCCVjMgpJui+wa1aIzq6moV95JGRnTnagMAQKO4qzQAALAUwgsAALAUwgsAALAUwgsAALAUJuwCAFqE33lCeyO8AACarS1+52nh5n2tOh6/8/TDQ3gBADQbv/METyC8AABajN95Qntiwi4AALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUH08XAACwrqras/Ly+1xFpYfk5detRWPV1NToeM1x/fvrf8vHp+VfT0WlZfLy+1xVtWclBbV4PHQchBcAQLMdLz+irlF/0JIPWm/M5zKfa7WxukZJx8uv1Cj1brUx4XmEFwBAs/XpGqHyonl69vYrdVlIy4+8vL/zff3kmp+0ypGXT06W6ecb96rPhIgWj4WOhfACAGg2u7ef6s72VVTgIA3t0bJTM9XV1SryKdKQ4CHy9fVtcW11Z0+r7uyXsnv7tXgsdCxM2AUAAJbCkRe0GBP2AADtifCCFmPCHgCgPRFe0GJM2AMAtCfCC1qMCXsAgPbk1oTdlJQUXXXVVQoICFBISIgSEhJ06NAhlz4zZ86UzWZzeYwdO7ZViwYAAJ2XW+ElNzdXSUlJys/PV3Z2tmpqahQfH6/y8nKXfjfddJNOnDjhfLz99tutWjQAAOi83DptlJmZ6fI8LS1NISEhKiws1Pjx453tdrtdoaGhrVMhAADAOVo05+X06dOSpODgYJf2nJwchYSE6JJLLlFMTIyeeuophYSENDpGVVWVqqqqnM9LS0slfTf3obq6uiXloZ3U1NQ4/7Z0m9Wv31rbvjVrA9AQ+z9aizvbqNnhxRijBQsW6JprrlF0dLSzfeLEibr11lsVERGhoqIiPf7447ruuutUWFgou93eYJyUlBQtXbq0QXtWVpb8/f2bWx7a0dEySfLRzp07daRlFxs5ZWdnt8o4bVEbgP/D/o/WUlFR0eS+NmOMac6LJCUl6a233tLOnTvVr1+/8/Y7ceKEIiIitGHDBiUmJjZY3tiRl/DwcH311VcKDAxsTmloZweOlyphVb62zB6rK/q0bJtVV1crOztbcXFxrXK1UWvWBqAh9n+0ltLSUvXs2VOnT5++6Pd/s468zJs3T1u3btWOHTsuGFwkKSwsTBEREfrPf/7T6HK73d7oERlfX99W+ceLtlf/eyw+Pj6tts1aa/u3RW0A/g/7P1qLO9vIrfBijNG8efP0xhtvKCcnR1FRURddp6SkREePHlVYWJg7LwUAANAoty6VTkpK0l/+8hetW7dOAQEBKi4uVnFxsSorKyVJZWVleuSRR7R7924dPnxYOTk5mjx5snr27KmpU6e2yRsAAACdi1tHXlatWiVJio2NdWlPS0vTzJkz5e3trX379umVV17RqVOnFBYWpgkTJmjjxo0KCAhotaIBAEDn5fZpowtxOBx65513WlQQAADAhbh12ggAAMDTCC8AAMBSCC8AAMBSCC8AAMBSCC8AAMBSWnRjRgBA51ZZXStJ2v/56RaPVV5ZpT1fSqFHvlFXR8NfXnfXxyfLWjwGOibCCwCg2T75/wHhl+n7WmlEH/3544JWGus7Xe181f3QsEUBAM0Wf0WoJOmykG5y+Hq3aKxDJ05r4eZ9enraMA0KC2qN8tTV7qOonl1bZSx0HIQXAECzBXftojt+3L9VxqqpqZEkXdarq6L7tk54wQ8TE3YBAIClEF4AAIClEF4AAIClEF4AAIClEF4AAIClEF4AAIClEF4AAIClEF4AAIClEF4AAIClEF4AAIClEF4AAIClEF4AAIClEF4AAIClEF4AAIClEF4AAIClEF4AAIClEF4AAIClEF4AAIClEF4AAIClEF4AAIClEF4AAICl+Hi6AFhfZXWtJGn/56dbPFZ5ZZX2fCmFHvlGXR32Fo/38cmyFo8BAOhYCC9osU/+f0D4Zfq+VhrRR3/+uKCVxvpOVzv/1AHgh4L/oqPF4q8IlSRdFtJNDl/vFo116MRpLdy8T09PG6ZBYUGtUZ662n0U1bNrq4wFAPA8wgtaLLhrF93x4/6tMlZNTY0k6bJeXRXdt3XCCwDgh4UJuwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFLcCi8pKSm66qqrFBAQoJCQECUkJOjQoUMufYwxSk5OVp8+feRwOBQbG6sDBw60atEAAKDzciu85ObmKikpSfn5+crOzlZNTY3i4+NVXl7u7LN8+XKlpqZq5cqVKigoUGhoqOLi4nTmzJlWLx4AAHQ+Pu50zszMdHmelpamkJAQFRYWavz48TLG6JlnntFjjz2mxMRESdLatWvVu3dvrVu3TrNmzWq9ygEAQKfkVnj5vtOnT0uSgoODJUlFRUUqLi5WfHy8s4/dbldMTIx27drVaHipqqpSVVWV83lpaakkqbq6WtXV1S0pDxZUU1Pj/Mv2BzoX9v/OzZ1t3uzwYozRggULdM011yg6OlqSVFxcLEnq3bu3S9/evXvryJEjjY6TkpKipUuXNmjPysqSv79/c8uDRR0tkyQf5efn6/P9nq4GQHti/+/cKioqmty32eFl7ty5+vDDD7Vz584Gy2w2m8tzY0yDtnqLFy/WggULnM9LS0sVHh6u+Ph4BQYGNrc8WNQ/P/ta2rdHY8eO1Yj+wZ4uB0A7Yv/v3OrPvDRFs8LLvHnztHXrVu3YsUP9+vVztoeGhkr67ghMWFiYs/3kyZMNjsbUs9vtstvtDdp9fX3l6+vbnPJgYT4+Ps6/bH+gc2H/79zc2eZuXW1kjNHcuXOVnp6u9957T1FRUS7Lo6KiFBoaquzsbGfbt99+q9zcXF199dXuvBQAAECj3DrykpSUpHXr1umvf/2rAgICnHNcgoKC5HA4ZLPZNH/+fC1btkwDBw7UwIEDtWzZMvn7+2v69Olt8gYAAEDn4lZ4WbVqlSQpNjbWpT0tLU0zZ86UJC1atEiVlZWaM2eOvvnmG40ZM0ZZWVkKCAholYIBAEDn5lZ4McZctI/NZlNycrKSk5ObWxMAAMB5cW8jAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKW7dVRpoiYqKCh08ePCCfQ6dOKWq4o/17/0O1ZVcctExBw8eLH9//1aqEABgBYQXtJuDBw9q1KhRTeo7fW3TxiwsLNTIkSNbUBUAwGoIL2g3gwcPVmFh4QX7lFVW6a3tu/VfE8apm8PepDEBAJ0L4QXtxt/f/6JHSaqrq/XNVyc17sej5evr206VAQCshAm7AADAUggvAADAUjhtBABoc1xtiNZEeAEAtDmuNkRrIrwAANocVxuiNRFeAABtjqsN0ZqYsAsAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACylw91V2hgjSSotLfVwJfCE6upqVVRUqLS0lLvKAp0M+3/nVv+9X58DLqTDhZczZ85IksLDwz1cCQAAaG9nzpxRUFDQBfvYTFMiTjuqq6vT8ePHFRAQIJvN5uly0M5KS0sVHh6uo0ePKjAw0NPlAGhH7P+dmzFGZ86cUZ8+feTldeFZLR3uyIuXl5f69evn6TLgYYGBgfzHC+ik2P87r4sdcanHhF0AAGAphBcAAGAphBd0KHa7XU888YTsdrunSwHQztj/0VQdbsIuAADAhXDkBQAAWArhBQAAWArhBQAAWArhBQAAWArhBR3Gjh07NHnyZPXp00c2m01btmzxdEkA2kFKSoquuuoqBQQEKCQkRAkJCTp06JCny0IHRnhBh1FeXq4RI0Zo5cqVni4FQDvKzc1VUlKS8vPzlZ2drZqaGsXHx6u8vNzTpaGD4lJpdEg2m01vvPGGEhISPF0KgHb25ZdfKiQkRLm5uRo/fryny0EHxJEXAECHcvr0aUlScHCwhytBR0V4AQB0GMYYLViwQNdcc42io6M9XQ46qA53V2kAQOc1d+5cffjhh9q5c6enS0EHRngBAHQI8+bN09atW7Vjxw7169fP0+WgAyO8AAA8yhijefPm6Y033lBOTo6ioqI8XRI6OMILOoyysjJ9/PHHzudFRUXau3evgoOD1b9/fw9WBqAtJSUlad26dfrrX/+qgIAAFRcXS5KCgoLkcDg8XB06Ii6VRoeRk5OjCRMmNGifMWOG1qxZ0/4FAWgXNput0fa0tDTNnDmzfYuBJRBeAACApXCpNAAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCC4A2d/LkSc2aNUv9+/eX3W5XaGiobrzxRu3evVuSFBkZKZvN1uDx29/+VpL09ttvq0uXLvr73//uMu6KFSvUs2dP571wAHQO3JgRQJu75ZZbVF1drbVr1+rSSy/VF198oXfffVdff/21s8+TTz6pBx980GW9gIAASdLNN9+sn/70p/rpT3+qwsJC2e12/fvf/9bjjz+uNWvWKDQ0tF3fDwDP4t5GANrUqVOn1L17d+Xk5CgmJqbRPpGRkZo/f77mz59/3nHOnDmjYcOG6Y477tBvfvMbjRs3TlFRUXrttdfaqHIAHRVHXgC0qW7duqlbt27asmWLxo4dK7vd3qxxAgIC9PLLL+vGG29UUVGRjh49qm3btrVytQCsgCMvANrc66+/rgcffFCVlZUaOXKkYmJidMcdd2j48OGSvjvycuLECfn6+rqsl5GRodjYWJe2O++8Uxs2bNDGjRt12223tddbANCBEF4AtIuzZ88qLy9Pu3fvVmZmpj744AO99NJLmjlzpiIjI3X33Xdr5syZLuv07dtXDofD+fz48eO64oor9O233+q+++7TH/7wh3Z+FwA6AsILAI944IEHlJ2drSNHjjRpzov03cTdiooKLV26VNdff73efffd886jAfDDxaXSADxi6NChKi8vb3L/l156SXl5eUpLS1NMTIzmzp2r++67z60xAPwwEF4AtKmSkhJdd911+stf/qIPP/xQRUVF2rRpk5YvX64pU6Y4+505c0bFxcUuj9LSUknSZ599poULF2rFihWKioqSJC1btkxeXl765S9/6ZH3BcBzOG0EoE1VVVUpOTlZWVlZ+uSTT1RdXa3w8HDdeuutWrJkiRwOhyIjI3XkyJEG686aNUurVq1SXFycvL299c4777gs37lzp2JjYzl9BHQyhBcAAGApnDYCAACWQngBAACWQngBAACWQngBAACWQngBAACWQngBAACWQngBAACWQngBAACWQngBAACWQngBAACWQngBAACW8v8AVhtA5O/QzEkAAAAASUVORK5CYII=" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-23T15:11:06.900540\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAHNCAYAAAATwgHBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7J0lEQVR4nO3de1xVdb7/8fcGtpuLSIIKYqik5v0y2aRZM+ComDPamGOOmaXZxUmtw2ha2jRhZ5IZK3MemnqsRpxM7aYec9LAStTUUhuntNKfSXjdQxmBXIQNfH9/eNjTDlSQDWwWr+fjwYPWd33Xd3/WXiz3u3XbNmOMEQAAgIX41XcBAAAA3kbAAQAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAaooJSVFNpvN46dly5aKj4/Xpk2b6rs8t/bt22vixInVXq6goEBJSUnatm2b12uyqvj4eMXHx1+2n81m07Rp02q9nhMnTmjKlCm69tprFRQUpPDwcPXs2VP333+/Tpw44e6XlJRU4W/5hz9ff/21JCk9PV1+fn6aM2dOhdf66quv1LRpU40ePbrW1wu4EgH1XQDQ0KxYsUJdunSRMUZOp1OLFy/WiBEjtHHjRo0YMaK+y7tiBQUFmjt3riRV6UMbvuXkyZO67rrrdNVVV2nGjBnq3LmzcnJy9Pnnn+v111/XsWPHFBMT47HMli1bFBYWVmGs1q1bS5Li4uL08MMPa/78+Ro5cqRuuOEGSVJZWZkmTJig4OBgLV26tPZXDrgCBBygmnr06KHrr7/ePX3LLbeoefPmWrNmTYMOOHWtoKBAwcHB9V2GZbz44ov69ttv9fHHHys2NtbdPnLkSM2ZM0dlZWUVlunbt69atGhxyXGTk5O1efNmTZgwQf/85z8VGBioZ599Vh9++KHeeusttWzZ0uvrAngDp6iAGgoMDFSTJk1kt9s92r/77jtNmTJFbdq0UZMmTXTNNdfo8ccfV1FRkSTp/Pnz+slPfqKOHTsqJyfHvZzT6VRUVJTi4+NVWloqSZo4caKaNm2qQ4cOadCgQQoJCVHLli01bdo0FRQUXLbG48ePa/z48WrVqpUcDoe6du2q5557zv2h9/XXX7s/qObOnes+VXG5U12HDh1SQkKCgoOD1bJlS02dOlX/+Mc/ZLPZPE51xcfHq0ePHtq+fbsGDBig4OBgTZo0qUq1SdK2bdsqjFlet81mU0pKirutOu+VMUZLlixRnz59FBQUpObNm2v06NE6duxYhX7z589Xu3btFBgYqOuuu06bN2++7Pv+Y//zP/+ja6+9Vg6HQ926ddPatWs91iUgIEDJyckVltu+fbtsNpveeOONi4599uxZ+fn5qVWrVpXO9/O7sn/ug4KClJKSoiNHjmjOnDk6ePCg/vjHP+rOO+/UqFGjrmhMoE4YAFWyYsUKI8ns2bPHuFwuU1xcbE6cOGEefvhh4+fnZ7Zs2eLuW1hYaHr16mVCQkLMs88+a1JTU80TTzxhAgICzC9/+Ut3vyNHjpjQ0FAzatQoY4wxpaWl5he/+IVp1aqVOX36tLvfhAkTTJMmTUzbtm3N008/bVJTU01SUpIJCAgww4cP96izXbt2ZsKECe7prKws06ZNG9OyZUuzbNkys2XLFjNt2jQjyTz44IPGGGPOnz9vtmzZYiSZe++91+zevdvs3r3bHD169KLvx+nTp01ERIRp27atSUlJMe+884656667TPv27Y0k88EHH7j7xsXFmfDwcBMTE2MWLVpkPvjgA5Oenl6l2owx5oMPPqgwpjHGZGRkGElmxYoVV/Re3X///cZut5sZM2aYLVu2mNWrV5suXbqYyMhI43Q63f2efPJJ93uzefNms3z5ctOmTRsTFRVl4uLiLvoelZNkYmJiTLdu3cyaNWvMxo0bzS233GIkmTfeeMPd77bbbjNt27Y1JSUlHsvffvvtJjo62rhcrou+xqpVq4wkk5CQYLZs2WJycnIu2rd8fZxOp3G5XB4/P37tcrNmzTJ+fn4mNjbWREdHm+++++6y6w3UJwIOUEXlAefHPw6HwyxZssSj77Jly4wk8/rrr3u0/+UvfzGSTGpqqrvttddeM5LMwoULzR//+Efj5+fnMd+YCx/aksxf//pXj/ann37aSDI7d+50t/044Dz22GNGkvnoo488ln3wwQeNzWYzhw8fNsYY88033xhJ5sknn6zS+zFz5kxjs9nMoUOHPNqHDh1aacCRZN577z2PvlWtrboBpyrv1e7du40k89xzz3n0O3HihAkKCjKzZs0yxhiTnZ1tAgMDzW233ebR78MPPzSSqhxwgoKCPEJTSUmJ6dKli+nYsaO7rXw9169f7247deqUCQgIMHPnzr3ka5SVlZnJkycbPz8/I8nYbDbTtWtX8/vf/95kZGR49C0POJX9dOjQodLxCwsLTVhYmJFk3nzzzcuuM1DfOEUFVNPf//537d27V3v37nVfmzB16lQtXrzY3ef9999XSEhIhTtMyk/5vPfee+62MWPG6MEHH9TMmTP1pz/9SXPmzNGQIUMqfe0777zTY3rcuHGSpA8++OCi9b7//vvq1q2b+wLRH9ZijNH7779/+ZWuRHp6unr06KFu3bp5tN9xxx2V9m/evLl+8Ytf1Elt0uXfq02bNslms2n8+PEqKSlx/0RFRal3797u02G7d+/W+fPnK4w3YMAAtWvXrsr1DBo0SJGRke5pf39//fa3v9XRo0d18uRJSRdO5fXu3VsvvPCCu9+yZctks9n0wAMPXHJ8m82mZcuW6dixY1qyZInuueceuVwuPf/88+revbvS09MrLLN161b333L5z4YNGyodf8WKFcrJyZGfn5/S0tKqvN5AfeEiY6CaunbtWuEi48zMTM2aNUvjx4/XVVddpbNnzyoqKko2m81j2VatWikgIEBnz571aJ80aZKWLl2qJk2a6OGHH670dQMCAhQREeHRFhUVJUkVxvuhs2fPqn379hXao6OjL7vspZw9e9bjYtZyP/wQ/6HyO3PqoraqvFf//ve/ZYy5aL3XXHONR//y5SsbsyoutfzZs2d19dVXS5Iefvhh3XfffTp8+LCuueYavfjiixo9enSVX6tdu3Z68MEH3dOvv/667rjjDs2cOVMff/yxR9/evXtf9iJjSTp27Jhmzpyp2267Tb169dLcuXM1evRoDR48uEo1AfWBIziAF/Tq1UuFhYU6cuSIJCkiIsL9AfpDWVlZKikp8fhQyc/P11133eV+dsl9991X6WuUlJRU+MB3Op3u17uYiIgInTlzpkL76dOnJalKH3AXG/ff//53hfbymn7sx2GvOrUFBgZKkvsC7XLffvttpa9VlfeqRYsWstls2rlzZ4WjGD88klHev7L1uti6VuZSy/9w+40bN04RERF64YUX9MYbb8jpdGrq1KlVfp0fGzNmjHr16qWDBw9e0fLGGN1zzz0KCgrSsmXL9Pjjj6t379667777dO7cuSuuC6htBBzACw4cOCBJ7juRBg0apLy8vAqH+//+97+755f73e9+p+PHj2vdunV6+eWXtXHjRj3//POVvs6rr77qMb169WpJl35uzaBBg/T555/rk08+qVCLzWbTwIEDJUkOh0OSVFhYeIk1/Y+4uDgdPHhQn3/+uUf7D+8Mupyq1lZ+lOfTTz/16Ldx48aLjn2592r48OEyxujUqVO6/vrrK/z07NlTktS/f38FBgZWGG/Xrl3KzMys8rq+9957HoGwtLRUr732mjp06OA+eiNdCHMPPPCAVq5cqQULFqhPnz666aabLjt+ZUFRkvLy8nTixAn3UbHq+utf/6rt27dr6dKlatWqlex2u1JSUnT69GnNnDnzisYE6kR9XgAENCTlFxmvWLHCfZfRpk2bzKRJk4wkj4tQy++iCg0NNQsWLDBpaWnmySefNHa73eMuqhdffLHCRbLTpk0zdrvd48LbS90ZNGzYMI86L3YXVVRUlFm+fLl59913zcMPP2xsNpuZMmVKhWU7d+5s3n33XbN3794KF6f+0KlTpzzuotq8ebO56667TLt27Ywkk56e7u4bFxdnunfvXmGM6tQ2ePBg07x5c/Piiy+a1NRU8+ijj5pOnTpV6y6qH79XDzzwgAkODjYzZ840b7/9tnn//ffNq6++ah588EGPC8f/8Ic/uO+i2rJli3nxxRe9dhfV2rVrK/Q/efKkCQgIMJLMSy+9dNnxjTFm6tSppk+fPiY5Odls3rzZbNu2zaxYscL07dvXSDJ/+9vf3H3LLzLesmWL+2/5hz/ld2AdPnzYBAUFmbFjx1Z4vfIx0tLSqlQfUNcIOEAVVXYXVVhYmOnTp49ZsGCBOX/+vEf/s2fPmt/97nemdevWJiAgwLRr187Mnj3b3e/TTz81QUFBHmHEmAu3bPft29e0b9/eZGdnG2MufGiHhISYTz/91MTHx5ugoCATHh5uHnzwQZOXl+ex/I8DjjHGZGZmmnHjxpmIiAhjt9tN586dzTPPPGNKS0s9+m3dutX85Cc/MQ6Hw0iqMM6PHTx40AwePNgEBgaa8PBwc++995qVK1caSeZf//qXu9/FAk51ajtz5owZPXq0CQ8PN2FhYWb8+PFm3759lQacqr5Xxhjzt7/9zfTr18+EhISYoKAg06FDB3P33Xebffv2ufuUlZWZ5ORkExMTY5o0aWJ69epl3n77bRMXF1flgDN16lSzZMkS06FDB2O3202XLl3Mq6++etFl4uPjTXh4uCkoKLjs+MYYs2fPHjN16lTTu3dvEx4ebvz9/U3Lli3NLbfcYt555x2Pvpe6i6o8tJSWlpobb7zRREVFmbNnz1Z4veLiYtO7d2/Trl07k5ubW6UagbpkM+ZHFwkA8DkTJ07Um2++qby8vPou5bIeeOABrVmzRmfPnlWTJk3q/PUb0nt1MVlZWWrXrp0eeughzZ8/v77LARok7qICcMWeeuopRUdH65prrlFeXp42bdqkl156SX/4wx/qJdw0dCdPntSxY8f0zDPPyM/PT//1X/9V3yUBDRYBB8AVs9vteuaZZ3Ty5EmVlJSoU6dOWrBgAR/MV+ill17SU089pfbt2+vVV19VmzZt6rskoMHiFBUAALAcbhMHAACWQ8ABAACWQ8AB4FNSUlJks9k8flq2bKn4+Hht2rTJo++P+4WFhSk+Pl7/+Mc/6ql6AL6CgAPAJ61YsUK7d+/Wrl27tHz5cvn7+2vEiBF6++23PfqNHj1au3fv1ocffqgXXnhBTqdTI0aMIOQAjRx3UQHwST169KjwpabNmzfXmjVrNGLECHd7ZGSk+vfvL+nCN3zfeOON6tixoxYuXKhf/epXdV43AN/AERwADUJgYKCaNGkiu91+yX4dOnRQy5Ytq/U9UQCsh4ADwCeVlpaqpKRELpdLJ0+eVGJiovLz8zVu3LhLLpedna2zZ8+6v/gUQOPEKSoAPqn8tFM5h8OhxYsXa+jQoR7txhiVlJTIGKOvvvpK06dPV1lZme688866LBeAjyHgAPBJf//739W1a1dJ0rfffqv169dr6tSpKi0t1bRp09z9lixZoiVLlrinw8LC9NRTT2nKlCl1XjMA30HAAeCTunbtWuEi48zMTM2aNUvjx4/XVVddJUkaM2aMZs6cKZvNptDQUHXo0EH+/v71VDUAX8E1OAAajF69eqmwsFBHjhxxt7Vs2VLXX3+9+vbtq2uvvZZwA0ASAQdAA3LgwAFJ4gJiAJfFKSoAPungwYMqKSmRJJ09e1br1q1TWlqabrvtNsXGxtZzdQB8HQEHgE+655573P8dFham2NhYLViwgIuHAVSJzRhj6rsIAAAAb+IaHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkN8jk4ZWVlOn36tEJDQ2Wz2eq7HAAAUAeMMTp37pyio6Pl53fpYzQNMuCcPn1aMTEx9V0GAACoBydOnNDVV199yT4NMuCEhoZKurCCzZo1q+dqUNdcLpdSU1OVkJAgu91e3+UAqEPs/41bbm6uYmJi3DngUhpkwCk/LdWsWTMCTiPkcrkUHBysZs2a8Q8c0Miw/0NSlS5P4SJjAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcNCilpaVKT0/X9u3blZ6ertLS0vouCQDggwg4aDDWrVunjh07asiQIVqwYIGGDBmijh07at26dfVdGgDAxxBw0CCsW7dOo0ePVs+ePbVjxw6tWbNGO3bsUM+ePTV69GhCDgDAAwEHPq+0tFQzZszQ8OHDtWHDBvXr109BQUHq16+fNmzYoOHDh+uRRx7hdBUAwI2AA5+3Y8cOff3115ozZ478/Dz/ZP38/DR79mxlZGRox44d9VQhAMDXEHDg886cOSNJ6tGjR6Xzy9vL+wEAQMCBz2vdurUk6eDBg5XOL28v7wcAAAEHPu9nP/uZ2rdvr3nz5qmsrMxjXllZmZKTkxUbG6uf/exn9VQhAMDXEHDg8/z9/fXcc89p06ZNGjlypPbs2aPCwkLt2bNHI0eO1KZNm/Tss8/K39+/vksFAPiIgPouAKiKUaNG6c0339SMGTP085//3N0eGxurN998U6NGjarH6gAAvoYjOGhQjDEe0z8+ZQUAgETAQQNR/qC/Xr16eTzor1evXjzoDwBQAQEHPo8H/QEAqouAA5/Hg/4AANVFwIHP40F/AIDqqnbA2b59u0aMGKHo6GjZbDZt2LDBY35SUpK6dOmikJAQNW/eXIMHD9ZHH33k0aeoqEgPPfSQWrRooZCQEN166606efJkjVYE1sWD/gAA1VXtgJOfn6/evXtr8eLFlc6/9tprtXjxYn322WfauXOn2rdvr4SEBH3zzTfuPomJiVq/fr3Wrl2rnTt3Ki8vT8OHD+caClSKB/0BAKrN1IAks379+kv2ycnJMZLM1q1bjTHGfP/998Zut5u1a9e6+5w6dcr4+fmZLVu2VOl1y8fMycm54trRsLz11lvGZrOZESNGmO3bt5s1a9aY7du3mxEjRhibzWbeeuut+i4RQB0oLi42GzZsMMXFxfVdCupBdT7/a/VBf8XFxVq+fLnCwsLUu3dvSdL+/fvlcrmUkJDg7hcdHa0ePXpo165dGjp0aIVxioqKVFRU5J7Ozc2VJLlcLrlcrtpcBfiIESNGaO3atXr00UcrPOhv7dq1GjFiBH8LQCNQvp+zvzdO1dnutRJwNm3apLFjx6qgoECtW7dWWlqaWrRoIUlyOp1q0qSJmjdv7rFMZGSknE5npeMlJydr7ty5FdpTU1MVHBzs/RWAT3I4HHruuef0+eefKzs7W82bN1e3bt3k7++vd955p77LA1CH0tLS6rsE1IOCgoIq962VgDNw4EAdOHBA3377rV588UWNGTNGH330kVq1anXRZYwxstlslc6bPXu2pk+f7p7Ozc1VTEyMEhIS1KxZM6/XD992yy23KC0tTUOGDJHdbq/vcgDUIZfLxf7fiJWfwamKWgk4ISEh6tixozp27Kj+/furU6dOevnllzV79mxFRUWpuLjY/X/g5bKysjRgwIBKx3M4HHI4HBXa7XY7f+CNGNsfaLzY/xun6mzzOnkOjjHGfQ1N3759ZbfbPQ4vnjlzRgcPHrxowAEAAKiOah/BycvL09GjR93TGRkZOnDggMLDwxUREaGnn35at956q1q3bq2zZ89qyZIlOnnypG6//XZJUlhYmO69917NmDFDERERCg8P1yOPPKKePXtq8ODB3lszAADQaFU74Ozbt08DBw50T5dfGzNhwgQtW7ZMX375pVauXKlvv/1WERER+ulPf6odO3aoe/fu7mWef/55BQQEaMyYMSosLNSgQYOUkpIif39/L6wSAABo7KodcOLj42WMuej8qnyrc2BgoBYtWqRFixZV9+UBAAAui++iAgAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAllPtr2oAalNBQYG+/PLLS/bJKyzSrs++UvMW+9Q0yHHZMbt06aLg4GBvlQiglrD/w5sIOPApX375pfr27VulvvOrOOb+/ft13XXXXXlRAOoE+z+8iYADn9KlSxft37//kn0On/le09/4TAtu76nOra+q0pgAfB/7P7yJgAOfEhwcfNn/2/LLPCvHjkJ17dFbfdpF1FFlAGob+z+8iYuMAQCA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5VQ74Gzfvl0jRoxQdHS0bDabNmzY4J7ncrn06KOPqmfPngoJCVF0dLTuvvtunT592mOMoqIiPfTQQ2rRooVCQkJ066236uTJkzVeGQAAAOkKAk5+fr569+6txYsXV5hXUFCgTz75RE888YQ++eQTrVu3TkeOHNGtt97q0S8xMVHr16/X2rVrtXPnTuXl5Wn48OEqLS298jUBAAD4PwHVXWDYsGEaNmxYpfPCwsKUlpbm0bZo0SLdcMMNOn78uNq2baucnBy9/PLLeuWVVzR48GBJ0qpVqxQTE6OtW7dq6NChV7AaAAAA/1HtgFNdOTk5stlsuuqqqyRJ+/fvl8vlUkJCgrtPdHS0evTooV27dlUacIqKilRUVOSezs3NlXThlJjL5ardFYDPKSkpcf9m+wONC/t/41adbV6rAef8+fN67LHHNG7cODVr1kyS5HQ61aRJEzVv3tyjb2RkpJxOZ6XjJCcna+7cuRXaU1NTFRwc7P3C4dNO5ElSgPbs2aNTB+u7GgB1if2/cSsoKKhy31oLOC6XS2PHjlVZWZmWLFly2f7GGNlstkrnzZ49W9OnT3dP5+bmKiYmRgkJCe7ghMbjX8e/kz7bp/79+6t32/D6LgdAHWL/b9zKz+BURa0EHJfLpTFjxigjI0Pvv/++RwiJiopScXGxsrOzPY7iZGVlacCAAZWO53A45HA4KrTb7XbZ7XbvrwB8WkBAgPs32x9oXNj/G7fqbHOvPwenPNz8v//3/7R161ZFRER4zO/bt6/sdrvHxchnzpzRwYMHLxpwAAAAqqPaR3Dy8vJ09OhR93RGRoYOHDig8PBwRUdHa/To0frkk0+0adMmlZaWuq+rCQ8PV5MmTRQWFqZ7771XM2bMUEREhMLDw/XII4+oZ8+e7ruqAAAAaqLaAWffvn0aOHCge7r82pgJEyYoKSlJGzdulCT16dPHY7kPPvhA8fHxkqTnn39eAQEBGjNmjAoLCzVo0CClpKTI39//ClcDAADgP6odcOLj42WMuej8S80rFxgYqEWLFmnRokXVfXkAAIDL4ruoAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5VQ74Gzfvl0jRoxQdHS0bDabNmzY4DF/3bp1Gjp0qFq0aCGbzaYDBw5UGKOoqEgPPfSQWrRooZCQEN166606efLkla4DAACAh2oHnPz8fPXu3VuLFy++6PybbrpJf/7zny86RmJiotavX6+1a9dq586dysvL0/Dhw1VaWlrdcgAAACoIqO4Cw4YN07Bhwy46/6677pIkff3115XOz8nJ0csvv6xXXnlFgwcPliStWrVKMTEx2rp1q4YOHVrdkgAAADxUO+DU1P79++VyuZSQkOBui46OVo8ePbRr165KA05RUZGKiorc07m5uZIkl8sll8tV+0XDp5SUlLh/s/2BxoX9v3Grzjav84DjdDrVpEkTNW/e3KM9MjJSTqez0mWSk5M1d+7cCu2pqakKDg6ulTrhu07kSVKA9uzZo1MH67saAHWJ/b9xKygoqHLfOg84F2OMkc1mq3Te7NmzNX36dPd0bm6uYmJilJCQoGbNmtVVifAR/zr+nfTZPvXv31+924bXdzkA6hD7f+NWfganKuo84ERFRam4uFjZ2dkeR3GysrI0YMCASpdxOBxyOBwV2u12u+x2e63VCt8UEBDg/s32BxoX9v/GrTrbvM6fg9O3b1/Z7XalpaW5286cOaODBw9eNOAAAABUR7WP4OTl5eno0aPu6YyMDB04cEDh4eFq27atvvvuOx0/flynT5+WJB0+fFjShSM3UVFRCgsL07333qsZM2YoIiJC4eHheuSRR9SzZ0/3XVUAAGvJ+DZf+UUlNR7nq2/y3b/Lj+bUVIgjQLEtQrwyFnxHtf869u3bp4EDB7qny6+NmTBhglJSUrRx40bdc8897vljx46VJD355JNKSkqSJD3//PMKCAjQmDFjVFhYqEGDBiklJUX+/v41WRcAgA/K+DZfA5/d5tUxZ7z5mVfH++CReEKOxVQ74MTHx8sYc9H5EydO1MSJEy85RmBgoBYtWqRFixZV9+UBAA1M+ZGbhb/to46tmtZsrMIibdq2W8Pjb1RIUMVrM6vraFaeEl874JWjS/AtPnMXFQDA2jq2aqoebcJqNIbL5ZKzpXRdu+ZcZIxL4ss2AQCA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5QTUdwFoPDK+zVd+UUmNx/nqm3z374AA7/wJhzgCFNsixCtjAQDqX7U/HbZv365nnnlG+/fv15kzZ7R+/XqNHDnSPd8Yo7lz52r58uXKzs5Wv3799MILL6h79+7uPkVFRXrkkUe0Zs0aFRYWatCgQVqyZImuvvpqr6wUfE/Gt/ka+Ow2r445483PvDreB4/EE3IAwCKqHXDy8/PVu3dv3XPPPfrNb35TYf78+fO1YMECpaSk6Nprr9Wf/vQnDRkyRIcPH1ZoaKgkKTExUW+//bbWrl2riIgIzZgxQ8OHD9f+/fvl7+9f87WCzyk/crPwt33UsVXTmo1VWKRN23ZrePyNCgly1Li2o1l5SnztgFeOLgEAfEO1A86wYcM0bNiwSucZY7Rw4UI9/vjjGjVqlCRp5cqVioyM1OrVqzV58mTl5OTo5Zdf1iuvvKLBgwdLklatWqWYmBht3bpVQ4cOrcHqwNd1bNVUPdqE1WgMl8slZ0vpunbNZbfbvVQZAMBKvHoNTkZGhpxOpxISEtxtDodDcXFx2rVrlyZPnqz9+/fL5XJ59ImOjlaPHj20a9euSgNOUVGRioqK3NO5ubmSLnzQuVwub64CaklJSYn7d023Wfny3tr23qwNQEXs//CW6mwjrwYcp9MpSYqMjPRoj4yMVGZmprtPkyZN1Lx58wp9ypf/seTkZM2dO7dCe2pqqoKDg71ROmrZiTxJCtDOnTuVWbMzVG5paWleGac2agPwH+z/8JaCgoIq962Vu6hsNpvHtDGmQtuPXarP7NmzNX36dPd0bm6uYmJilJCQoGbNmtW8YNS6Q6dz9exne3TzzTere3TNtpnL5VJaWpqGDBnilVNU3qwNQEXs//CW8jM4VeHVgBMVFSXpwlGa1q1bu9uzsrLcR3WioqJUXFys7Oxsj6M4WVlZGjBgQKXjOhwOORwVLya12+1cg9FAlN/OHRAQ4LVt5q3tXxu1AfgP9n94S3W2kVcf9BcbG6uoqCiPQ4fFxcVKT093h5e+ffvKbrd79Dlz5owOHjx40YADAABQHdU+gpOXl6ejR4+6pzMyMnTgwAGFh4erbdu2SkxM1Lx589SpUyd16tRJ8+bNU3BwsMaNGydJCgsL07333qsZM2YoIiJC4eHheuSRR9SzZ0/3XVUAAAA1Ue2As2/fPg0cONA9XX5tzIQJE5SSkqJZs2apsLBQU6ZMcT/oLzU11f0MHEl6/vnnFRAQoDFjxrgf9JeSksIzcAAAgFdUO+DEx8fLGHPR+TabTUlJSUpKSrpon8DAQC1atEiLFi2q7ssDAABcFl+2CQAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALKdWvosKAIByRaXn5Rd4Shm5h+UXWLNvtCwpKdHpktP64rsv3F+zUBMZuXnyCzylotLzksJqPB58BwEHAFCrTudnKiR2keZ87L0xl2xZ4rWxQmKl0/l91FeRXhsT9Y+AAwCoVdEh7ZSf8ZD++ts+6tCq5kdwPtz5oW66+SavHMH5KitP//XaAUUPbFfjseBbCDgAgFrl8A9U2fk2im3WWd0ianYayOVyKSMgQ13Du3rl27/Lzueo7Pw3cvgH1ngs+BYuMgYAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZTKwHn3LlzSkxMVLt27RQUFKQBAwZo79697vnGGCUlJSk6OlpBQUGKj4/XoUOHaqMUAADQCNVKwLnvvvuUlpamV155RZ999pkSEhI0ePBgnTp1SpI0f/58LViwQIsXL9bevXsVFRWlIUOG6Ny5c7VRDgAAaGS8HnAKCwv11ltvaf78+fr5z3+ujh07KikpSbGxsVq6dKmMMVq4cKEef/xxjRo1Sj169NDKlStVUFCg1atXe7scAADQCAV4e8CSkhKVlpYqMDDQoz0oKEg7d+5URkaGnE6nEhIS3PMcDofi4uK0a9cuTZ48ucKYRUVFKioqck/n5uZKklwul1wul7dXAbWgpKTE/bum26x8eW9te2/WBqAi9n94S3W2kdcDTmhoqG688Ub993//t7p27arIyEitWbNGH330kTp16iSn0ylJioyM9FguMjJSmZmZlY6ZnJysuXPnVmhPTU1VcHCwt1cBteBEniQFaOfOncps6p0x09LSvDJObdQG4D/Y/+EtBQUFVe7r9YAjSa+88oomTZqkNm3ayN/fX9ddd53GjRunTz75xN3HZrN5LGOMqdBWbvbs2Zo+fbp7Ojc3VzExMUpISFCzZs1qYxXgZYdO5+rZz/bo5ptvVvfomm0zl8ultLQ0DRkyRHa73adqA1AR+z+8pfwMTlXUSsDp0KGD0tPTlZ+fr9zcXLVu3Vq//e1vFRsbq6ioKEmS0+lU69at3ctkZWVVOKpTzuFwyOFwVGi32+1e+QNH7QsICHD/9tY289b2r43aAPwH+z+8pTrbqFafgxMSEqLWrVsrOztb7777rn7961+7Q84PDy8WFxcrPT1dAwYMqM1yAABAI1ErR3DeffddGWPUuXNnHT16VDNnzlTnzp11zz33yGazKTExUfPmzVOnTp3UqVMnzZs3T8HBwRo3blxtlAMAqEeFrlJJ0sFTOTUeK7+wSPu+kaIysxUSVPHIfnUdzcqr8RjwTbUScHJycjR79mydPHlS4eHh+s1vfqOnn37afWhp1qxZKiws1JQpU5Sdna1+/fopNTVVoaGhtVEOAKAeffV/IeKxdZ95acQAvXJ07+W7VUOIo1Y+DlGPamWLjhkzRmPGjLnofJvNpqSkJCUlJdXGywMAfEhC9wvXXnZo1VRBdv8ajXX4TI5mvPmZnhvdU51bh3mjPIU4AhTbIsQrY8F3EFkBALUqPKSJxt7Q1itjlT+3pkPLEPVo452AA2viyzYBAIDlcAQHdaKo9Lz8Ak8pI/ew/AJr9jStkpISnS45rS+++8J9i2dNZOTmyS/wlIpKz0vi/wgBwAoIOKgTp/MzFRK7SHM+9t6YS7Ys8dpYIbHS6fw+6qvKn8UEAGhYCDioE9Eh7ZSf8ZD++ts+6tCq5kdwPtz5oW66+SavHMH5KitP//XaAUUPbFfjsQAAvoGAgzrh8A9U2fk2im3WWd0ianYayOVyKSMgQ13Du3rlyaNl53NUdv4bOfwDL98ZANAgcJExAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwnID6LgCNQ6GrVJJ08FROjcfKLyzSvm+kqMxshQQ5ajze0ay8Go8BAPAtBBzUia/+L0Q8tu4zL40YoFeO7vXSWBeEONgdAMAq+BcddSKhe5QkqUOrpgqy+9dorMNncjTjzc/03Oie6tw6zBvlKcQRoNgWIV4ZCwBQ/wg4qBPhIU009oa2XhmrpKREktShZYh6tPFOwAEAWAsXGQMAAMsh4AAAAMsh4AAAAMvxesApKSnRH/7wB8XGxiooKEjXXHONnnrqKZWVlbn7GGOUlJSk6OhoBQUFKT4+XocOHfJ2KQAAoJHyesD5y1/+omXLlmnx4sX64osvNH/+fD3zzDNatGiRu8/8+fO1YMECLV68WHv37lVUVJSGDBmic+fOebscAADQCHn9Lqrdu3fr17/+tX71q19Jktq3b681a9Zo3759ki4cvVm4cKEef/xxjRo1SpK0cuVKRUZGavXq1Zo8eXKFMYuKilRUVOSezs3NlSS5XC65XC5vrwJ8XPldVCUlJWx/oJFh/2/cqrPNvR5wbr75Zi1btkxHjhzRtddeq3/961/auXOnFi5cKEnKyMiQ0+lUQkKCexmHw6G4uDjt2rWr0oCTnJysuXPnVmhPTU1VcHCwt1cBPu5EniQFaM+ePTp1sL6rAVCX2P8bt4KCgir39XrAefTRR5WTk6MuXbrI399fpaWlevrpp3XHHXdIkpxOpyQpMjLSY7nIyEhlZmZWOubs2bM1ffp093Rubq5iYmKUkJCgZs2aeXsV4OP+dfw76bN96t+/v3q3Da/vcgDUIfb/xq38DE5VeD3gvPbaa1q1apVWr16t7t2768CBA0pMTFR0dLQmTJjg7mez2TyWM8ZUaCvncDjkcFT8ziG73S673e7dFYDPCwgIcP9m+wONC/t/41adbe71gDNz5kw99thjGjt2rCSpZ8+eyszMVHJysiZMmKCoqAuP7Hc6nWrdurV7uaysrApHdQAAAK6E1++iKigokJ+f57D+/v7u28RjY2MVFRWltLQ09/zi4mKlp6drwIAB3i4HAAA0Ql4/gjNixAg9/fTTatu2rbp3765//vOfWrBggSZNmiTpwqmpxMREzZs3T506dVKnTp00b948BQcHa9y4cd4uBwAANEJeDziLFi3SE088oSlTpigrK0vR0dGaPHmy/vjHP7r7zJo1S4WFhZoyZYqys7PVr18/paamKjQ01NvlAACARsjrASc0NFQLFy503xZeGZvNpqSkJCUlJXn75QEAAPguKgAAYD0EHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDleDzjt27eXzWar8DN16lRJkjFGSUlJio6OVlBQkOLj43Xo0CFvlwEAABoxrwecvXv36syZM+6ftLQ0SdLtt98uSZo/f74WLFigxYsXa+/evYqKitKQIUN07tw5b5cCAAAaqQBvD9iyZUuP6T//+c/q0KGD4uLiZIzRwoUL9fjjj2vUqFGSpJUrVyoyMlKrV6/W5MmTKx2zqKhIRUVF7unc3FxJksvlksvl8vYqwMeVlJS4f7P9AesoKCjQ4cOHL9nnyJkcFTmP6uCBJir+d9hlx+zcubOCg4O9VSLqWXX+zfd6wPmh4uJirVq1StOnT5fNZtOxY8fkdDqVkJDg7uNwOBQXF6ddu3ZdNOAkJydr7ty5FdpTU1P5w22ETuRJUoD27NmjUwfruxoA3vLVV19pxowZVep718qqjfncc8+pQ4cONagKvqSgoKDKfWs14GzYsEHff/+9Jk6cKElyOp2SpMjISI9+kZGRyszMvOg4s2fP1vTp093Tubm5iomJUUJCgpo1a+b9wuHT/nX8O+mzferfv796tw2v73IAeElBQYFuvvnmS/bJKyzSuzv2aujPfqqmQY7LjskRHGspP4NTFbUacF5++WUNGzZM0dHRHu02m81j2hhToe2HHA6HHI6Kf8h2u112u907xaLBCAgIcP9m+wPWERYWphtuuOGSfVwul859/51+NqA/+38jVJ1tXmu3iWdmZmrr1q2677773G1RUVGS/nMkp1xWVlaFozoAAABXqtYCzooVK9SqVSv96le/crfFxsYqKirKfWeVdOE6nfT0dA0YMKC2SgEAAI1MrZyiKisr04oVKzRhwgT36QTpwqmpxMREzZs3T506dVKnTp00b948BQcHa9y4cbVRCgAAaIRqJeBs3bpVx48f16RJkyrMmzVrlgoLCzVlyhRlZ2erX79+Sk1NVWhoaG2UAgAAGqFaCTgJCQkyxlQ6z2azKSkpSUlJSbXx0gAAAHwXFQAAsB4CDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsJyA+i4A+KGCggJ9+eWXl+xz+Mz3KnIe1RcHg1R29qrLjtmlSxcFBwd7qUIAQENAwIFP+fLLL9W3b98q9R23smpj7t+/X9ddd10NqgIANDQEHPiULl26aP/+/Zfsk1dYpH98sFu/GnijmgY5qjQmAKBxIeDApwQHB1/2aIvL5VL2t1m68YbrZbfb66gyAEBDwkXGAADAcgg4AADAcgg4AADAcmol4Jw6dUrjx49XRESEgoOD1adPH48LR40xSkpKUnR0tIKCghQfH69Dhw7VRikAAKAR8nrAyc7O1k033SS73a7Nmzfr888/13PPPaerrrrK3Wf+/PlasGCBFi9erL179yoqKkpDhgzRuXPnvF0OAABohLx+F9Vf/vIXxcTEaMWKFe629u3bu//bGKOFCxfq8ccf16hRoyRJK1euVGRkpFavXq3Jkyd7uyQAANDIeD3gbNy4UUOHDtXtt9+u9PR0tWnTRlOmTNH9998vScrIyJDT6VRCQoJ7GYfDobi4OO3atavSgFNUVKSioiL3dG5urqQLtwu7XC5vrwJ8XPk2Z9sDjQ/7f+NWne3u9YBz7NgxLV26VNOnT9ecOXP08ccf6+GHH5bD4dDdd98tp9MpSYqMjPRYLjIyUpmZmZWOmZycrLlz51ZoT01N5RH8jVhaWlp9lwCgnrD/N04FBQVV7uv1gFNWVqbrr79e8+bNkyT95Cc/0aFDh7R06VLdfffd7n42m81jOWNMhbZys2fP1vTp093Tubm5iomJUUJCgpo1a+btVYCPc7lcSktL05AhQ3jQH9DIsP83buVncKrC6wGndevW6tatm0db165d9dZbb0mSoqKiJElOp1OtW7d298nKyqpwVKecw+GQw1Hxkfx2u50/8EaM7Q80Xuz/jVN1trnX76K66aabdPjwYY+2I0eOqF27dpKk2NhYRUVFeRxeLC4uVnp6ugYMGODtcgAAQCPk9SM4v//97zVgwADNmzdPY8aM0ccff6zly5dr+fLlki6cmkpMTNS8efPUqVMnderUSfPmzVNwcLDGjRvn7XIAAEAj5PWA89Of/lTr16/X7Nmz9dRTTyk2NlYLFy7UnXfe6e4za9YsFRYWasqUKcrOzla/fv2Umpqq0NBQb5cDAAAaIZsxxtR3EdWVk5Ojq666SidOnOAi40bI5XIpNTVVCQkJnIMHGhn2/8at/Caj77//XmFhYZfs6/UjOHWh/InHMTEx9VwJAACoa+fOnbtswGmQR3DKysp0+vRphYaGXvTWclhXeYLnCB7Q+LD/N27GGJ07d07R0dHy87v0fVIN8giOn5+frr766vouA/WsWbNm/AMHNFLs/43X5Y7clKuVbxMHAACoTwQcAABgOQQcNDgOh0NPPvlkpU+3BmBt7P+oqgZ5kTEAAMClcAQHAABYDgEHAABYDgEHAABYDgEHAABYDgEHDcb27ds1YsQIRUdHy2azacOGDfVdEoA6kpycrJ/+9KcKDQ1Vq1atNHLkSB0+fLi+y4IPI+CgwcjPz1fv3r21ePHi+i4FQB1LT0/X1KlTtWfPHqWlpamkpEQJCQnKz8+v79Lgo7hNHA2SzWbT+vXrNXLkyPouBUA9+Oabb9SqVSulp6fr5z//eX2XAx/EERwAQIOTk5MjSQoPD6/nSuCrCDgAgAbFGKPp06fr5ptvVo8ePeq7HPioBvlt4gCAxmvatGn69NNPtXPnzvouBT6MgAMAaDAeeughbdy4Udu3b9fVV19d3+XAhxFwAAA+zxijhx56SOvXr9e2bdsUGxtb3yXBxxFw0GDk5eXp6NGj7umMjAwdOHBA4eHhatu2bT1WBqC2TZ06VatXr9b//u//KjQ0VE6nU5IUFhamoKCgeq4OvojbxNFgbNu2TQMHDqzQPmHCBKWkpNR9QQDqjM1mq7R9xYoVmjhxYt0WgwaBgAMAACyH28QBAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAA+ISsrCxNnjxZbdu2lcPhUFRUlIYOHardu3dLktq3by+bzVbh589//rMk6Z133lGTJk30ySefeIz77LPPqkWLFu7vLgLQOPBlmwB8wm9+8xu5XC6tXLlS11xzjf7973/rvffe03fffefu89RTT+n+++/3WC40NFSS9Mtf/lJ333237r77bu3fv18Oh0NffPGFnnjiCaWkpCgqKqpO1wdA/eK7qADUu++//17NmzfXtm3bFBcXV2mf9u3bKzExUYmJiRcd59y5c+rZs6fGjh2rP/3pT7rxxhsVGxur119/vZYqB+CrOIIDoN41bdpUTZs21YYNG9S/f385HI4rGic0NFR/+9vfNHToUGVkZOjEiRPavHmzl6sF0BBwBAeAT3jrrbd0//33q7CwUNddd53i4uI0duxY9erVS9KFIzhnzpyR3W73WG7Tpk2Kj4/3aLvjjju0du1avfbaaxozZkxdrQIAH0LAAeAzzp8/rx07dmj37t3asmWLPv74Y7300kuaOHGi2rdvr/Hjx2vixIkey7Rp00ZBQUHu6dOnT6t79+4qLi7WpEmTtGjRojpeCwC+gIADwGfdd999SktLU2ZmZpWuwZEuXGxcUFCguXPnatCgQXrvvfcuel0PAOviNnEAPqtbt27Kz8+vcv+XXnpJO3bs0IoVKxQXF6dp06Zp0qRJ1RoDgDUQcADUu7Nnz+oXv/iFVq1apU8//VQZGRl64403NH/+fP3617929zt37pycTqfHT25uriTp+PHjmjFjhp599lnFxsZKkubNmyc/Pz899thj9bJeAOoPp6gA1LuioiIlJSUpNTVVX331lVwul2JiYnT77bdrzpw5CgoKUvv27ZWZmVlh2cmTJ2vp0qUaMmSI/P399e6773rM37lzp+Lj4zlVBTQyBBwAAGA5nKICAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACW8/8BgTzibYyKVSUAAAAASUVORK5CYII=" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-23T15:11:07.087651\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAHNCAYAAAATwgHBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3iklEQVR4nO3de3RU1cH//8+EmQxJCJEQkkkkBEQUMYAVLZf6a8ItiF+wiIpKtVBRqVx8+ALSgrWGLiF9UEEXVGyFEhQRtYqlCjFBJTRFHiF9KJcq3iIGSUyNmDuTSdi/P/xm6pAAGTK5nbxfa80azjn77LP3nJyZD3vOmWMzxhgBAABYSFBrNwAAACDQCDgAAMByCDgAAMByCDgAAMByCDgAAMByCDgAAMByCDgAAMByCDgAAMByCDgAAMByCDhAI6Wnp8tms/k8evTooeTkZL3xxhut3Tyv3r17a/r06X6vV1lZqdTUVO3atSvgbbKq5ORkJScnn7eczWbTnDlzmr09+fn5mjVrli677DKFhIQoMjJSAwcO1L333qv8/HxvudTU1Hp/y99/fP7555Kk7OxsBQUFacmSJfW29emnn6pLly665ZZbmr1fwIWwt3YDgPZmw4YN6t+/v4wxKiws1Jo1azRx4kRt27ZNEydObO3mXbDKykotXbpUkhr1oY225fjx47r66qt10UUXacGCBbr88stVUlKif/3rX3r55Zf12WefKT4+3medjIwMRURE1KsrNjZWkpSUlKQHHnhAK1as0KRJk/TDH/5QknT69GlNmzZNoaGhWrt2bfN3DrgABBzAT4mJibrmmmu809dff726deumF198sV0HnJZWWVmp0NDQ1m6GZTz77LP6+uuv9f7776tPnz7e+ZMmTdKSJUt0+vTpeusMGTJEUVFR56w3LS1NO3bs0LRp0/S///u/6ty5sx5//HH9/e9/16uvvqoePXoEvC9AIPAVFdBEnTt3VnBwsBwOh8/8b775RrNmzdLFF1+s4OBgXXLJJXrooYfkdrslSadOndIPfvADXXrppSopKfGuV1hYKJfLpeTkZNXW1kqSpk+fri5duujIkSMaPXq0wsLC1KNHD82ZM0eVlZXnbeMXX3yhO++8U9HR0XI6nbriiiv0xBNPeD/0Pv/8c+8H1dKlS71fVZzvq64jR44oJSVFoaGh6tGjh2bPnq0333xTNpvN56uu5ORkJSYmavfu3RoxYoRCQ0N19913N6ptkrRr1656dda122azKT093TvPn9fKGKOnn35aV111lUJCQtStWzfdcsst+uyzz+qVW7FihRISEtS5c2ddffXV2rFjx3lf9zP94Q9/0GWXXSan06kBAwZoy5YtPn2x2+1KS0urt97u3btls9n0yiuvnLXu4uJiBQUFKTo6usHlQUEX9nYfEhKi9PR0ffTRR1qyZIkOHz6s3/zmN/rpT3+qyZMnX1CdQIswABplw4YNRpLZu3ev8Xg8prq62uTn55sHHnjABAUFmYyMDG/ZqqoqM2jQIBMWFmYef/xxk5mZaR5++GFjt9vNDTfc4C330UcfmfDwcDN58mRjjDG1tbVm1KhRJjo62pw4ccJbbtq0aSY4ONj06tXLLFu2zGRmZprU1FRjt9vNhAkTfNqZkJBgpk2b5p0uKioyF198senRo4d55plnTEZGhpkzZ46RZO6//35jjDGnTp0yGRkZRpKZMWOGee+998x7771nPvnkk7O+HidOnDDdu3c3vXr1Munp6Wb79u3mrrvuMr179zaSzLvvvustm5SUZCIjI018fLxZvXq1effdd012dnaj2maMMe+++269Oo0xJi8vz0gyGzZsuKDX6t577zUOh8MsWLDAZGRkmM2bN5v+/fubmJgYU1hY6C33yCOPeF+bHTt2mD/+8Y/m4osvNi6XyyQlJZ31NaojycTHx5sBAwaYF1980Wzbts1cf/31RpJ55ZVXvOVuuukm06tXL1NTU+Oz/q233mri4uKMx+M56zY2bdpkJJmUlBSTkZFhSkpKzlq2rj+FhYXG4/H4PM7cdp1FixaZoKAg06dPHxMXF2e++eab8/YbaE0EHKCR6gLOmQ+n02mefvppn7LPPPOMkWRefvlln/n//d//bSSZzMxM77yXXnrJSDJPPvmk+c1vfmOCgoJ8lhvz3Ye2JPPUU0/5zF+2bJmRZHJycrzzzgw4v/rVr4wk8z//8z8+695///3GZrOZo0ePGmOM+fe//20kmUceeaRRr8eDDz5obDabOXLkiM/8cePGNRhwJJm3337bp2xj2+ZvwGnMa/Xee+8ZSeaJJ57wKZefn29CQkLMokWLjDHGnDx50nTu3NncdNNNPuX+/ve/G0mNDjghISE+oammpsb079/fXHrppd55df3cunWrd96XX35p7Ha7Wbp06Tm3cfr0aTNz5kwTFBRkJBmbzWauuOIK83//7/81eXl5PmXrAk5Dj759+zZYf1VVlYmIiDCSzJ///Ofz9hlobXxFBfjpueee0759+7Rv3z7vuQmzZ8/WmjVrvGXeeecdhYWF1bvCpO4rn7fffts7b8qUKbr//vv14IMP6tFHH9WSJUs0duzYBrf905/+1Gd66tSpkqR33333rO195513NGDAAO8Jot9vizFG77zzzvk73YDs7GwlJiZqwIABPvPvuOOOBst369ZNo0aNapG2Sed/rd544w3ZbDbdeeedqqmp8T5cLpcGDx7s/Trsvffe06lTp+rVN2LECCUkJDS6PaNHj1ZMTIx3ulOnTrrtttv0ySef6Pjx45K++ypv8ODB+v3vf+8t98wzz8hms+m+++47Z/02m03PPPOMPvvsMz399NP6+c9/Lo/Ho1WrVunKK69UdnZ2vXV27tzp/Vuue7z++usN1r9hwwaVlJQoKChIWVlZje430Fo4yRjw0xVXXFHvJONjx45p0aJFuvPOO3XRRRepuLhYLpdLNpvNZ93o6GjZ7XYVFxf7zL/77ru1du1aBQcH64EHHmhwu3a7Xd27d/eZ53K5JKlefd9XXFys3r1715sfFxd33nXPpbi42Odk1jrf/xD/vrorc1qibY15rb766isZY87a3ksuucSnfN36DdXZGOdav7i4WD179pQkPfDAA7rnnnt09OhRXXLJJXr22Wd1yy23NHpbCQkJuv/++73TL7/8su644w49+OCDev/9933KDh48+LwnGUvSZ599pgcffFA33XSTBg0apKVLl+qWW27RmDFjGtUmoDUwggMEwKBBg1RVVaWPPvpIktS9e3fvB+j3FRUVqaamxudDpaKiQnfddZf3t0vuueeeBrdRU1NT7wO/sLDQu72z6d69uwoKCurNP3HihCQ16gPubPV+9dVX9ebXtelMZ4Y9f9rWuXNnSfKeoF3n66+/bnBbjXmtoqKiZLPZlJOTU28U4/sjGXXlG+rX2frakHOt//39N3XqVHXv3l2///3v9corr6iwsFCzZ89u9HbONGXKFA0aNEiHDx++oPWNMfr5z3+ukJAQPfPMM3rooYc0ePBg3XPPPSorK7vgdgHNjYADBMCBAwckyXsl0ujRo1VeXl5vuP+5557zLq/zi1/8Ql988YVee+01rV+/Xtu2bdOqVasa3M4LL7zgM71582ZJ5/7dmtGjR+tf//qX/vGPf9Rri81m08iRIyVJTqdTklRVVXWOnv5HUlKSDh8+rH/9618+879/ZdD5NLZtdaM8Bw8e9Cm3bdu2s9Z9vtdqwoQJMsboyy+/1DXXXFPvMXDgQEnSsGHD1Llz53r17dmzR8eOHWt0X99++22fQFhbW6uXXnpJffv29Y7eSN+Fufvuu08bN27UypUrddVVV+lHP/rReetvKChKUnl5ufLz872jYv566qmntHv3bq1du1bR0dFyOBxKT0/XiRMn9OCDD15QnUCLaM0TgID2pO4k4w0bNnivMnrjjTfM3XffbST5nIRadxVVeHi4WblypcnKyjKPPPKIcTgcPldRPfvss/VOkp0zZ45xOBw+J96e68qg8ePH+7TzbFdRuVwu88c//tG89dZb5oEHHjA2m83MmjWr3rqXX365eeutt8y+ffvqnZz6fV9++aXPVVQ7duwwd911l0lISDCSTHZ2trdsUlKSufLKK+vV4U/bxowZY7p162aeffZZk5mZaX75y1+afv36+XUV1Zmv1X333WdCQ0PNgw8+aP7617+ad955x7zwwgvm/vvv9zlx/Ne//rX3KqqMjAzz7LPPBuwqqi1bttQrf/z4cWO3240ks27duvPWb4wxs2fPNldddZVJS0szO3bsMLt27TIbNmwwQ4YMMZLMn/70J2/ZupOMMzIyvH/L33/UXYF19OhRExISYm6//fZ626urIysrq1HtA1oaAQdopIauooqIiDBXXXWVWblypTl16pRP+eLiYvOLX/zCxMbGGrvdbhISEszixYu95Q4ePGhCQkJ8wogx312yPWTIENO7d29z8uRJY8x3H9phYWHm4MGDJjk52YSEhJjIyEhz//33m/Lycp/1zww4xhhz7NgxM3XqVNO9e3fjcDjM5Zdfbh577DFTW1vrU27nzp3mBz/4gXE6nUZSvXrOdPjwYTNmzBjTuXNnExkZaWbMmGE2btxoJJl//vOf3nJnCzj+tK2goMDccsstJjIy0kRERJg777zT7N+/v8GA09jXyhhj/vSnP5mhQ4easLAwExISYvr27Wt+9rOfmf3793vLnD592qSlpZn4+HgTHBxsBg0aZP7617+apKSkRgec2bNnm6efftr07dvXOBwO079/f/PCCy+cdZ3k5GQTGRlpKisrz1u/Mcbs3bvXzJ492wwePNhERkaaTp06mR49epjrr7/ebN++3afsua6iqgsttbW1Zvjw4cblcpni4uJ626uurjaDBw82CQkJprS0tFFtBFqSzZgzThIA0OZMnz5df/7zn1VeXt7aTTmv++67Ty+++KKKi4sVHBzc4ttvT6/V2RQVFSkhIUFz587VihUrWrs5QLvEVVQALthvf/tbxcXF6ZJLLlF5ebneeOMNrVu3Tr/+9a9bJdy0d8ePH9dnn32mxx57TEFBQfqv//qv1m4S0G4RcABcMIfDoccee0zHjx9XTU2N+vXrp5UrV/LBfIHWrVun3/72t+rdu7deeOEFXXzxxa3dJKDd4isqAABgOVwmDgAALIeAAwAALIeAA6DNmzBhgi666CLl5+fXW/bNN98oNjZWP/rRj3T69OlWaB2AtoiAA6DNW7dunex2e4O3sZgzZ47Kysq0ceNGBQXxlgbgO7wbAGjzXC6Xnn76aWVmZuoPf/iDd/7WrVv14osv6rHHHtOll17aii0E0NZwFRWAduOOO+7QG2+8oUOHDik8PFwDBgzQ4MGDlZmZ2dpNA9DGEHAAtBvffPONEhMT1b9/f/Xo0UOZmZk6dOiQz80qAUDih/4AtCORkZFav369brjhBknS888/T7gB0CBGcAC0O8OHD1dxcbE++uij1m4KgDaKk4wBtDtOp5N7XQE4JwIOAACwHAIOAACwHAIOAACwHAIOAACwHK6iAgAAlsMIDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsJx2eTfx06dP68SJEwoPD5fNZmvt5gAAgBZgjFFZWZni4uIUFHTuMZp2GXBOnDih+Pj41m4GAABoBfn5+erZs+c5y7TLgBMeHi7puw527dq1lVuDlubxeJSZmamUlBQ5HI7Wbg6AFsTx37GVlpYqPj7emwPOpV0GnLqvpbp27UrA6YA8Ho9CQ0PVtWtX3uCADobjH5IadXoKJxkDAADLIeAAAADLIeAAAADLIeAAAADLIeAAAADL8SvgrF27VoMGDfJevTR8+HDt2LHDu3z69Omy2Ww+j2HDhvnU4Xa7NXfuXEVFRSksLEw33nijjh8/HpjeAAAAyM+A07NnT/3ud7/T/v37tX//fo0aNUo/+clPdOTIEW+Z66+/XgUFBd7H9u3bfeqYN2+etm7dqi1btignJ0fl5eWaMGGCamtrA9MjAADQ4fn1OzgTJ070mV62bJnWrl2rvXv36sorr5QkOZ1OuVyuBtcvKSnR+vXr9fzzz2vMmDGSpE2bNik+Pl47d+7UuHHjLqQPAAAAPi74h/5qa2v1yiuvqKKiQsOHD/fO37Vrl6Kjo3XRRRcpKSlJy5YtU3R0tCQpNzdXHo9HKSkp3vJxcXFKTEzUnj17zhpw3G633G63d7q0tFTSdz/45PF4LrQLaKfq9jn7Huh4OP47Nn/2u98B59ChQxo+fLhOnTqlLl26aOvWrRowYIAkafz48br11luVkJCgvLw8Pfzwwxo1apRyc3PldDpVWFio4OBgdevWzafOmJgYFRYWnnWbaWlpWrp0ab35mZmZCg0N9bcLsIisrKzWbgKAVsLx3zFVVlY2uqzNGGP8qby6ulpffPGFvv32W7366qtat26dsrOzvSHn+woKCpSQkKAtW7Zo8uTJ2rx5s37+85/7jMZI0tixY9W3b18988wzDW6zoRGc+Ph4ff3119yqoQPyeDzKysrS2LFj+al2oIPh+O/YSktLFRUVpZKSkvN+/vs9ghMcHKxLL71UknTNNddo3759euqpp/SHP/yhXtnY2FglJCTo448/liS5XC5VV1fr5MmTPqM4RUVFGjFixFm36XQ65XQ66813OBz8gXdg7H+g4+L475j82edNvtmmMabeiEyd4uJi5efnKzY2VpI0ZMgQORwOZWVlacqUKZK+G+U5fPiwVqxY0dSmwAIqKyv14YcfnrNMeZVbew59qm5R+9UlpH7wPVP//v35KhMAOhi/As6SJUs0fvx4xcfHq6ysTFu2bNGuXbuUkZGh8vJypaam6uabb1ZsbKw+//xzLVmyRFFRUbrpppskSREREZoxY4YWLFig7t27KzIyUgsXLtTAgQO9V1WhY/vwww81ZMiQRpVtbCTOzc3V1VdffeGNAgC0O34FnK+++kp33XWXCgoKFBERoUGDBikjI0Njx45VVVWVDh06pOeee07ffvutYmNjNXLkSL300ksKDw/31rFq1SrZ7XZNmTJFVVVVGj16tNLT09WpU6eAdw7tT//+/ZWbm3vOMkcLvtX8Vw5p5a0DdXnsRY2qEwDQsfh9knFbUFpaqoiIiEadZATrOXCsWJPW7tXr9w/TVQndW7s5AFqQx+PR9u3bdcMNN3AOTgfkz+c/96ICAACW0+STjAEACAQuMkAgEXAAAG0CFxkgkAg4AIA2gYsMEEgEHABAmxAaGnre0ZagY8Vy/q1KVyQO5iIDnBMnGQMAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMvxK+CsXbtWgwYNUteuXdW1a1cNHz5cO3bs8C43xig1NVVxcXEKCQlRcnKyjhw54lOH2+3W3LlzFRUVpbCwMN144406fvx4YHoDAAAgPwNOz5499bvf/U779+/X/v37NWrUKP3kJz/xhpgVK1Zo5cqVWrNmjfbt2yeXy6WxY8eqrKzMW8e8efO0detWbdmyRTk5OSovL9eECRNUW1sb2J4BAIAOy6+AM3HiRN1www267LLLdNlll2nZsmXq0qWL9u7dK2OMnnzyST300EOaPHmyEhMTtXHjRlVWVmrz5s2SpJKSEq1fv15PPPGExowZox/84AfatGmTDh06pJ07dzZLBwEAQMdjv9AVa2tr9corr6iiokLDhw9XXl6eCgsLlZKS4i3jdDqVlJSkPXv2aObMmcrNzZXH4/EpExcXp8TERO3Zs0fjxo1rcFtut1tut9s7XVpaKknyeDzyeDwX2gW0UzU1Nd5n9j/QsXD8d2z+7HO/A86hQ4c0fPhwnTp1Sl26dNHWrVs1YMAA7dmzR5IUExPjUz4mJkbHjh2TJBUWFio4OFjdunWrV6awsPCs20xLS9PSpUvrzc/MzFRoaKi/XUA7l18uSXbt3btXXx5u7dYAaEkc/x1bZWVlo8v6HXAuv/xyHThwQN9++61effVVTZs2TdnZ2d7lNpvNp7wxpt68M52vzOLFizV//nzvdGlpqeLj45WSkqKuXbv62wW0c//84hvp0H4NGzZMg3tFtnZzALQgjv+Ore4bnMbwO+AEBwfr0ksvlSRdc8012rdvn5566in98pe/lPTdKE1sbKy3fFFRkXdUx+Vyqbq6WidPnvQZxSkqKtKIESPOuk2n0ymn01lvvsPhkMPh8LcLaOfsdrv3mf0PdCwc/x2bP/u8yb+DY4yR2+1Wnz595HK5lJWV5V1WXV2t7Oxsb3gZMmSIHA6HT5mCggIdPnz4nAEHAADAH36N4CxZskTjx49XfHy8ysrKtGXLFu3atUsZGRmy2WyaN2+eli9frn79+qlfv35avny5QkNDNXXqVElSRESEZsyYoQULFqh79+6KjIzUwoULNXDgQI0ZM6ZZOggAADoevwLOV199pbvuuksFBQWKiIjQoEGDlJGRobFjx0qSFi1apKqqKs2aNUsnT57U0KFDlZmZqfDwcG8dq1atkt1u15QpU1RVVaXRo0crPT1dnTp1CmzPAABAh2UzxpjWboS/SktLFRERoZKSEk4y7oAOHCvWpLV79fr9w3RVQvfWbg6AFsTx37H58/nPvagAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDl+BVw0tLSdO211yo8PFzR0dGaNGmSjh496lNm+vTpstlsPo9hw4b5lHG73Zo7d66ioqIUFhamG2+8UcePH296bwAAAORnwMnOztbs2bO1d+9eZWVlqaamRikpKaqoqPApd/3116ugoMD72L59u8/yefPmaevWrdqyZYtycnJUXl6uCRMmqLa2tuk9AgAAHZ7dn8IZGRk+0xs2bFB0dLRyc3P14x//2Dvf6XTK5XI1WEdJSYnWr1+v559/XmPGjJEkbdq0SfHx8dq5c6fGjRvnbx8AAAB8+BVwzlRSUiJJioyM9Jm/a9cuRUdH66KLLlJSUpKWLVum6OhoSVJubq48Ho9SUlK85ePi4pSYmKg9e/Y0GHDcbrfcbrd3urS0VJLk8Xjk8Xia0gW0QzU1Nd5n9j/QsXD8d2z+7PMLDjjGGM2fP1/XXXedEhMTvfPHjx+vW2+9VQkJCcrLy9PDDz+sUaNGKTc3V06nU4WFhQoODla3bt186ouJiVFhYWGD20pLS9PSpUvrzc/MzFRoaOiFdgHtVH65JNm1d+9efXm4tVsDoCVx/HdslZWVjS57wQFnzpw5OnjwoHJycnzm33bbbd5/JyYm6pprrlFCQoLefPNNTZ48+az1GWNks9kaXLZ48WLNnz/fO11aWqr4+HilpKSoa9euF9oFtFP//OIb6dB+DRs2TIN7RZ5/BQCWwfHfsdV9g9MYFxRw5s6dq23btmn37t3q2bPnOcvGxsYqISFBH3/8sSTJ5XKpurpaJ0+e9BnFKSoq0ogRIxqsw+l0yul01pvvcDjkcDgupAtox+x2u/eZ/Q90LBz/HZs/+9yvq6iMMZozZ45ee+01vfPOO+rTp8951ykuLlZ+fr5iY2MlSUOGDJHD4VBWVpa3TEFBgQ4fPnzWgAMAAOAPv0ZwZs+erc2bN+svf/mLwsPDvefMREREKCQkROXl5UpNTdXNN9+s2NhYff7551qyZImioqJ00003ecvOmDFDCxYsUPfu3RUZGamFCxdq4MCB3quqAAAAmsKvgLN27VpJUnJyss/8DRs2aPr06erUqZMOHTqk5557Tt9++61iY2M1cuRIvfTSSwoPD/eWX7Vqlex2u6ZMmaKqqiqNHj1a6enp6tSpU9N7BAAAOjy/Ao4x5pzLQ0JC9NZbb523ns6dO2v16tVavXq1P5sHAABoFO5FBQAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALMfe2g0AAFhf3tcVqnDXNLmeT/9d4X222wPzERbmtKtPVFhA6kLbQcABADSrvK8rNPLxXQGtc8GfDwW0vncXJhNyLIaAAwBoVnUjN0/edpUuje7StLqq3Hpj13uakDxcYSHOJrftk6JyzXvpQEBGl9C2EHAAAC3i0uguSrw4okl1eDweFfaQrk7oJofDEaCWwYo4yRgAAFgOAQcAAFgOAQcAAFgOAQcAAFgOAQcAAFgOAQcAAFgOAQcAAFgOAQcAAFgOAQcAAFgOAQcAAFgOAQcAAFgOAQcAAFgOAQcAAFgOAQcAAFiOXwEnLS1N1157rcLDwxUdHa1Jkybp6NGjPmWMMUpNTVVcXJxCQkKUnJysI0eO+JRxu92aO3euoqKiFBYWphtvvFHHjx9vem8AAADkZ8DJzs7W7NmztXfvXmVlZammpkYpKSmqqKjwllmxYoVWrlypNWvWaN++fXK5XBo7dqzKysq8ZebNm6etW7dqy5YtysnJUXl5uSZMmKDa2trA9QwAAHRYdn8KZ2Rk+Exv2LBB0dHRys3N1Y9//GMZY/Tkk0/qoYce0uTJkyVJGzduVExMjDZv3qyZM2eqpKRE69ev1/PPP68xY8ZIkjZt2qT4+Hjt3LlT48aNC1DXAABAR+VXwDlTSUmJJCkyMlKSlJeXp8LCQqWkpHjLOJ1OJSUlac+ePZo5c6Zyc3Pl8Xh8ysTFxSkxMVF79uxpMOC43W653W7vdGlpqSTJ4/HI4/E0pQtoQZ8XV6jC3fRRuo8KS3yeAyHM2Um9u4cFrD4A/1FTU+N9bup7dt36gXrvD2Tb0Pz82UcXHHCMMZo/f76uu+46JSYmSpIKCwslSTExMT5lY2JidOzYMW+Z4OBgdevWrV6ZuvXPlJaWpqVLl9abn5mZqdDQ0AvtAlpQUZW07ECT8nQ9i7Z+END6HrqqRtEhAa0SgKT8ckmyKycnR8e6BKbOrKysgNTTHG1D86msrGx02Qv+xJkzZ44OHjyonJycestsNpvPtDGm3rwznavM4sWLNX/+fO90aWmp4uPjlZKSoq5du15A69HSjpwolQ7s1eO3DNSlPZo2UlJxyq2Mv+3T9f/ftQrr7Gxy2z75d4UW/vmQrh1+na6M4+8JCLQjJ0r1+KG9uu66ph9jHo9HWVlZGjt2rBwOR5tqG5pf3Tc4jXFBAWfu3Lnatm2bdu/erZ49e3rnu1wuSd+N0sTGxnrnFxUVeUd1XC6XqqurdfLkSZ9RnKKiIo0YMaLB7TmdTjmd9T/IHA5HQP7A0fzs9u/+1PrHRijx4ogm1eXxePT1h9IPL+kRkP1f1za73c7fE9AMmuMYC9T7P8d/++LPPvLrKipjjObMmaPXXntN77zzjvr06eOzvE+fPnK5XD5Dh9XV1crOzvaGlyFDhsjhcPiUKSgo0OHDh88acAAAAPzh1wjO7NmztXnzZv3lL39ReHi495yZiIgIhYSEyGazad68eVq+fLn69eunfv36afny5QoNDdXUqVO9ZWfMmKEFCxaoe/fuioyM1MKFCzVw4EDvVVUAAABN4VfAWbt2rSQpOTnZZ/6GDRs0ffp0SdKiRYtUVVWlWbNm6eTJkxo6dKgyMzMVHh7uLb9q1SrZ7XZNmTJFVVVVGj16tNLT09WpU6em9QYAAEB+BhxjzHnL2Gw2paamKjU19axlOnfurNWrV2v16tX+bB4AAKBRuBcVAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHAIOAACwHL8Dzu7duzVx4kTFxcXJZrPp9ddf91k+ffp02Ww2n8ewYcN8yrjdbs2dO1dRUVEKCwvTjTfeqOPHjzepIwAAAHX8DjgVFRUaPHiw1qxZc9Yy119/vQoKCryP7du3+yyfN2+etm7dqi1btignJ0fl5eWaMGGCamtr/e8BAADAGez+rjB+/HiNHz/+nGWcTqdcLleDy0pKSrR+/Xo9//zzGjNmjCRp06ZNio+P186dOzVu3Dh/mwQAAODD74DTGLt27VJ0dLQuuugiJSUladmyZYqOjpYk5ebmyuPxKCUlxVs+Li5OiYmJ2rNnT4MBx+12y+12e6dLS0slSR6PRx6Ppzm6gACrqanxPjd1n9WtH6h9H8i2AaiP4x+B4s8+CnjAGT9+vG699VYlJCQoLy9PDz/8sEaNGqXc3Fw5nU4VFhYqODhY3bp181kvJiZGhYWFDdaZlpampUuX1pufmZmp0NDQQHcBzSC/XJLsysnJ0bEugakzKysrIPU0R9sA/AfHPwKlsrKy0WUDHnBuu+02778TExN1zTXXKCEhQW+++aYmT5581vWMMbLZbA0uW7x4sebPn++dLi0tVXx8vFJSUtS1a9fANR7N5siJUj1+aK+uu+46XRnXtH3m8XiUlZWlsWPHyuFwtKm2AaiP4x+BUvcNTmM0y1dU3xcbG6uEhAR9/PHHkiSXy6Xq6mqdPHnSZxSnqKhII0aMaLAOp9Mpp9NZb77D4QjIHzian91u9z4Hap8Fav83R9sA/AfHPwLFn33U7L+DU1xcrPz8fMXGxkqShgwZIofD4TO8WFBQoMOHD5814AAAAPjD7xGc8vJyffLJJ97pvLw8HThwQJGRkYqMjFRqaqpuvvlmxcbG6vPPP9eSJUsUFRWlm266SZIUERGhGTNmaMGCBerevbsiIyO1cOFCDRw40HtVFQAAQFP4HXD279+vkSNHeqfrzo2ZNm2a1q5dq0OHDum5557Tt99+q9jYWI0cOVIvvfSSwsPDveusWrVKdrtdU6ZMUVVVlUaPHq309HR16tQpAF0CAAAdnd8BJzk5WcaYsy5/6623zltH586dtXr1aq1evdrfzQMAAJwX96ICAACW0+xXUQEAOjZ37SkFdf5SeaVHFdS5aT82U1NToxM1J/TBNx94r4BqirzScgV1/lLu2lOSIppcH9oOAg5aBG9wQMd1ouKYwvqs1pL3A1fn0xlPB6yusD7SiYqrNEQxAasTrY+AgxbBGxzQccWFJagib66euu0q9Y1u+n9w/p7zd/3ouh8F5D84nxaV679eOqC4kQlNrgttCwEHLYI3OKDjcnbqrNOnLlafrpdrQPemjZJ6PB7l2fN0ReQVAflhvtOnSnT61L/l7NS5yXWhbSHgoEXwBgcAaElcRQUAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACzH74Cze/duTZw4UXFxcbLZbHr99dd9lhtjlJqaqri4OIWEhCg5OVlHjhzxKeN2uzV37lxFRUUpLCxMN954o44fP96kjgAAANTxO+BUVFRo8ODBWrNmTYPLV6xYoZUrV2rNmjXat2+fXC6Xxo4dq7KyMm+ZefPmaevWrdqyZYtycnJUXl6uCRMmqLa29sJ7AgAA8P/Y/V1h/PjxGj9+fIPLjDF68skn9dBDD2ny5MmSpI0bNyomJkabN2/WzJkzVVJSovXr1+v555/XmDFjJEmbNm1SfHy8du7cqXHjxjWhOwAAABcQcM4lLy9PhYWFSklJ8c5zOp1KSkrSnj17NHPmTOXm5srj8fiUiYuLU2Jiovbs2dNgwHG73XK73d7p0tJSSZLH45HH4wlkF9BMampqvM9N3Wd16wdq3weybQDq4/hHoPizjwIacAoLCyVJMTExPvNjYmJ07Ngxb5ng4GB169atXpm69c+UlpampUuX1pufmZmp0NDQQDQdzSy/XJLsysnJ0bEugakzKysrIPU0R9sA/AfHPwKlsrKy0WUDGnDq2Gw2n2ljTL15ZzpXmcWLF2v+/Pne6dLSUsXHxyslJUVdu3ZteoPR7I6cKNXjh/bquuuu05VxTdtnHo9HWVlZGjt2rBwOR5tqG4D6OP4RKHXf4DRGQAOOy+WS9N0oTWxsrHd+UVGRd1TH5XKpurpaJ0+e9BnFKSoq0ogRIxqs1+l0yul01pvvcDgC8geO5me3273Pgdpngdr/zdE2AP/B8Y9A8WcfBfR3cPr06SOXy+UzdFhdXa3s7GxveBkyZIgcDodPmYKCAh0+fPisAQcAAMAffo/glJeX65NPPvFO5+Xl6cCBA4qMjFSvXr00b948LV++XP369VO/fv20fPlyhYaGaurUqZKkiIgIzZgxQwsWLFD37t0VGRmphQsXauDAgd6rqgAAAJrC74Czf/9+jRw50jtdd27MtGnTlJ6erkWLFqmqqkqzZs3SyZMnNXToUGVmZio8PNy7zqpVq2S32zVlyhRVVVVp9OjRSk9PV6dOnQLQJQAA0NH5HXCSk5NljDnrcpvNptTUVKWmpp61TOfOnbV69WqtXr3a380DAACcF/eiAgAAlkPAAQAAlkPAAQAAlkPAAQAAltMsv2QMAECdKk+tJOnwlyVNrquiyq39/5Zcx04qLKT+D8D665Oi8ibXgbaJgAMAaFaf/r8Q8avXDgWoRrue/2RfgOr6TpiTj0OrYY8CAJpVypXf3canb3QXhTia9ntnRwtKtODPh/TELQN1eWxEIJqnMKddfaLCAlIX2g4CDloEQ9RAxxUZFqzbf9grIHXV1NRIkvr2CFPixYEJOLAmAg5aBEPUAICWxDs6WgRD1ACAlkTAQYtgiBoA0JL4HRwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5AQ84qampstlsPg+Xy+VdboxRamqq4uLiFBISouTkZB05ciTQzQAAAB1Ys4zgXHnllSooKPA+Dh065F22YsUKrVy5UmvWrNG+ffvkcrk0duxYlZWVNUdTAABAB9QsAcdut8vlcnkfPXr0kPTd6M2TTz6phx56SJMnT1ZiYqI2btyoyspKbd68uTmaAgAAOiB7c1T68ccfKy4uTk6nU0OHDtXy5ct1ySWXKC8vT4WFhUpJSfGWdTqdSkpK0p49ezRz5swG63O73XK73d7p0tJSSZLH45HH42mOLqANq6mp8T6z/4GOheO/Y/Nnnwc84AwdOlTPPfecLrvsMn311Vd69NFHNWLECB05ckSFhYWSpJiYGJ91YmJidOzYsbPWmZaWpqVLl9abn5mZqdDQ0MB2AG1efrkk2bV37159ebi1WwOgJXH8d2yVlZWNLhvwgDN+/HjvvwcOHKjhw4erb9++2rhxo4YNGyZJstlsPusYY+rN+77Fixdr/vz53unS0lLFx8crJSVFXbt2DXAP0Nb984tvpEP7NWzYMA3uFdnazQHQgjj+O7a6b3Aao1m+ovq+sLAwDRw4UB9//LEmTZokSSosLFRsbKy3TFFRUb1Rne9zOp1yOp315jscDjkcjoC3GW2b3W73PrP/gY6F479j82efN/vv4Ljdbn3wwQeKjY1Vnz595HK5lJWV5V1eXV2t7OxsjRgxormbAgAAOoiAj+AsXLhQEydOVK9evVRUVKRHH31UpaWlmjZtmmw2m+bNm6fly5erX79+6tevn5YvX67Q0FBNnTo10E0BAAAdVMADzvHjx3XHHXfo66+/Vo8ePTRs2DDt3btXCQkJkqRFixapqqpKs2bN0smTJzV06FBlZmYqPDw80E0BAAAdVMADzpYtW8653GazKTU1VampqYHeNAAAgCTuRQUAACyIgAMAACyHgAMAACyn2X8HBwCAxqisrNSHH354zjJHC76Vu/ATfXA4RKeLLzpvnf379+cX7zsoAg4AoE348MMPNWTIkEaVnbqxcXXm5ubq6quvbkKr0F4RcAAAbUL//v2Vm5t7zjLlVW69+e57+j8jh6tLSP1fuG+oTnRMBBwAQJsQGhp63tEWj8ejk18XafgPr+FWDTgnTjIGAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWw60a0KZwN2EAQCAQcNCmcDdhAEAgEHDQpnA3YQBAIBBw0KZwN2EAQCBwkjEAALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALCcdnk3cWOMJKm0tLSVW4LW4PF4VFlZqdLSUu4mDnQwHP8dW93nfl0OOJd2GXDKysokSfHx8a3cEgAA0NLKysoUERFxzjI205gY1MacPn1aJ06cUHh4uGw2W2s3By2stLRU8fHxys/PV9euXVu7OQBaEMd/x2aMUVlZmeLi4hQUdO6zbNrlCE5QUJB69uzZ2s1AK+vatStvcEAHxfHfcZ1v5KYOJxkDAADLIeAAAADLIeCg3XE6nXrkkUfkdDpbuykAWhjHPxqrXZ5kDAAAcC6M4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4KDd2L17tyZOnKi4uDjZbDa9/vrrrd0kAC0kLS1N1157rcLDwxUdHa1Jkybp6NGjrd0stGEEHLQbFRUVGjx4sNasWdPaTQHQwrKzszV79mzt3btXWVlZqqmpUUpKiioqKlq7aWijuEwc7ZLNZtPWrVs1adKk1m4KgFbw73//W9HR0crOztaPf/zj1m4O2iBGcAAA7U5JSYkkKTIyspVbgraKgAMAaFeMMZo/f76uu+46JSYmtnZz0Ea1y7uJAwA6rjlz5ujgwYPKyclp7aagDSPgAADajblz52rbtm3avXu3evbs2drNQRtGwAEAtHnGGM2dO1dbt27Vrl271KdPn9ZuEto4Ag7ajfLycn3yySfe6by8PB04cECRkZHq1atXK7YMQHObPXu2Nm/erL/85S8KDw9XYWGhJCkiIkIhISGt3Dq0RVwmjnZj165dGjlyZL3506ZNU3p6ess3CECLsdlsDc7fsGGDpk+f3rKNQbtAwAEAAJbDZeIAAMByCDgAAMByCDgAAMByCDgAAMByCDgAAMByCDgAAMByCDgAAMByCDgAAMByCDgAAMByCDgA2oSioiLNnDlTvXr1ktPplMvl0rhx4/Tee+9Jknr37i2bzVbv8bvf/U6StH37dgUHB+sf//iHT72PP/64oqKivPcuAtAxcLNNAG3CzTffLI/Ho40bN+qSSy7RV199pbffflvffPONt8xvf/tb3XvvvT7rhYeHS5JuuOEG/exnP9PPfvYz5ebmyul06oMPPtDDDz+s9PR0uVyuFu0PgNbFvagAtLpvv/1W3bp1065du5SUlNRgmd69e2vevHmaN2/eWespKyvTwIEDdfvtt+vRRx/V8OHD1adPH7388svN1HIAbRUjOABaXZcuXdSlSxe9/vrrGjZsmJxO5wXVEx4erj/96U8aN26c8vLylJ+frx07dgS4tQDaA0ZwALQJr776qu69915VVVXp6quvVlJSkm6//XYNGjRI0ncjOAUFBXI4HD7rvfHGG0pOTvaZd8cdd2jLli166aWXNGXKlJbqAoA2hIADoM04deqU/va3v+m9995TRkaG3n//fa1bt07Tp09X7969deedd2r69Ok+61x88cUKCQnxTp84cUJXXnmlqqurdffdd2v16tUt3AsAbQEBB0Cbdc899ygrK0vHjh1r1Dk40ncnG1dWVmrp0qUaPXq03n777bOe1wPAurhMHECbNWDAAFVUVDS6/Lp16/S3v/1NGzZsUFJSkubMmaO7777brzoAWAMBB0CrKy4u1qhRo7Rp0yYdPHhQeXl5euWVV7RixQr95Cc/8ZYrKytTYWGhz6O0tFSS9MUXX2jBggV6/PHH1adPH0nS8uXLFRQUpF/96let0i8ArYevqAC0OrfbrdTUVGVmZurTTz+Vx+NRfHy8br31Vi1ZskQhISHq3bu3jh07Vm/dmTNnau3atRo7dqw6deqkt956y2d5Tk6OkpOT+aoK6GAIOAAAwHL4igoAAFgOAQcAAFgOAQcAAFgOAQcAAFgOAQcAAFgOAQcAAFgOAQcAAFgOAQcAAFgOAQcAAFgOAQcAAFgOAQcAAFjO/w+4fJrgwMZhOAAAAABJRU5ErkJggg==" + }, + "metadata": {} + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "### Task 3: What is the the distribution of Age, Sex, BMI and Y variables?" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 19, + "source": [ + "for col in ['AGE','SEX','BMI','Y']:\r\n", + " df[col].hist()\r\n", + " plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-23T15:11:47.204630\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAp1ElEQVR4nO3df3RUdX7/8dckGYdEE1xRMpk1QNCwKgHXYzQS7CZbN/EgerQ5tavxB5buQhvckk27QMhaB5WA6WlOtptTLFsPTQ/Nwe6RtXT9QcbuGtemlkCXFVOL7DEGisQcFTOR4GQkn+8ffDPukATuJJNPmPB8nDMn3M/93Pv5zDs3My/u/LguY4wRAACAJUmTPQEAAHBhIXwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsCplsidwpsHBQX3wwQdKT0+Xy+Wa7OkAAAAHjDHq6+uTz+dTUtLZz22cd+Hjgw8+UHZ29mRPAwAAjMGRI0d05ZVXnrXPeRc+0tPTJZ2efEZGhtWxw+GwWlpaVFpaKrfbbXXsREOtnKNWzlEr56iVc9TKufHUKhgMKjs7O/I8fjbnXfgYeqklIyNjUsJHWlqaMjIyOEDPgVo5R62co1bOUSvnqJVz8aiVk7dM8IZTAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYlTLZEwBwYZmz7sVR13mSjepulvL8uxU6de7Lctv0/ualkz0FYMrgzAcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwKqYwscXX3yhH/7wh8rJyVFqaqrmzp2rJ554QoODg5E+xhj5/X75fD6lpqaquLhYHR0dcZ84AABITDGFj6efflrPPPOMGhsb9c4776iurk5//dd/rR//+MeRPnV1daqvr1djY6Pa29vl9XpVUlKivr6+uE8eAAAknpjCx3/+53/q7rvv1tKlSzVnzhz94R/+oUpLS7V3715Jp896NDQ0qKamRmVlZcrLy1NTU5P6+/vV3Nw8IXcAAAAklpRYOt9666165pln9O6772revHn6zW9+ozfeeEMNDQ2SpM7OTnV3d6u0tDSyjcfjUVFRkdra2rRy5cph+wyFQgqFQpHlYDAoSQqHwwqHw2O5T2M2NJ7tcRMRtXKOWkXzJJvR1yWZqJ/nk/Pt98dx5Ry1cm48tYplG5cxxvFfuTFG69ev19NPP63k5GSdOnVKGzduVHV1tSSpra1Nixcv1tGjR+Xz+SLbrVixQl1dXdq9e/ewffr9fm3YsGFYe3Nzs9LS0hzfEQAAMHn6+/tVXl6u3t5eZWRknLVvTGc+nnvuOW3fvl3Nzc2aP3++9u/fr8rKSvl8Pi1btizSz+VyRW1njBnWNqS6ulpVVVWR5WAwqOzsbJWWlp5z8vEWDocVCARUUlIit9ttdexEQ62co1bR8vzD/xMyxJNk9GT+oB7bm6TQ4MiPGZPlbf/tkz2FKBxXzlEr58ZTq6FXLpyIKXz84Ac/0Lp163TfffdJkhYsWKCuri5t2rRJy5Ytk9frlSR1d3crKysrsl1PT48yMzNH3KfH45HH4xnW7na7J+0gmcyxEw21co5anRY6de5QERp0Oepn0/n6u+O4co5aOTeWWsXSP6Y3nPb39yspKXqT5OTkyEdtc3Jy5PV6FQgEIusHBgbU2tqqwsLCWIYCAABTVExnPu666y5t3LhRs2bN0vz58/XrX/9a9fX1Wr58uaTTL7dUVlaqtrZWubm5ys3NVW1trdLS0lReXj4hdwAAACSWmMLHj3/8Yz322GOqqKhQT0+PfD6fVq5cqb/6q7+K9FmzZo1OnjypiooKHT9+XAUFBWppaVF6enrcJw8AABJPTOEjPT1dDQ0NkY/WjsTlcsnv98vv949zagAAYCri2i4AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsCqm8DFnzhy5XK5ht1WrVkmSjDHy+/3y+XxKTU1VcXGxOjo6JmTiAAAgMcUUPtrb23Xs2LHILRAISJLuvfdeSVJdXZ3q6+vV2Nio9vZ2eb1elZSUqK+vL/4zBwAACSmm8HHFFVfI6/VGbj//+c911VVXqaioSMYYNTQ0qKamRmVlZcrLy1NTU5P6+/vV3Nw8UfMHAAAJJmWsGw4MDGj79u2qqqqSy+XSe++9p+7ubpWWlkb6eDweFRUVqa2tTStXrhxxP6FQSKFQKLIcDAYlSeFwWOFweKzTG5Oh8WyPm4iolXPUKpon2Yy+LslE/TyfnG+/P44r56iVc+OpVSzbuIwxY/or/5d/+ReVl5fr8OHD8vl8amtr0+LFi3X06FH5fL5IvxUrVqirq0u7d+8ecT9+v18bNmwY1t7c3Ky0tLSxTA0AAFjW39+v8vJy9fb2KiMj46x9x3zm49lnn9WSJUuigoYkuVyuqGVjzLC231VdXa2qqqrIcjAYVHZ2tkpLS885+XgLh8MKBAIqKSmR2+22OnaioVbOUatoef6R/yMinT7j8WT+oB7bm6TQ4OiPG5Phbf/tkz2FKBxXzlEr58ZTq6FXLpwYU/jo6urSq6++qp07d0bavF6vJKm7u1tZWVmR9p6eHmVmZo66L4/HI4/HM6zd7XZP2kEymWMnGmrlHLU6LXTq3KEiNOhy1M+m8/V3x3HlHLVybiy1iqX/mL7nY9u2bZo5c6aWLl0aacvJyZHX6418AkY6/b6Q1tZWFRYWjmUYAAAwBcV85mNwcFDbtm3TsmXLlJLy5eYul0uVlZWqra1Vbm6ucnNzVVtbq7S0NJWXl8d10gAAIHHFHD5effVVHT58WMuXLx+2bs2aNTp58qQqKip0/PhxFRQUqKWlRenp6XGZLABMljnrXpzsKUTxJBvV3Xz6PTSjvUT1/ualI7YDky3m8FFaWqrRPiDjcrnk9/vl9/vHOy8AADBFcW0XAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFbFHD6OHj2qBx98UDNmzFBaWpq+/vWva9++fZH1xhj5/X75fD6lpqaquLhYHR0dcZ00AABIXDGFj+PHj2vx4sVyu916+eWX9T//8z/6m7/5G1166aWRPnV1daqvr1djY6Pa29vl9XpVUlKivr6+eM8dAAAkoJRYOj/99NPKzs7Wtm3bIm1z5syJ/NsYo4aGBtXU1KisrEyS1NTUpMzMTDU3N2vlypXxmTUAAEhYMYWPXbt26fbbb9e9996r1tZWffWrX1VFRYW++93vSpI6OzvV3d2t0tLSyDYej0dFRUVqa2sbMXyEQiGFQqHIcjAYlCSFw2GFw+Ex3amxGhrP9riJiFo5R62ieZLN6OuSTNRPjM5JrTjmTuNv0Lnx1CqWbVzGGMd/5dOmTZMkVVVV6d5779WePXtUWVmpv//7v9fDDz+strY2LV68WEePHpXP54tst2LFCnV1dWn37t3D9un3+7Vhw4Zh7c3NzUpLS3N8RwAAwOTp7+9XeXm5ent7lZGRcda+MZ35GBwcVH5+vmprayVJN9xwgzo6OrRlyxY9/PDDkX4ulytqO2PMsLYh1dXVqqqqiiwHg0FlZ2ertLT0nJOPt3A4rEAgoJKSErndbqtjJxpq5Ry1ipbnH/6fkCGeJKMn8wf12N4khQZHfszAaU5q9bb/dsuzOj/xN+jceGo19MqFEzGFj6ysLF133XVRbddee62ef/55SZLX65UkdXd3KysrK9Knp6dHmZmZI+7T4/HI4/EMa3e73ZN2kEzm2ImGWjlHrU4LnTp3qAgNuhz1w9lrxfEWjb9B58ZSq1j6x/Rpl8WLF+vgwYNRbe+++65mz54tScrJyZHX61UgEIisHxgYUGtrqwoLC2MZCgAATFExnfn4/ve/r8LCQtXW1uqP/uiPtGfPHm3dulVbt26VdPrllsrKStXW1io3N1e5ubmqra1VWlqaysvLJ+QOAACAxBJT+Ljpppv0s5/9TNXV1XriiSeUk5OjhoYGPfDAA5E+a9as0cmTJ1VRUaHjx4+roKBALS0tSk9Pj/vkAQBA4okpfEjSnXfeqTvvvHPU9S6XS36/X36/fzzzAgAAUxTXdgEAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFUpkz0BAGM3Z92Lkz0FAIgZZz4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWMX3fAD/30R9Z4Yn2ajuZinPv1uhU64JGQMAEglnPgAAgFWEDwAAYBXhAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYFVP48Pv9crlcUTev1xtZb4yR3++Xz+dTamqqiouL1dHREfdJAwCAxBXzmY/58+fr2LFjkduBAwci6+rq6lRfX6/Gxka1t7fL6/WqpKREfX19cZ00AABIXDGHj5SUFHm93sjtiiuukHT6rEdDQ4NqampUVlamvLw8NTU1qb+/X83NzXGfOAAASEwxf736oUOH5PP55PF4VFBQoNraWs2dO1ednZ3q7u5WaWlppK/H41FRUZHa2tq0cuXKEfcXCoUUCoUiy8FgUJIUDocVDodjnd64DI1ne9xENBVr5Uk2E7PfJBP1E6OjVs45qdVU+vscj6n4eDVRxlOrWLZxGWMc/5W//PLL6u/v17x58/Thhx/qqaee0v/+7/+qo6NDBw8e1OLFi3X06FH5fL7INitWrFBXV5d279494j79fr82bNgwrL25uVlpaWmO7wgAAJg8/f39Ki8vV29vrzIyMs7aN6bwcaYTJ07oqquu0po1a3TLLbdo8eLF+uCDD5SVlRXp893vfldHjhzRK6+8MuI+RjrzkZ2drY8++uick4+3cDisQCCgkpISud1uq2MnmqlYqzz/yAF5vDxJRk/mD+qxvUkKDXJhubOhVs45qdXb/tstz+r8NBUfrybKeGoVDAZ1+eWXOwof47qq7cUXX6wFCxbo0KFDuueeeyRJ3d3dUeGjp6dHmZmZo+7D4/HI4/EMa3e73ZN2kEzm2IlmKtVqoq84Gxp0cVVbh6iVc2er1VT524yXqfR4NdHGUqtY+o/rez5CoZDeeecdZWVlKScnR16vV4FAILJ+YGBAra2tKiwsHM8wAABgConpzMdf/uVf6q677tKsWbPU09Ojp556SsFgUMuWLZPL5VJlZaVqa2uVm5ur3Nxc1dbWKi0tTeXl5RM1fwAAkGBiCh//93//p/vvv18fffSRrrjiCt1yyy168803NXv2bEnSmjVrdPLkSVVUVOj48eMqKChQS0uL0tPTJ2TyAAAg8cQUPnbs2HHW9S6XS36/X36/fzxzAgAAUxjXdgEAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVhE+AACAVeP6enVgNHPWvTjZUwAueIn4d/j+5qWTPQVYwJkPAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVo0rfGzatEkul0uVlZWRNmOM/H6/fD6fUlNTVVxcrI6OjvHOEwAATBFjDh/t7e3aunWrFi5cGNVeV1en+vp6NTY2qr29XV6vVyUlJerr6xv3ZAEAQOIbU/j47LPP9MADD+gnP/mJvvKVr0TajTFqaGhQTU2NysrKlJeXp6amJvX396u5uTlukwYAAIlrTOFj1apVWrp0qb71rW9FtXd2dqq7u1ulpaWRNo/Ho6KiIrW1tY1vpgAAYEpIiXWDHTt2aN++fdq7d++wdd3d3ZKkzMzMqPbMzEx1dXWNuL9QKKRQKBRZDgaDkqRwOKxwOBzr9MZlaDzb4yaic9XKk2xsTue85kkyUT8xOmrl3FSt1UQ8/vLY7tx4ahXLNjGFjyNHjmj16tVqaWnRtGnTRu3ncrmilo0xw9qGbNq0SRs2bBjW3tLSorS0tFimFzeBQGBSxk1Eo9Wq7mbLE0kAT+YPTvYUEga1cm6q1eqll16asH3z2O7cWGrV39/vuK/LGOM4Nr/wwgv6gz/4AyUnJ0faTp06JZfLpaSkJB08eFBXX321/vu//1s33HBDpM/dd9+tSy+9VE1NTcP2OdKZj+zsbH300UfKyMhwfEfiIRwOKxAIqKSkRG632+rYieZctcrz756EWZ2fPElGT+YP6rG9SQoNjhzCcRq1cm6q1upt/+1x3yeP7c6Np1bBYFCXX365ent7z/n8HdOZj9tuu00HDhyIavvjP/5jXXPNNVq7dq3mzp0rr9erQCAQCR8DAwNqbW3V008/PeI+PR6PPB7PsHa32z1pB8lkjp1oRqtV6NTUeTCMl9Cgi7o4RK2cm2q1msjHXh7bnRtLrWLpH1P4SE9PV15eXlTbxRdfrBkzZkTaKysrVVtbq9zcXOXm5qq2tlZpaWkqLy+PZSgAADBFxfyG03NZs2aNTp48qYqKCh0/flwFBQVqaWlRenp6vIcCAAAJaNzh47XXXotadrlc8vv98vv94901AACYgri2CwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKtSJnsCAAAMmbPuxbjv05NsVHezlOffrdApV9z3//7mpXHf51THmQ8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVsUUPrZs2aKFCxcqIyNDGRkZWrRokV5++eXIemOM/H6/fD6fUlNTVVxcrI6OjrhPGgAAJK6YwseVV16pzZs3a+/evdq7d69+//d/X3fffXckYNTV1am+vl6NjY1qb2+X1+tVSUmJ+vr6JmTyAAAg8cQUPu666y7dcccdmjdvnubNm6eNGzfqkksu0ZtvviljjBoaGlRTU6OysjLl5eWpqalJ/f39am5unqj5AwCABDPmr1c/deqUfvrTn+rEiRNatGiROjs71d3drdLS0kgfj8ejoqIitbW1aeXKlSPuJxQKKRQKRZaDwaAkKRwOKxwOj3V6YzI0nu1xE9G5auVJNjanc17zJJmonxgdtXKOWjk30bWaSs8Z43kejGUblzEmpt/GgQMHtGjRIn3++ee65JJL1NzcrDvuuENtbW1avHixjh49Kp/PF+m/YsUKdXV1affu3SPuz+/3a8OGDcPam5ublZaWFsvUAADAJOnv71d5ebl6e3uVkZFx1r4xn/n42te+pv379+vTTz/V888/r2XLlqm1tTWy3uWKvmiPMWZY2++qrq5WVVVVZDkYDCo7O1ulpaXnnHy8hcNhBQIBlZSUyO12Wx070ZyrVnn+kcPmhciTZPRk/qAe25uk0GD8L2o1lVAr56iVcxNdq7f9t8d9n5NlPM+DQ69cOBFz+Ljooot09dVXS5Ly8/PV3t6uH/3oR1q7dq0kqbu7W1lZWZH+PT09yszMHHV/Ho9HHo9nWLvb7Z60ADCZYyea0Wo1EVeOTHShQRd1cYhaOUetnJuoWk3F54uxPA/G0n/c3/NhjFEoFFJOTo68Xq8CgUBk3cDAgFpbW1VYWDjeYQAAwBQR05mP9evXa8mSJcrOzlZfX5927Nih1157Ta+88opcLpcqKytVW1ur3Nxc5ebmqra2VmlpaSovL5+o+QMAgAQTU/j48MMP9dBDD+nYsWOaPn26Fi5cqFdeeUUlJSWSpDVr1ujkyZOqqKjQ8ePHVVBQoJaWFqWnp0/I5AEAQOKJKXw8++yzZ13vcrnk9/vl9/vHMycAADCFcW0XAABg1Zi/ZAz2zFn34mRPYRhPslHdzac/Uss77QEAseDMBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAqpjCx6ZNm3TTTTcpPT1dM2fO1D333KODBw9G9THGyO/3y+fzKTU1VcXFxero6IjrpAEAQOKKKXy0trZq1apVevPNNxUIBPTFF1+otLRUJ06ciPSpq6tTfX29Ghsb1d7eLq/Xq5KSEvX19cV98gAAIPGkxNL5lVdeiVretm2bZs6cqX379ukb3/iGjDFqaGhQTU2NysrKJElNTU3KzMxUc3OzVq5cGb+ZAwCAhBRT+DhTb2+vJOmyyy6TJHV2dqq7u1ulpaWRPh6PR0VFRWpraxsxfIRCIYVCochyMBiUJIXDYYXD4fFML2ZD49ke91w8yWaypzCMJ8lE/cToqJVz1Mo5auXcRNfqfHvOGI/xPA/Gso3LGDOm34YxRnfffbeOHz+uX/3qV5KktrY2LV68WEePHpXP54v0XbFihbq6urR79+5h+/H7/dqwYcOw9ubmZqWlpY1lagAAwLL+/n6Vl5ert7dXGRkZZ+075jMfjz76qN566y298cYbw9a5XK6oZWPMsLYh1dXVqqqqiiwHg0FlZ2ertLT0nJOPt3A4rEAgoJKSErndbqtjn02ef3hom2yeJKMn8wf12N4khQZH/t3iNGrlHLVyjlo5N9G1ett/e9z3OVnG8zw49MqFE2MKH9/73ve0a9cuvf7667ryyisj7V6vV5LU3d2trKysSHtPT48yMzNH3JfH45HH4xnW7na7Jy0ATObYIwmdOn8fWEKDrvN6fucTauUctXKOWjk3UbU6n54v4mUsz4Ox9I/p0y7GGD366KPauXOnfvGLXygnJydqfU5OjrxerwKBQKRtYGBAra2tKiwsjGUoAAAwRcV05mPVqlVqbm7Wv/7rvyo9PV3d3d2SpOnTpys1NVUul0uVlZWqra1Vbm6ucnNzVVtbq7S0NJWXl0/IHQAAAIklpvCxZcsWSVJxcXFU+7Zt2/TII49IktasWaOTJ0+qoqJCx48fV0FBgVpaWpSenh6XCY/XnHUvjrrOk2xUd/Pp91hwGhMAgIkRU/hw8sEYl8slv98vv98/1jkBAIApjGu7AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALAq5vDx+uuv66677pLP55PL5dILL7wQtd4YI7/fL5/Pp9TUVBUXF6ujoyNe8wUAAAku5vBx4sQJXX/99WpsbBxxfV1dnerr69XY2Kj29nZ5vV6VlJSor69v3JMFAACJLyXWDZYsWaIlS5aMuM4Yo4aGBtXU1KisrEyS1NTUpMzMTDU3N2vlypXjmy0AAEh4MYePs+ns7FR3d7dKS0sjbR6PR0VFRWpraxsxfIRCIYVCochyMBiUJIXDYYXD4XhO7/R8ks3o65JM1E+Mjlo5R62co1bOUSvnJrpWE/FcNVmG7stY7lMs28Q1fHR3d0uSMjMzo9ozMzPV1dU14jabNm3Shg0bhrW3tLQoLS0tntOTJNXdfO4+T+YPxn3cqYpaOUetnKNWzlEr5yaqVi+99NKE7HcyBQKBmLfp7+933Deu4WOIy+WKWjbGDGsbUl1draqqqshyMBhUdna2SktLlZGREfe55fl3j7rOk2T0ZP6gHtubpNDgyPPFadTKOWrlHLVyjlo5N9G1ett/e9z3OVnC4bACgYBKSkrkdrtj2nbolQsn4ho+vF6vpNNnQLKysiLtPT09w86GDPF4PPJ4PMPa3W53zHfcidCpcx94oUGXo36gVrGgVs5RK+eolXMTVauJeK6abGN5Do6lf1y/5yMnJ0derzfqdM3AwIBaW1tVWFgYz6EAAECCivnMx2effabf/va3keXOzk7t379fl112mWbNmqXKykrV1tYqNzdXubm5qq2tVVpamsrLy+M6cQAAkJhiDh979+7VN7/5zcjy0Ps1li1bpn/8x3/UmjVrdPLkSVVUVOj48eMqKChQS0uL0tPT4zdrAACQsGIOH8XFxTJm9I8ruVwu+f1++f3+8cwLAABMUVzbBQAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFgV16vaAgBwoZmz7sXJnkLM3t+8dFLH58wHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwKoJCx9/93d/p5ycHE2bNk033nijfvWrX03UUAAAIIFMSPh47rnnVFlZqZqaGv3617/W7/3e72nJkiU6fPjwRAwHAAASyISEj/r6ev3Jn/yJvvOd7+jaa69VQ0ODsrOztWXLlokYDgAAJJCUeO9wYGBA+/bt07p166LaS0tL1dbWNqx/KBRSKBSKLPf29kqSPvnkE4XD4XhPTylfnBh93aBRf/+gUsJJOjXoivvYUwm1co5aOUetnKNWzlGr4T7++OMR28PhsPr7+/Xxxx/L7XbHtM++vj5JkjHm3J1NnB09etRIMv/xH/8R1b5x40Yzb968Yf0ff/xxI4kbN27cuHHjNgVuR44cOWdWiPuZjyEuV3S6NMYMa5Ok6upqVVVVRZYHBwf1ySefaMaMGSP2n0jBYFDZ2dk6cuSIMjIyrI6daKiVc9TKOWrlHLVyjlo5N55aGWPU19cnn893zr5xDx+XX365kpOT1d3dHdXe09OjzMzMYf09Ho88Hk9U26WXXhrvacUkIyODA9QhauUctXKOWjlHrZyjVs6NtVbTp0931C/ubzi96KKLdOONNyoQCES1BwIBFRYWxns4AACQYCbkZZeqqio99NBDys/P16JFi7R161YdPnxYf/qnfzoRwwEAgAQyIeHj29/+tj7++GM98cQTOnbsmPLy8vTSSy9p9uzZEzFc3Hg8Hj3++OPDXgbCcNTKOWrlHLVyjlo5R62cs1UrlzFOPhMDAAAQH1zbBQAAWEX4AAAAVhE+AACAVYQPAABg1QUXPjZt2qSbbrpJ6enpmjlzpu655x4dPHgwqo8xRn6/Xz6fT6mpqSouLlZHR8ckzXjybNmyRQsXLox82cyiRYv08ssvR9ZTp9Ft2rRJLpdLlZWVkTbqdZrf75fL5Yq6eb3eyHrqFO3o0aN68MEHNWPGDKWlpenrX/+69u3bF1lPvb40Z86cYceWy+XSqlWrJFGr3/XFF1/ohz/8oXJycpSamqq5c+fqiSee0ODgYKTPhNZrfFdySTy333672bZtm3n77bfN/v37zdKlS82sWbPMZ599FumzefNmk56ebp5//nlz4MAB8+1vf9tkZWWZYDA4iTO3b9euXebFF180Bw8eNAcPHjTr1683brfbvP3228YY6jSaPXv2mDlz5piFCxea1atXR9qp12mPP/64mT9/vjl27Fjk1tPTE1lPnb70ySefmNmzZ5tHHnnE/Nd//Zfp7Ow0r776qvntb38b6UO9vtTT0xN1XAUCASPJ/PKXvzTGUKvf9dRTT5kZM2aYn//856azs9P89Kc/NZdccolpaGiI9JnIel1w4eNMPT09RpJpbW01xhgzODhovF6v2bx5c6TP559/bqZPn26eeeaZyZrmeeMrX/mK+Yd/+AfqNIq+vj6Tm5trAoGAKSoqioQP6vWlxx9/3Fx//fUjrqNO0dauXWtuvfXWUddTr7NbvXq1ueqqq8zg4CC1OsPSpUvN8uXLo9rKysrMgw8+aIyZ+GPrgnvZ5Uy9vb2SpMsuu0yS1NnZqe7ubpWWlkb6eDweFRUVqa2tbVLmeD44deqUduzYoRMnTmjRokXUaRSrVq3S0qVL9a1vfSuqnXpFO3TokHw+n3JycnTffffpvffek0SdzrRr1y7l5+fr3nvv1cyZM3XDDTfoJz/5SWQ99RrdwMCAtm/fruXLl8vlclGrM9x6663693//d7377ruSpN/85jd64403dMcdd0ia+GNrwq5qmwiMMaqqqtKtt96qvLw8SYpcEO/Mi+BlZmaqq6vL+hwn24EDB7Ro0SJ9/vnnuuSSS/Szn/1M1113XeTgo05f2rFjh/bt26e9e/cOW8dx9aWCggL90z/9k+bNm6cPP/xQTz31lAoLC9XR0UGdzvDee+9py5Ytqqqq0vr167Vnzx79+Z//uTwejx5++GHqdRYvvPCCPv30Uz3yyCOS+Bs809q1a9Xb26trrrlGycnJOnXqlDZu3Kj7779f0sTX64IOH48++qjeeustvfHGG8PWuVyuqGVjzLC2C8HXvvY17d+/X59++qmef/55LVu2TK2trZH11Om0I0eOaPXq1WppadG0adNG7Ue9pCVLlkT+vWDBAi1atEhXXXWVmpqadMstt0iiTkMGBweVn5+v2tpaSdINN9ygjo4ObdmyRQ8//HCkH/Ua7tlnn9WSJUuGXd6dWp323HPPafv27Wpubtb8+fO1f/9+VVZWyufzadmyZZF+E1WvC/Zll+9973vatWuXfvnLX+rKK6+MtA+9634o9Q3p6ekZlgAvBBdddJGuvvpq5efna9OmTbr++uv1ox/9iDqdYd++ferp6dGNN96olJQUpaSkqLW1VX/7t3+rlJSUSE2o13AXX3yxFixYoEOHDnFcnSErK0vXXXddVNu1116rw4cPS+LxajRdXV169dVX9Z3vfCfSRq2i/eAHP9C6det03333acGCBXrooYf0/e9/X5s2bZI08fW64MKHMUaPPvqodu7cqV/84hfKycmJWp+TkyOv16tAIBBpGxgYUGtrqwoLC21P97xjjFEoFKJOZ7jtttt04MAB7d+/P3LLz8/XAw88oP3792vu3LnUaxShUEjvvPOOsrKyOK7OsHjx4mFfBfDuu+9GLtJJvUa2bds2zZw5U0uXLo20Uato/f39SkqKjgDJycmRj9pOeL3G/ZbVBPNnf/ZnZvr06ea1116L+khWf39/pM/mzZvN9OnTzc6dO82BAwfM/ffff0F+HKu6utq8/vrrprOz07z11ltm/fr1JikpybS0tBhjqNO5/O6nXYyhXkP+4i/+wrz22mvmvffeM2+++aa58847TXp6unn//feNMdTpd+3Zs8ekpKSYjRs3mkOHDpl//ud/NmlpaWb79u2RPtQr2qlTp8ysWbPM2rVrh62jVl9atmyZ+epXvxr5qO3OnTvN5ZdfbtasWRPpM5H1uuDCh6QRb9u2bYv0GRwcNI8//rjxer3G4/GYb3zjG+bAgQOTN+lJsnz5cjN79mxz0UUXmSuuuMLcdtttkeBhDHU6lzPDB/U6bei7Atxut/H5fKasrMx0dHRE1lOnaP/2b/9m8vLyjMfjMddcc43ZunVr1HrqFW337t1Gkjl48OCwddTqS8Fg0KxevdrMmjXLTJs2zcydO9fU1NSYUCgU6TOR9XIZY8z4z58AAAA4c8G95wMAAEwuwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACr/h8c0sOeO4mywAAAAABJRU5ErkJggg==" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-23T15:11:47.570288\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAfYklEQVR4nO3df2xV9f3H8dctLbcta5kF6e2VyqopUVfGFlCw6AChZTghjmWQsQxUdBh+mKYiEZnzdpr2GxaRWCLLEgQn8iM6cS5DaZ2zFTsTaCAKOoazQzqpDcj6e7eX9nz/cL1SW6AX74/3Lc9H0sR77rmnn/um9Tw5t+W6HMdxBAAAYEhCrBcAAADwVQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzEmM9QIuRXd3tz799FOlpaXJ5XLFejkAAGAAHMdRS0uLvF6vEhIufI0kLgPl008/VXZ2dqyXAQAALsGJEyc0evToC+4Tl4GSlpYm6YsnmJ6eHtZjBwIBVVRUqLCwUElJSWE9Nr7EnKODOUcHc44eZh0dkZpzc3OzsrOzg+fxC4nLQOl5WSc9PT0igZKamqr09HS++COIOUcHc44O5hw9zDo6Ij3ngfx4Bj8kCwAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJiTGOsFWJXn2yt/18XfDtqKf/3fD2O9BAAAwoYrKAAAwBwCBQAAmEOgAAAAcwgUAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwBwCBQAAmEOgAAAAcwgUAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwBwCBQAAmEOgAAAAcwgUAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwBwCBQAAmEOgAAAAcwgUAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwBwCBQAAmEOgAAAAcwgUAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwJzEWC8AAIDB7lsP/znWSwiJe4ijdTfFdg1cQQEAAOYQKAAAwBwCBQAAmEOgAAAAcwgUAABgDoECAADMCSlQysrKdOONNyotLU2jRo3SnXfeqaNHj/bax3Ec+Xw+eb1epaSkaNq0aTpy5Eivffx+v1auXKmRI0dq2LBhmjt3rurr67/+swEAAINCSIFSVVWl5cuX691331VlZaXOnj2rwsJCtbW1BfdZt26d1q9fr40bN2r//v3yeDwqKChQS0tLcJ+ioiLt3r1bO3fu1L59+9Ta2qo77rhDXV1d4XtmAAAgboX0D7W9/vrrvW5v2bJFo0aNUm1trb7//e/LcRxt2LBBa9eu1bx58yRJzz33nDIzM7V9+3YtXbpUTU1N2rx5s55//nnNnDlTkrRt2zZlZ2frjTfe0KxZs8L01AAAQLz6Wv+SbFNTkyQpIyNDklRXV6eGhgYVFhYG93G73Zo6dapqamq0dOlS1dbWKhAI9NrH6/UqLy9PNTU1/QaK3++X3+8P3m5ubpYkBQIBBQKBr/MU+ug5njvBCetxIy3cc4i0nvXG27rjDXOODuYcPfE6a/eQ+Dqn9JwDI3WOHYhLDhTHcVRcXKxbbrlFeXl5kqSGhgZJUmZmZq99MzMzdfz48eA+Q4cO1RVXXNFnn57Hf1VZWZlKSkr6bK+oqFBqauqlPoULenxid0SOGyl79uyJ9RIuSWVlZayXcFlgztHBnKMn3mYd6382/lKFe87t7e0D3veSA2XFihV67733tG/fvj73uVyuXrcdx+mz7asutM+aNWtUXFwcvN3c3Kzs7GwVFhYqPT39ElZ/foFAQJWVlXr0QIL83RdesyWHffH10ljPnAsKCpSUlBTr5QxazDk6mHP0xOus83x7Y72EkLgTHD0+sTvsc+55BWQgLilQVq5cqVdffVXV1dUaPXp0cLvH45H0xVWSrKys4PbGxsbgVRWPx6POzk6dOXOm11WUxsZG5efn9/v53G633G53n+1JSUkR+wL1d7vk74qfQImnb9RzRfLPEF9iztHBnKMn3mYdT+eTc4V7zqEcK6Tf4nEcRytWrNDLL7+sN998Uzk5Ob3uz8nJkcfj6XVJqLOzU1VVVcH4mDBhgpKSknrtc/LkSR0+fPi8gQIAAC4vIV1BWb58ubZv364//vGPSktLC/7MyPDhw5WSkiKXy6WioiKVlpYqNzdXubm5Ki0tVWpqqhYuXBjcd8mSJXrwwQc1YsQIZWRkaNWqVRo3blzwt3oAAMDlLaRA2bRpkyRp2rRpvbZv2bJFd911lyRp9erV6ujo0LJly3TmzBlNmjRJFRUVSktLC+7/1FNPKTExUfPnz1dHR4dmzJihrVu3asiQIV/v2QAAgEEhpEBxnIv/mpTL5ZLP55PP5zvvPsnJySovL1d5eXkonx4AAFwmeC8eAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwBwCBQAAmEOgAAAAcwgUAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwBwCBQAAmEOgAAAAcwgUAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwBwCBQAAmEOgAAAAcwgUAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwBwCBQAAmEOgAAAAcwgUAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwBwCBQAAmEOgAAAAcwgUAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwBwCBQAAmEOgAAAAcwgUAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwBwCBQAAmEOgAAAAcwgUAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwBwCBQAAmBNyoFRXV2vOnDnyer1yuVx65ZVXet1/1113yeVy9fqYPHlyr338fr9WrlypkSNHatiwYZo7d67q6+u/1hMBAACDR8iB0tbWpvHjx2vjxo3n3ecHP/iBTp48GfzYs2dPr/uLioq0e/du7dy5U/v27VNra6vuuOMOdXV1hf4MAADAoJMY6gNmz56t2bNnX3Aft9stj8fT731NTU3avHmznn/+ec2cOVOStG3bNmVnZ+uNN97QrFmzQl0SAAAYZCLyMyhvvfWWRo0apbFjx+q+++5TY2Nj8L7a2loFAgEVFhYGt3m9XuXl5ammpiYSywEAAHEm5CsoFzN79mz95Cc/0ZgxY1RXV6dHH31Ut912m2pra+V2u9XQ0KChQ4fqiiuu6PW4zMxMNTQ09HtMv98vv98fvN3c3CxJCgQCCgQCYV1/z/HcCU5Yjxtp4Z5DpPWsN97WHW+Yc3Qw5+iJ11m7h8TXOaXnHBipc+xAhD1QFixYEPzvvLw8TZw4UWPGjNGf//xnzZs377yPcxxHLper3/vKyspUUlLSZ3tFRYVSU1O//qL78fjE7ogcN1K++nM+8aKysjLWS7gsMOfoYM7RE2+zXndTrFdwacI95/b29gHvG/ZA+aqsrCyNGTNGx44dkyR5PB51dnbqzJkzva6iNDY2Kj8/v99jrFmzRsXFxcHbzc3Nys7OVmFhodLT08O63kAgoMrKSj16IEH+7v6DyaLDvvj62Z2eORcUFCgpKSnWyxm0mHN0MOfoiddZ5/n2xnoJIXEnOHp8YnfY59zzCshARDxQTp8+rRMnTigrK0uSNGHCBCUlJamyslLz58+XJJ08eVKHDx/WunXr+j2G2+2W2+3usz0pKSliX6D+bpf8XfETKPH0jXquSP4Z4kvMOTqYc/TE26zj6XxyrnDPOZRjhRwora2t+uijj4K36+rqdOjQIWVkZCgjI0M+n08//vGPlZWVpX/961965JFHNHLkSP3oRz+SJA0fPlxLlizRgw8+qBEjRigjI0OrVq3SuHHjgr/VAwAALm8hB8qBAwc0ffr04O2el14WL16sTZs26f3339fvf/97/ec//1FWVpamT5+uXbt2KS0tLfiYp556SomJiZo/f746Ojo0Y8YMbd26VUOGDAnDUwIAAPEu5ECZNm2aHOf8P428d+/FX2dLTk5WeXm5ysvLQ/30AADgMsB78QAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJgTcqBUV1drzpw58nq9crlceuWVV3rd7ziOfD6fvF6vUlJSNG3aNB05cqTXPn6/XytXrtTIkSM1bNgwzZ07V/X19V/riQAAgMEj5EBpa2vT+PHjtXHjxn7vX7dundavX6+NGzdq//798ng8KigoUEtLS3CfoqIi7d69Wzt37tS+ffvU2tqqO+64Q11dXZf+TAAAwKCRGOoDZs+erdmzZ/d7n+M42rBhg9auXat58+ZJkp577jllZmZq+/btWrp0qZqamrR582Y9//zzmjlzpiRp27Ztys7O1htvvKFZs2Z9jacDAAAGg5AD5ULq6urU0NCgwsLC4Da3262pU6eqpqZGS5cuVW1trQKBQK99vF6v8vLyVFNT02+g+P1++f3+4O3m5mZJUiAQUCAQCOdTCB7PneCE9biRFu45RFrPeuNt3fGGOUcHc46eeJ21e0h8nVN6zoGROscORFgDpaGhQZKUmZnZa3tmZqaOHz8e3Gfo0KG64oor+uzT8/ivKisrU0lJSZ/tFRUVSk1NDcfS+3h8YndEjhspe/bsifUSLkllZWWsl3BZYM7RwZyjJ95mve6mWK/g0oR7zu3t7QPeN6yB0sPlcvW67ThOn21fdaF91qxZo+Li4uDt5uZmZWdnq7CwUOnp6V9/wecIBAKqrKzUowcS5O++8JotOeyLr5fGeuZcUFCgpKSkWC9n0GLO0cGcoydeZ53n2xvrJYTEneDo8YndYZ9zzysgAxHWQPF4PJK+uEqSlZUV3N7Y2Bi8quLxeNTZ2akzZ870uorS2Nio/Pz8fo/rdrvldrv7bE9KSorYF6i/2yV/V/wESjx9o54rkn+G+BJzjg7mHD3xNut4Op+cK9xzDuVYYf13UHJycuTxeHpdEurs7FRVVVUwPiZMmKCkpKRe+5w8eVKHDx8+b6AAAIDLS8hXUFpbW/XRRx8Fb9fV1enQoUPKyMjQ1VdfraKiIpWWlio3N1e5ubkqLS1VamqqFi5cKEkaPny4lixZogcffFAjRoxQRkaGVq1apXHjxgV/qwcAAFzeQg6UAwcOaPr06cHbPT8bsnjxYm3dulWrV69WR0eHli1bpjNnzmjSpEmqqKhQWlpa8DFPPfWUEhMTNX/+fHV0dGjGjBnaunWrhgwZEoanBAAA4l3IgTJt2jQ5zvl/Xcrlcsnn88nn8513n+TkZJWXl6u8vDzUTw8AAC4DvBcPAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOWEPFJ/PJ5fL1evD4/EE73ccRz6fT16vVykpKZo2bZqOHDkS7mUAAIA4FpErKN/+9rd18uTJ4Mf7778fvG/dunVav369Nm7cqP3798vj8aigoEAtLS2RWAoAAIhDEQmUxMREeTye4MeVV14p6YurJxs2bNDatWs1b9485eXl6bnnnlN7e7u2b98eiaUAAIA4lBiJgx47dkxer1dut1uTJk1SaWmprrnmGtXV1amhoUGFhYXBfd1ut6ZOnaqamhotXbq03+P5/X75/f7g7ebmZklSIBBQIBAI69p7judOcMJ63EgL9xwirWe98bbueMOco4M5R0+8zto9JL7OKT3nwEidYwfC5ThOWKf22muvqb29XWPHjtVnn32mJ554Qn//+9915MgRHT16VFOmTNG///1veb3e4GN+8Ytf6Pjx49q7d2+/x/T5fCopKemzffv27UpNTQ3n8gEAQIS0t7dr4cKFampqUnp6+gX3DXugfFVbW5uuvfZarV69WpMnT9aUKVP06aefKisrK7jPfffdpxMnTuj111/v9xj9XUHJzs7WqVOnLvoEQxUIBFRZWalHDyTI3+0K67Ej6bBvVqyXEJKeORcUFCgpKSnWyxm0mHN0MOfoiddZ5/n6/wu4Ve4ER49P7A77nJubmzVy5MgBBUpEXuI517BhwzRu3DgdO3ZMd955pySpoaGhV6A0NjYqMzPzvMdwu91yu919ticlJUXsC9Tf7ZK/K34CJZ6+Uc8VyT9DfIk5Rwdzjp54m3U8nU/OFe45h3KsiP87KH6/Xx9++KGysrKUk5Mjj8ejysrK4P2dnZ2qqqpSfn5+pJcCAADiRNivoKxatUpz5szR1VdfrcbGRj3xxBNqbm7W4sWL5XK5VFRUpNLSUuXm5io3N1elpaVKTU3VwoULw70UAAAQp8IeKPX19frpT3+qU6dO6corr9TkyZP17rvvasyYMZKk1atXq6OjQ8uWLdOZM2c0adIkVVRUKC0tLdxLAQAAcSrsgbJz584L3u9yueTz+eTz+cL9qQEAwCDBe/EAAABzCBQAAGAOgQIAAMwhUAAAgDkECgAAMIdAAQAA5hAoAADAHAIFAACYQ6AAAABzCBQAAGAOgQIAAMwhUAAAgDkECgAAMIdAAQAA5hAoAADAHAIFAACYQ6AAAABzCBQAAGAOgQIAAMwhUAAAgDkECgAAMIdAAQAA5hAoAADAHAIFAACYQ6AAAABzCBQAAGAOgQIAAMwhUAAAgDkECgAAMIdAAQAA5hAoAADAHAIFAACYQ6AAAABzCBQAAGAOgQIAAMwhUAAAgDkECgAAMIdAAQAA5hAoAADAHAIFAACYQ6AAAABzCBQAAGAOgQIAAMwhUAAAgDkECgAAMIdAAQAA5hAoAADAHAIFAACYQ6AAAABzCBQAAGAOgQIAAMwhUAAAgDkECgAAMIdAAQAA5hAoAADAHAIFAACYQ6AAAABzCBQAAGAOgQIAAMwhUAAAgDkECgAAMIdAAQAA5hAoAADAHAIFAACYE9NAeeaZZ5STk6Pk5GRNmDBBb7/9diyXAwAAjIhZoOzatUtFRUVau3atDh48qFtvvVWzZ8/WJ598EqslAQAAI2IWKOvXr9eSJUt077336vrrr9eGDRuUnZ2tTZs2xWpJAADAiMRYfNLOzk7V1tbq4Ycf7rW9sLBQNTU1ffb3+/3y+/3B201NTZKkzz//XIFAIKxrCwQCam9vV2IgQV3drrAeO5JOnz4d6yWEpGfOp0+fVlJSUqyXM2gx5+hgztETr7NOPNsW6yWEJLHbUXt7d9jn3NLSIklyHOfiawjbZw3BqVOn1NXVpczMzF7bMzMz1dDQ0Gf/srIylZSU9Nmek5MTsTXGm5FPxnoFAIDBZGEEj93S0qLhw4dfcJ+YBEoPl6v3FQrHcfpsk6Q1a9aouLg4eLu7u1uff/65RowY0e/+X0dzc7Oys7N14sQJpaenh/XY+BJzjg7mHB3MOXqYdXREas6O46ilpUVer/ei+8YkUEaOHKkhQ4b0uVrS2NjY56qKJLndbrnd7l7bvvnNb0ZyiUpPT+eLPwqYc3Qw5+hgztHDrKMjEnO+2JWTHjH5IdmhQ4dqwoQJqqys7LW9srJS+fn5sVgSAAAwJGYv8RQXF+vnP/+5Jk6cqJtvvlm/+93v9Mknn+j++++P1ZIAAIARMQuUBQsW6PTp0/r1r3+tkydPKi8vT3v27NGYMWNitSRJX7yc9Nhjj/V5SQnhxZyjgzlHB3OOHmYdHRbm7HIG8rs+AAAAUcR78QAAAHMIFAAAYA6BAgAAzCFQAACAOZdVoFRXV2vOnDnyer1yuVx65ZVXLvqYqqoqTZgwQcnJybrmmmv029/+NvILHQRCnfXLL7+sgoICXXnllUpPT9fNN9+svXv3RmexcexSvqZ7vPPOO0pMTNR3v/vdiK1vsLiUOfv9fq1du1ZjxoyR2+3Wtddeq2effTbyi41jlzLnF154QePHj1dqaqqysrJ09913x917k0VbWVmZbrzxRqWlpWnUqFG68847dfTo0Ys+Ltrnw8sqUNra2jR+/Hht3LhxQPvX1dXp9ttv16233qqDBw/qkUce0QMPPKA//OEPEV5p/At11tXV1SooKNCePXtUW1ur6dOna86cOTp48GCEVxrfQp1zj6amJi1atEgzZsyI0MoGl0uZ8/z58/WXv/xFmzdv1tGjR7Vjxw5dd911EVxl/At1zvv27dOiRYu0ZMkSHTlyRC+++KL279+ve++9N8IrjW9VVVVavny53n33XVVWVurs2bMqLCxUW9v539AwJudD5zIlydm9e/cF91m9erVz3XXX9dq2dOlSZ/LkyRFc2eAzkFn354YbbnBKSkrCv6BBKpQ5L1iwwPnlL3/pPPbYY8748eMjuq7BZiBzfu2115zhw4c7p0+fjs6iBqGBzPk3v/mNc8011/Ta9vTTTzujR4+O4MoGn8bGRkeSU1VVdd59YnE+vKyuoITqb3/7mwoLC3ttmzVrlg4cOKBAIBCjVV0euru71dLSooyMjFgvZdDZsmWL/vnPf+qxxx6L9VIGrVdffVUTJ07UunXrdNVVV2ns2LFatWqVOjo6Yr20QSU/P1/19fXas2ePHMfRZ599ppdeekk//OEPY720uNLU1CRJF/z/bSzOhzF9N2PrGhoa+rx5YWZmps6ePatTp04pKysrRisb/J588km1tbVp/vz5sV7KoHLs2DE9/PDDevvtt5WYyLd/pHz88cfat2+fkpOTtXv3bp06dUrLli3T559/zs+hhFF+fr5eeOEFLViwQP/973919uxZzZ07V+Xl5bFeWtxwHEfFxcW65ZZblJeXd979YnE+5ArKRbhcrl63nf/9w7tf3Y7w2bFjh3w+n3bt2qVRo0bFejmDRldXlxYuXKiSkhKNHTs21ssZ1Lq7u+VyufTCCy/opptu0u23367169dr69atXEUJow8++EAPPPCAfvWrX6m2tlavv/666urqeE+3EKxYsULvvfeeduzYcdF9o30+5K9QF+DxeNTQ0NBrW2NjoxITEzVixIgYrWpw27Vrl5YsWaIXX3xRM2fOjPVyBpWWlhYdOHBABw8e1IoVKyR9cSJ1HEeJiYmqqKjQbbfdFuNVDg5ZWVm66qqrer2t/PXXXy/HcVRfX6/c3NwYrm7wKCsr05QpU/TQQw9Jkr7zne9o2LBhuvXWW/XEE09wlfsiVq5cqVdffVXV1dUaPXr0BfeNxfmQQLmAm2++WX/60596bauoqNDEiROVlJQUo1UNXjt27NA999yjHTt28BpyBKSnp+v999/vte2ZZ57Rm2++qZdeekk5OTkxWtngM2XKFL344otqbW3VN77xDUnSP/7xDyUkJFz0RICBa29v7/NS5ZAhQyR9+bd79OU4jlauXKndu3frrbfeGtD3fizOh5fVSzytra06dOiQDh06JOmLX5s6dOiQPvnkE0nSmjVrtGjRouD+999/v44fP67i4mJ9+OGHevbZZ7V582atWrUqFsuPK6HOeseOHVq0aJGefPJJTZ48WQ0NDWpoaAj+8Bb6F8qcExISlJeX1+tj1KhRSk5OVl5enoYNGxarp2FeqF/PCxcu1IgRI3T33Xfrgw8+UHV1tR566CHdc889SklJicVTiAuhznnOnDl6+eWXtWnTJn388cd655139MADD+imm26S1+uNxVOIC8uXL9e2bdu0fft2paWlBf9/e+7LjybOhxH7/SCD/vrXvzqS+nwsXrzYcRzHWbx4sTN16tRej3nrrbec733ve87QoUOdb33rW86mTZuiv/A4FOqsp06desH90b9L+Zo+F79mPDCXMucPP/zQmTlzppOSkuKMHj3aKS4udtrb26O/+DhyKXN++umnnRtuuMFJSUlxsrKynJ/97GdOfX199BcfR/qbsSRny5YtwX0snA9d/1ssAACAGZfVSzwAACA+ECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHP+H9RcMUYy5VxzAAAAAElFTkSuQmCC" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-23T15:11:47.804884\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAftklEQVR4nO3df2xV9f3H8dftDy7UtSgqva1UqLHOH1VjQBnghK/Y6wg6HJk6ayZOp2yAsasbwpjzorHFLuu60Q3HZpDMNPiHP2YCjt5FrZLO2DKZjC24JR0ypWnUrq0Ub6/t5/uH6d2uLdDqvfe8b+/zkRB2zz29vM+H4+W50957fc45JwAAAEOyvB4AAADg0wgUAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwBwCBQAAmJPj9QCfxdDQkN59913l5+fL5/N5PQ4AABgD55z6+vpUXFysrKwTXyNJy0B59913VVJS4vUYAADgMzh8+LBmzJhxwn3SMlDy8/MlfXKABQUFHk+TfNFoVM3NzQoGg8rNzfV6nIzAmqcea+4N1j31MnnNe3t7VVJSEvt3/ETSMlCGv61TUFCQMYGSl5engoKCjDuZvcKapx5r7g3WPfVYc43pxzP4IVkAAGAOgQIAAMwhUAAAgDnjDpRXXnlF119/vYqLi+Xz+fTcc8/F3e+cUygUUnFxsaZMmaJFixbpwIEDcftEIhHdc889OuOMM3TKKafoq1/9qv79739/rgMBAAATx7gD5ejRo7r00kvV2Ng46v11dXWqr69XY2Oj2traFAgEVFFRob6+vtg+VVVVevbZZ7Vjxw7t2bNHH374oa677joNDg5+9iMBAAATxrhfxbNkyRItWbJk1Pucc2poaNCGDRu0fPlySdL27dtVWFiopqYmrVy5Uj09PXr88cf1u9/9Ttdcc40k6cknn1RJSYn++Mc/6tprr/0chwMAACaChL7MuKOjQ52dnQoGg7Ftfr9fCxcuVGtrq1auXKm9e/cqGo3G7VNcXKzy8nK1traOGiiRSESRSCR2u7e3V9InL9WKRqOJPASTho8xE47VCtY89Vhzb7DuqZfJaz6eY05ooHR2dkqSCgsL47YXFhbq0KFDsX0mTZqk0047bcQ+w1//abW1tdq4ceOI7c3NzcrLy0vE6GkhHA57PULGYc1TjzX3Buueepm45v39/WPeNylv1PbpN2Bxzp30TVlOtM/69etVXV0duz38TnTBYDBj3qgtHA6roqIiY9/UJ9VY89Rjzb3BuqdeJq/58HdAxiKhgRIIBCR9cpWkqKgotr2rqyt2VSUQCGhgYEDd3d1xV1G6uro0f/78UR/X7/fL7/eP2J6bm5tRf7mZdrwWsOapx5p7g3VPvUxc8/Ecb0LfB6W0tFSBQCDustXAwIBaWlpi8TF79mzl5ubG7XPkyBH99a9/PW6gAACAzDLuKygffvih/vnPf8Zud3R0aN++fZo2bZrOPvtsVVVVqaamRmVlZSorK1NNTY3y8vJUWVkpSZo6daruvPNO3XfffTr99NM1bdo0ff/739fFF18ce1UPAADIbOMOlPb2dv3f//1f7Pbwz4asWLFCTzzxhNauXatjx45p1apV6u7u1ty5c9Xc3Bz3yYU/+9nPlJOTo5tuuknHjh3T4sWL9cQTTyg7OzsBhwQAANLduANl0aJFcs4d936fz6dQKKRQKHTcfSZPnqzNmzdr8+bN4/3jAQBABkjKq3iAsZi1bqfXIxyXP9up7gqpPLRbkcH/vrrsX5uWejgVAGQOPiwQAACYQ6AAAABzCBQAAGAOgQIAAMwhUAAAgDkECgAAMIdAAQAA5hAoAADAHAIFAACYQ6AAAABzCBQAAGAOgQIAAMwhUAAAgDkECgAAMIdAAQAA5hAoAADAHAIFAACYQ6AAAABzCBQAAGAOgQIAAMwhUAAAgDkECgAAMIdAAQAA5hAoAADAHAIFAACYQ6AAAABzCBQAAGAOgQIAAMzJ8XoAIJ3MWrfT6xHG7V+blno9AgCMG1dQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYE7CA+Xjjz/Wj370I5WWlmrKlCk655xz9NBDD2loaCi2j3NOoVBIxcXFmjJlihYtWqQDBw4kehQAAJCmEh4ojz76qB577DE1Njbq73//u+rq6vSTn/xEmzdvju1TV1en+vp6NTY2qq2tTYFAQBUVFerr60v0OAAAIA0lPFD+9Kc/admyZVq6dKlmzZqlr3/96woGg2pvb5f0ydWThoYGbdiwQcuXL1d5ebm2b9+u/v5+NTU1JXocAACQhnIS/YBXXnmlHnvsMb311ls677zz9Je//EV79uxRQ0ODJKmjo0OdnZ0KBoOxr/H7/Vq4cKFaW1u1cuXKEY8ZiUQUiURit3t7eyVJ0WhU0Wg00YdgzvAxTrRj9Wc7r0c4Ln+Wi/s9naXLeTNRz3PrWPfUy+Q1H88xJzxQ7r//fvX09Oj8889Xdna2BgcH9cgjj+iWW26RJHV2dkqSCgsL476usLBQhw4dGvUxa2trtXHjxhHbm5ublZeXl+AjsCscDns9QkLVXeH1BCf38Jyhk+9k3K5du7weYVwm2nmeLlj31MvENe/v7x/zvgkPlKeeekpPPvmkmpqadNFFF2nfvn2qqqpScXGxVqxYEdvP5/PFfZ1zbsS2YevXr1d1dXXsdm9vr0pKShQMBlVQUJDoQzAnGo0qHA6roqJCubm5Xo+TMOWh3V6PcFz+LKeH5wzpgfYsRYZGPy/TxV9D13o9wphM1PPcOtY99TJ5zYe/AzIWCQ+UH/zgB1q3bp2+8Y1vSJIuvvhiHTp0SLW1tVqxYoUCgYCkT66kFBUVxb6uq6trxFWVYX6/X36/f8T23NzcjPrLnWjHGxm0/w9/ZMiXFnOeSLqdMxPtPE8XrHvqZeKaj+d4E/5Dsv39/crKin/Y7Ozs2MuMS0tLFQgE4i5tDQwMqKWlRfPnz0/0OAAAIA0l/ArK9ddfr0ceeURnn322LrroIr3xxhuqr6/XHXfcIemTb+1UVVWppqZGZWVlKisrU01NjfLy8lRZWZnocQAAQBpKeKBs3rxZDzzwgFatWqWuri4VFxdr5cqV+vGPfxzbZ+3atTp27JhWrVql7u5uzZ07V83NzcrPz0/0OAAAIA0lPFDy8/PV0NAQe1nxaHw+n0KhkEKhUKL/eAAAMAHwWTwAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHNyvB4AiTFr3U6vRwAAIGG4ggIAAMwhUAAAgDkECgAAMIdAAQAA5hAoAADAHAIFAACYQ6AAAABzCBQAAGAOgQIAAMwhUAAAgDkECgAAMIdAAQAA5hAoAADAHAIFAACYQ6AAAABzCBQAAGAOgQIAAMzJScaDvvPOO7r//vv1wgsv6NixYzrvvPP0+OOPa/bs2ZIk55w2btyorVu3qru7W3PnztUvf/lLXXTRRckYB8hos9bt9HqEMfFnO9VdIZWHduvgI9d5PQ4AjyX8Ckp3d7cWLFig3NxcvfDCC/rb3/6mn/70pzr11FNj+9TV1am+vl6NjY1qa2tTIBBQRUWF+vr6Ej0OAABIQwm/gvLoo4+qpKRE27Zti22bNWtW7H8759TQ0KANGzZo+fLlkqTt27ersLBQTU1NWrlyZaJHAgAAaSbhgfL888/r2muv1Y033qiWlhadddZZWrVqle666y5JUkdHhzo7OxUMBmNf4/f7tXDhQrW2to4aKJFIRJFIJHa7t7dXkhSNRhWNRhN9COYMH+OJjtWf7VI1TkbwZ7m435F8/7vmmfDftRVjeX5BYmXymo/nmH3OuYQ+A0+ePFmSVF1drRtvvFGvv/66qqqq9Otf/1q33XabWltbtWDBAr3zzjsqLi6Ofd3dd9+tQ4cOaffu3SMeMxQKaePGjSO2NzU1KS8vL5HjAwCAJOnv71dlZaV6enpUUFBwwn0TfgVlaGhIc+bMUU1NjSTpsssu04EDB7Rlyxbddtttsf18Pl/c1znnRmwbtn79elVXV8du9/b2qqSkRMFg8KQHOBFEo1GFw2FVVFQoNzd31H3KQyPDDp+dP8vp4TlDeqA9S5Gh0c9LJNb/rvneH3/F63EyxlieX5BYmbzmw98BGYuEB0pRUZEuvPDCuG0XXHCBnn76aUlSIBCQJHV2dqqoqCi2T1dXlwoLC0d9TL/fL7/fP2J7bm5uRv3lnuh4I4P8I5oMkSEfa5tikSFfRv13bUWmPZ9akIlrPp7jTfireBYsWKCDBw/GbXvrrbc0c+ZMSVJpaakCgYDC4XDs/oGBAbW0tGj+/PmJHgcAAKShhF9B+d73vqf58+erpqZGN910k15//XVt3bpVW7dulfTJt3aqqqpUU1OjsrIylZWVqaamRnl5eaqsrEz0OAAAIA0lPFAuv/xyPfvss1q/fr0eeughlZaWqqGhQbfeemtsn7Vr1+rYsWNatWpV7I3ampublZ+fn+hxAABAGkrKO8led911uu66478TpM/nUygUUigUSsYfDwAA0hyfxQMAAMwhUAAAgDkECgAAMIdAAQAA5hAoAADAHAIFAACYQ6AAAABzCBQAAGAOgQIAAMwhUAAAgDkECgAAMIdAAQAA5hAoAADAHAIFAACYQ6AAAABzCBQAAGAOgQIAAMwhUAAAgDk5Xg8AAJ82a91Or0cYt39tWur1CMCEwhUUAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwBwCBQAAmEOgAAAAcwgUAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwBwCBQAAmEOgAAAAcwgUAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwBwCBQAAmEOgAAAAcwgUAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwBwCBQAAmEOgAAAAcwgUAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwBwCBQAAmEOgAAAAcwgUAABgTtIDpba2Vj6fT1VVVbFtzjmFQiEVFxdrypQpWrRokQ4cOJDsUQAAQJpIaqC0tbVp69atuuSSS+K219XVqb6+Xo2NjWpra1MgEFBFRYX6+vqSOQ4AAEgTSQuUDz/8ULfeeqt+85vf6LTTTottd86poaFBGzZs0PLly1VeXq7t27erv79fTU1NyRoHAACkkaQFyurVq7V06VJdc801cds7OjrU2dmpYDAY2+b3+7Vw4UK1trYmaxwAAJBGcpLxoDt27NDevXvV3t4+4r7Ozk5JUmFhYdz2wsJCHTp0aNTHi0QiikQisdu9vb2SpGg0qmg0mqixzRo+xhMdqz/bpWqcjODPcnG/I/nSfc3T9bloLM8vSKxMXvPxHHPCA+Xw4cO699571dzcrMmTJx93P5/PF3fbOTdi27Da2lpt3LhxxPbm5mbl5eV9voHTSDgcPu59dVekcJAM8vCcIa9HyDjpuua7du3yeoTP5UTPL0iOTFzz/v7+Me/rc84l9P+uPPfcc/ra176m7Ozs2LbBwUH5fD5lZWXp4MGDOvfcc/XnP/9Zl112WWyfZcuW6dRTT9X27dtHPOZoV1BKSkr03nvvqaCgIJHjmxSNRhUOh1VRUaHc3NxR9ykP7U7xVBObP8vp4TlDeqA9S5Gh0cMZiZXua/7X0LVej/CZjOX5BYmVyWve29urM844Qz09PSf99zvhV1AWL16s/fv3x2371re+pfPPP1/333+/zjnnHAUCAYXD4VigDAwMqKWlRY8++uioj+n3++X3+0dsz83Nzai/3BMdb2Qw/Z7Q00FkyMfapli6rnm6Pxdl2vOpBZm45uM53oQHSn5+vsrLy+O2nXLKKTr99NNj26uqqlRTU6OysjKVlZWppqZGeXl5qqysTPQ4AAAgDSXlh2RPZu3atTp27JhWrVql7u5uzZ07V83NzcrPz/diHAAAYExKAuXll1+Ou+3z+RQKhRQKhVLxxwMAgDTDZ/EAAABzCBQAAGAOgQIAAMwhUAAAgDkECgAAMIdAAQAA5hAoAADAHAIFAACYQ6AAAABzCBQAAGAOgQIAAMwhUAAAgDkECgAAMIdAAQAA5hAoAADAHAIFAACYQ6AAAABzCBQAAGAOgQIAAMwhUAAAgDkECgAAMIdAAQAA5uR4PYBFs9bt9HqEOP5sp7orpPLQbkUGfV6PAwBA0nEFBQAAmEOgAAAAcwgUAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwBwCBQAAmEOgAAAAcwgUAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwBwCBQAAmEOgAAAAcwgUAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwBwCBQAAmEOgAAAAcwgUAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwJwcrwcAgIlg1rqdXo/wmfzj4aDXIwCj4goKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMSHii1tbW6/PLLlZ+fr+nTp+uGG27QwYMH4/ZxzikUCqm4uFhTpkzRokWLdODAgUSPAgAA0lTCA6WlpUWrV6/Wa6+9pnA4rI8//ljBYFBHjx6N7VNXV6f6+no1Njaqra1NgUBAFRUV6uvrS/Q4AAAgDSX8fVD+8Ic/xN3etm2bpk+frr179+qqq66Sc04NDQ3asGGDli9fLknavn27CgsL1dTUpJUrVyZ6JAAAkGaS/kZtPT09kqRp06ZJkjo6OtTZ2alg8L9vDuT3+7Vw4UK1traOGiiRSESRSCR2u7e3V5IUjUYVjUYTPrM/2yX8MT8Pf5aL+x3Jx5qnHmvujeHn0GQ8l2J0mbzm4zlmn3Muac8GzjktW7ZM3d3devXVVyVJra2tWrBggd555x0VFxfH9r377rt16NAh7d69e8TjhEIhbdy4ccT2pqYm5eXlJWt8AACQQP39/aqsrFRPT48KCgpOuG9Sr6CsWbNGb775pvbs2TPiPp/PF3fbOTdi27D169eruro6dru3t1clJSUKBoMnPcDPojw0MpK85M9yenjOkB5oz1JkaPQ1QmKx5qnHmnvjjQ1XKxwOq6KiQrm5uV6PkxGi0WjGrvnwd0DGImmBcs899+j555/XK6+8ohkzZsS2BwIBSVJnZ6eKiopi27u6ulRYWDjqY/n9fvn9/hHbc3Nzk/KXGxm0+eQYGfKZnW2iYs1TjzVPreHn0GQ9n+L4MnHNx3O8CX8Vj3NOa9as0TPPPKMXX3xRpaWlcfeXlpYqEAgoHA7Htg0MDKilpUXz589P9DgAACANJfwKyurVq9XU1KTf//73ys/PV2dnpyRp6tSpmjJlinw+n6qqqlRTU6OysjKVlZWppqZGeXl5qqysTPQ4AAAgDSU8ULZs2SJJWrRoUdz2bdu26fbbb5ckrV27VseOHdOqVavU3d2tuXPnqrm5Wfn5+YkeBwAApKGEB8pYXhTk8/kUCoUUCoUS/ccDAIAJgM/iAQAA5hAoAADAHAIFAACYQ6AAAABzCBQAAGAOgQIAAMwhUAAAgDkECgAAMIdAAQAA5hAoAADAHAIFAACYQ6AAAABzCBQAAGAOgQIAAMwhUAAAgDkECgAAMIdAAQAA5hAoAADAHAIFAACYQ6AAAABzCBQAAGAOgQIAAMzJ8XoAAIB3ykO7VXfFJ79HBn1ejzMm/9q01OsRkAJcQQEAAOYQKAAAwBwCBQAAmEOgAAAAcwgUAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwBwCBQAAmEOgAAAAcwgUAABgDoECAADMIVAAAIA5BAoAADCHQAEAAOYQKAAAwBwCBQAAmEOgAAAAcwgUAABgDoECAADMIVAAAIA5BAoAADAnx+sBAAAYj1nrdno9wrj9a9NSr0dIO1xBAQAA5hAoAADAHAIFAACYQ6AAAABzCBQAAGAOgQIAAMwhUAAAgDkECgAAMIdAAQAA5hAoAADAHN7qHgCAJPvft+f3ZzvVXSGVh3YrMujzcKoT8/rt+bmCAgAAzCFQAACAOZ4Gyq9+9SuVlpZq8uTJmj17tl599VUvxwEAAEZ4FihPPfWUqqqqtGHDBr3xxhv68pe/rCVLlujtt9/2aiQAAGCEZ4FSX1+vO++8U9/+9rd1wQUXqKGhQSUlJdqyZYtXIwEAACM8eRXPwMCA9u7dq3Xr1sVtDwaDam1tHbF/JBJRJBKJ3e7p6ZEkffDBB4pGowmfL+fjowl/zM8jZ8ipv39IOdEsDQ7Z/YnviYQ1Tz3W3Buse+qly5q///77CX/Mvr4+SZJz7qT7ehIo7733ngYHB1VYWBi3vbCwUJ2dnSP2r62t1caNG0dsLy0tTdqM1lR6PUAGYs1TjzX3Buueeumw5mf8NHmP3dfXp6lTp55wH0/fB8Xniy9H59yIbZK0fv16VVdXx24PDQ3pgw8+0Omnnz7q/hNNb2+vSkpKdPjwYRUUFHg9TkZgzVOPNfcG6556mbzmzjn19fWpuLj4pPt6EihnnHGGsrOzR1wt6erqGnFVRZL8fr/8fn/ctlNPPTWZI5pUUFCQcSez11jz1GPNvcG6p16mrvnJrpwM8+SHZCdNmqTZs2crHA7HbQ+Hw5o/f74XIwEAAEM8+xZPdXW1vvnNb2rOnDmaN2+etm7dqrffflvf+c53vBoJAAAY4Vmg3HzzzXr//ff10EMP6ciRIyovL9euXbs0c+ZMr0Yyy+/368EHHxzxbS4kD2ueeqy5N1j31GPNx8bnxvJaHwAAgBTis3gAAIA5BAoAADCHQAEAAOYQKAAAwBwCxYja2lpdfvnlys/P1/Tp03XDDTfo4MGDcfs45xQKhVRcXKwpU6Zo0aJFOnDggEcTp7+xrPntt98un88X9+tLX/qSRxNPDFu2bNEll1wSe5OqefPm6YUXXojdz3meeCdbc87z5KutrZXP51NVVVVsG+f6iREoRrS0tGj16tV67bXXFA6H9fHHHysYDOro0f9+cGFdXZ3q6+vV2NiotrY2BQIBVVRUxD58CeMzljWXpK985Ss6cuRI7NeuXbs8mnhimDFjhjZt2qT29na1t7fr6quv1rJly2JPzJzniXeyNZc4z5Opra1NW7du1SWXXBK3nXP9JBxM6urqcpJcS0uLc865oaEhFwgE3KZNm2L7fPTRR27q1Knuscce82rMCeXTa+6ccytWrHDLli3zbqgMcdppp7nf/va3nOcpNLzmznGeJ1NfX58rKytz4XDYLVy40N17773OOZ7Tx4IrKEb19PRIkqZNmyZJ6ujoUGdnp4LBYGwfv9+vhQsXqrW11ZMZJ5pPr/mwl19+WdOnT9d5552nu+66S11dXV6MNyENDg5qx44dOnr0qObNm8d5ngKfXvNhnOfJsXr1ai1dulTXXHNN3HbO9ZPz9NOMMTrnnKqrq3XllVeqvLxckmIfrPjpD1MsLCzUoUOHUj7jRDPamkvSkiVLdOONN2rmzJnq6OjQAw88oKuvvlp79+7lXSA/h/3792vevHn66KOP9IUvfEHPPvusLrzwwtgTM+d54h1vzSXO82TZsWOH9u7dq/b29hH38Zx+cgSKQWvWrNGbb76pPXv2jLjP5/PF3XbOjdiG8Tvemt98882x/11eXq45c+Zo5syZ2rlzp5YvX57qMSeML37xi9q3b5/+85//6Omnn9aKFSvU0tISu5/zPPGOt+YXXngh53kSHD58WPfee6+am5s1efLk4+7HuX58fIvHmHvuuUfPP/+8XnrpJc2YMSO2PRAISPpvdQ/r6uoaUeAYn+Ot+WiKioo0c+ZM/eMf/0jRdBPTpEmTdO6552rOnDmqra3VpZdeqp///Oec50l0vDUfDef557d37151dXVp9uzZysnJUU5OjlpaWvSLX/xCOTk5sfOZc/34CBQjnHNas2aNnnnmGb344osqLS2Nu7+0tFSBQEDhcDi2bWBgQC0tLZo/f36qx50QTrbmo3n//fd1+PBhFRUVpWDCzOGcUyQS4TxPoeE1Hw3n+ee3ePFi7d+/X/v27Yv9mjNnjm699Vbt27dP55xzDuf6yXj247mI893vftdNnTrVvfzyy+7IkSOxX/39/bF9Nm3a5KZOneqeeeYZt3//fnfLLbe4oqIi19vb6+Hk6etka97X1+fuu+8+19ra6jo6OtxLL73k5s2b58466yzW/HNYv369e+WVV1xHR4d788033Q9/+EOXlZXlmpubnXOc58lwojXnPE+d/30Vj3Oc6ydDoBghadRf27Zti+0zNDTkHnzwQRcIBJzf73dXXXWV279/v3dDp7mTrXl/f78LBoPuzDPPdLm5ue7ss892K1ascG+//ba3g6e5O+64w82cOdNNmjTJnXnmmW7x4sWxOHGO8zwZTrTmnOep8+lA4Vw/MZ9zznlz7QYAAGB0/AwKAAAwh0ABAADmECgAAMAcAgUAAJhDoAAAAHMIFAAAYA6BAgAAzCFQAACAOQQKAAAwh0ABAADmECgAAMAcAgUAAJjz/3GFzDXWqFfkAAAAAElFTkSuQmCC" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-23T15:11:48.075069\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAo1UlEQVR4nO3df3DT92H/8ZcMyid2YtP8AMsqDnFS0zU4YbuQOpiu9tJZGQ2MnG9ZGmete9kCnSFXz91oHJZF5Ieg3s3nXr2RsfUYu56Pbpekyy0JWLkG08zjahgsxMsouziGEhRfUwc5mMgKfn//4Gu1jj8Gy5betqzn405n9Pm8Px+9Py8+ll/3kWx5jDFGAAAAluTM9AQAAEB2oXwAAACrKB8AAMAqygcAALCK8gEAAKyifAAAAKsoHwAAwCrKBwAAsGr+TE/gk0ZGRvTuu+8qPz9fHo9npqcDAAAmwRijwcFB+f1+5eRc+trGrCsf7777roqLi2d6GgAAYApOnTqlxYsXX3LMrCsf+fn5ki5OvqCgYIZnkz7xeFwdHR0KBALyer0zPZ1Zg1wmRjbuyMUdubgjl4lNN5toNKri4uLEz/FLmXXlY/SlloKCgjlfPvLy8lRQUMA3wK8hl4mRjTtycUcu7shlYqnKZjJvmeANpwAAwCrKBwAAsIryAQAArKJ8AAAAqygfAADAKsoHAACwivIBAACsonwAAACrKB8AAMAqygcAALAqqfLx8ccf6y//8i9VUlKi3Nxc3XTTTXryySc1MjKSGGOMUTAYlN/vV25urqqqqtTT05PyiQMAgMyUVPn4zne+o2effVZtbW1666231NzcrL/+67/W9773vcSY5uZmtbS0qK2tTd3d3fL5fKqurtbg4GDKJw8AADJPUuXjP//zP7Vu3Trdc889uvHGG/UHf/AHCgQCOnTokKSLVz1aW1u1ZcsW1dTUqKysTLt379bQ0JDa29vTcgAAACCzJPWptl/4whf07LPP6mc/+5mWLl2q//7v/9brr7+u1tZWSVJvb68ikYgCgUBiG8dxVFlZqa6uLm3YsGHcPmOxmGKxWOJ+NBqVdPHT9eLx+FSOKSOMHttcPsapIJeJkY07cnFHLu7IZWLTzSaZ7ZIqH9/+9rd19uxZ/cZv/IbmzZunCxcu6JlnntEDDzwgSYpEIpKkwsLCMdsVFhaqr6/PdZ/btm3T1q1bxy3v6OhQXl5eMtPLSOFweKanMCuRy8TIxh25uCMXd+QysalmMzQ0NOmxSZWPH/7wh/rBD36g9vZ2LVu2TEePHlVDQ4P8fr/q6uoS4zwez5jtjDHjlo1qampSY2Nj4n40GlVxcbECgYAKCgqSmV5GicfjCofDqq6ultfrveTYsuA+S7NKnTeDd09pu2RyyTZk445c3JGLO3KZ2HSzGX3lYjKSKh9/8Rd/oUcffVRf+cpXJEm33nqr+vr6tG3bNtXV1cnn80m6eAWkqKgosV1/f/+4qyGjHMeR4zjjlnu93qw4MSZznLEL7sVtNpvu/122/P9PBdm4Ixd35OKOXCY21WyS2SapN5wODQ0pJ2fsJvPmzUv8qm1JSYl8Pt+YSzbDw8Pq7OxURUVFMg8FAADmqKSufKxdu1bPPPOMbrjhBi1btkxHjhxRS0uLHnroIUkXX25paGhQKBRSaWmpSktLFQqFlJeXp9ra2rQcAAAAyCxJlY/vfe97evzxx1VfX6/+/n75/X5t2LBBf/VXf5UYs3nzZp0/f1719fUaGBhQeXm5Ojo6lJ+fn/LJAwCAzJNU+cjPz1dra2viV2vdeDweBYNBBYPBaU4NAADMRXy2CwAAsIryAQAArKJ8AAAAqygfAADAKsoHAACwivIBAACsonwAAACrKB8AAMAqygcAALCK8gEAAKyifAAAAKsoHwAAwCrKBwAAsIryAQAArKJ8AAAAqygfAADAKsoHAACwivIBAACsonwAAACrKB8AAMAqygcAALCK8gEAAKyifAAAAKsoHwAAwCrKBwAAsIryAQAArKJ8AAAAqygfAADAKsoHAACwivIBAACsonwAAACrKB8AAMAqygcAALAqqfJx4403yuPxjLtt3LhRkmSMUTAYlN/vV25urqqqqtTT05OWiQMAgMyUVPno7u7WmTNnErdwOCxJuu+++yRJzc3NamlpUVtbm7q7u+Xz+VRdXa3BwcHUzxwAAGSkpMrHwoUL5fP5Erd///d/180336zKykoZY9Ta2qotW7aopqZGZWVl2r17t4aGhtTe3p6u+QMAgAwzf6obDg8P6wc/+IEaGxvl8Xj09ttvKxKJKBAIJMY4jqPKykp1dXVpw4YNrvuJxWKKxWKJ+9FoVJIUj8cVj8enOr1Zb/TYJnOMzjyT7umk3FT/75LJJduQjTtycUcu7shlYtPNJpntPMaYKf1k+5d/+RfV1tbq5MmT8vv96urq0qpVq3T69Gn5/f7EuPXr16uvr0/79u1z3U8wGNTWrVvHLW9vb1deXt5UpgYAACwbGhpSbW2tzp49q4KCgkuOnfKVj+9///tavXr1mKIhSR6PZ8x9Y8y4Zb+uqalJjY2NifvRaFTFxcUKBAKXnXwmi8fjCofDqq6ultfrveTYsqB7cZvN3gzePaXtkskl25CNO3JxRy7uyGVi081m9JWLyZhS+ejr69Orr76q559/PrHM5/NJkiKRiIqKihLL+/v7VVhYOOG+HMeR4zjjlnu93qw4MSZznLELE5e32Wq6/3fZ8v8/FWTjjlzckYs7cpnYVLNJZpsp/Z2PXbt2adGiRbrnnnsSy0pKSuTz+RK/ASNdfF9IZ2enKioqpvIwAABgDkr6ysfIyIh27dqluro6zZ//q809Ho8aGhoUCoVUWlqq0tJShUIh5eXlqba2NqWTBgAAmSvp8vHqq6/q5MmTeuihh8at27x5s86fP6/6+noNDAyovLxcHR0dys/PT8lkAQBA5ku6fAQCAU30CzIej0fBYFDBYHC68wIAAHMUn+0CAACsonwAAACrpvx3PoBLufHRl6a0nTPPqPnzF/+2ie1fMX5n+z2XHwQAmDaufAAAAKsoHwAAwCrKBwAAsIryAQAArKJ8AAAAqygfAADAKsoHAACwivIBAACsonwAAACrKB8AAMAqygcAALCK8gEAAKyifAAAAKsoHwAAwCrKBwAAsIryAQAArKJ8AAAAqygfAADAKsoHAACwivIBAACsonwAAACrKB8AAMAqygcAALCK8gEAAKyifAAAAKvmz/QEgNnixkdfmukpXJIzz6j581JZcJ9iFzySpHe23zPDswKA5HHlAwAAWEX5AAAAVlE+AACAVZQPAABgVdLl4/Tp0/qjP/ojXXfddcrLy9Nv/uZv6vDhw4n1xhgFg0H5/X7l5uaqqqpKPT09KZ00AADIXEmVj4GBAa1atUper1evvPKK/ud//kd/8zd/o0996lOJMc3NzWppaVFbW5u6u7vl8/lUXV2twcHBVM8dAABkoKR+1fY73/mOiouLtWvXrsSyG2+8MfFvY4xaW1u1ZcsW1dTUSJJ2796twsJCtbe3a8OGDamZNQAAyFhJlY8XX3xRd999t+677z51dnbq05/+tOrr6/Xwww9Lknp7exWJRBQIBBLbOI6jyspKdXV1uZaPWCymWCyWuB+NRiVJ8Xhc8Xh8SgeVCUaPbTLH6Mwz6Z7OrOHkmDFf8Stu2czl75HJSuZ7KZuQiztymdh0s0lmO48xZtLP8ldeeaUkqbGxUffdd59++tOfqqGhQX//93+vr33ta+rq6tKqVat0+vRp+f3+xHbr169XX1+f9u3bN26fwWBQW7duHbe8vb1deXl5kz4QAAAwc4aGhlRbW6uzZ8+qoKDgkmOTuvIxMjKiFStWKBQKSZJ+67d+Sz09PdqxY4e+9rWvJcZ5PJ4x2xljxi0b1dTUpMbGxsT9aDSq4uJiBQKBy04+k8XjcYXDYVVXV8vr9V5ybFlwfGmbq5wco6dWjOjxQzmKjbifM9nKLZs3g3fP8KxmXjLfS9mEXNyRy8Smm83oKxeTkVT5KCoq0i233DJm2ec+9zk999xzkiSfzydJikQiKioqSozp7+9XYWGh6z4dx5HjOOOWe73erDgxJnOco39KO5vERjxZedyT8evZZMP3yGRly3NGssjFHblMbKrZJLNNUr/tsmrVKh0/fnzMsp/97GdasmSJJKmkpEQ+n0/hcDixfnh4WJ2dnaqoqEjmoQAAwByV1JWPP/uzP1NFRYVCoZD+8A//UD/96U+1c+dO7dy5U9LFl1saGhoUCoVUWlqq0tJShUIh5eXlqba2Ni0HAAAAMktS5eOOO+7QCy+8oKamJj355JMqKSlRa2urHnzwwcSYzZs36/z586qvr9fAwIDKy8vV0dGh/Pz8lE8eAABknqTKhyStWbNGa9asmXC9x+NRMBhUMBiczrwAAMAcxWe7AAAAqygfAADAKsoHAACwivIBAACsonwAAACrKB8AAMAqygcAALCK8gEAAKyifAAAAKsoHwAAwCrKBwAAsIryAQAArKJ8AAAAqygfAADAKsoHAACwivIBAACsonwAAACrKB8AAMAqygcAALCK8gEAAKyifAAAAKsoHwAAwCrKBwAAsIryAQAArKJ8AAAAqygfAADAKsoHAACwivIBAACsonwAAACrKB8AAMAqygcAALCK8gEAAKyifAAAAKuSKh/BYFAej2fMzefzJdYbYxQMBuX3+5Wbm6uqqir19PSkfNIAACBzJX3lY9myZTpz5kziduzYscS65uZmtbS0qK2tTd3d3fL5fKqurtbg4GBKJw0AADJX0uVj/vz58vl8idvChQslXbzq0draqi1btqimpkZlZWXavXu3hoaG1N7envKJAwCAzDQ/2Q1OnDghv98vx3FUXl6uUCikm266Sb29vYpEIgoEAomxjuOosrJSXV1d2rBhg+v+YrGYYrFY4n40GpUkxeNxxePxZKeXMUaPbTLH6Mwz6Z7OrOHkmDFf8Stu2czl75HJSuZ7KZuQiztymdh0s0lmO48xZtLP8q+88oqGhoa0dOlSvffee3r66af1v//7v+rp6dHx48e1atUqnT59Wn6/P7HN+vXr1dfXp3379rnuMxgMauvWreOWt7e3Ky8vb9IHAgAAZs7Q0JBqa2t19uxZFRQUXHJsUuXjk86dO6ebb75Zmzdv1p133qlVq1bp3XffVVFRUWLMww8/rFOnTmnv3r2u+3C78lFcXKxf/OIXl518JovH4wqHw6qurpbX673k2LKge3Gbi5wco6dWjOjxQzmKjXhmejqzylzJ5s3g3SndXzLfS9mEXNyRy8Smm000GtX1118/qfKR9Msuv+6qq67SrbfeqhMnTujee++VJEUikTHlo7+/X4WFhRPuw3EcOY4zbrnX682KE2Myxxm7kLk/aKYqNuLJyuOejEzPJl3f19nynJEscnFHLhObajbJbDOtv/MRi8X01ltvqaioSCUlJfL5fAqHw4n1w8PD6uzsVEVFxXQeBgAAzCFJXfn48z//c61du1Y33HCD+vv79fTTTysajaqurk4ej0cNDQ0KhUIqLS1VaWmpQqGQ8vLyVFtbm675AwCADJNU+fj5z3+uBx54QL/4xS+0cOFC3XnnnTp48KCWLFkiSdq8ebPOnz+v+vp6DQwMqLy8XB0dHcrPz0/L5AEAQOZJqnzs2bPnkus9Ho+CwaCCweB05gQAAOYwPtsFAABYRfkAAABWUT4AAIBVlA8AAGAV5QMAAFhF+QAAAFZRPgAAgFWUDwAAYBXlAwAAWEX5AAAAVlE+AACAVZQPAABgFeUDAABYRfkAAABWUT4AAIBVlA8AAGAV5QMAAFhF+QAAAFZRPgAAgFWUDwAAYBXlAwAAWEX5AAAAVlE+AACAVZQPAABgFeUDAABYRfkAAABWUT4AAIBVlA8AAGDV/JmeAAAgfcqC+xS74JnpaUzaO9vvmekpwAKufAAAAKsoHwAAwCrKBwAAsIryAQAArJrWG063bdumxx57TN/85jfV2toqSTLGaOvWrdq5c6cGBgZUXl6uv/3bv9WyZctSMV8AGe7GR19K6f6ceUbNn0//Gyt5IySQOlO+8tHd3a2dO3fqtttuG7O8ublZLS0tamtrU3d3t3w+n6qrqzU4ODjtyQIAgMw3pfLx4Ycf6sEHH9Q//MM/6JprrkksN8aotbVVW7ZsUU1NjcrKyrR7924NDQ2pvb09ZZMGAACZa0ovu2zcuFH33HOPfvd3f1dPP/10Ynlvb68ikYgCgUBimeM4qqysVFdXlzZs2DBuX7FYTLFYLHE/Go1KkuLxuOLx+FSmlxFGj20yx+jMM+mezqzh5JgxX/ErZOPOVi6Z9nw0Ot9MO1/SnXMyz73ZZrrZJLNd0uVjz549Onz4sA4dOjRuXSQSkSQVFhaOWV5YWKi+vj7X/W3btk1bt24dt7yjo0N5eXnJTi/jhMPhy45p/ryFicwyT60YmekpzFpk4y7dubz88stp3X+6ZNr5YivnyTz3ZqupZjM0NDTpsUmVj1OnTumb3/ymOjo6dOWVV044zuMZ+6YvY8y4ZaOamprU2NiYuB+NRlVcXKxAIKCCgoJkppdR4vG4wuGwqqur5fV6Lzm2LLjP0qxmnpNj9NSKET1+KEexkcz5q4w2kI07W7m8Gbw7bftOh9HnmEw7X9KdczLPvdlmutmMvnIxGUmVj8OHD6u/v1+33357YtmFCxd04MABtbW16fjx45IuXgEpKipKjOnv7x93NWSU4zhyHGfccq/XmxUnxmSOM5P+NHKqxEY8WXnck0E27tKdS6Y+H2Xa+WIr52z5GTMVU80mmW2SesPpl770JR07dkxHjx5N3FasWKEHH3xQR48e1U033SSfzzfmks3w8LA6OztVUVGRzEMBAIA5KqkrH/n5+SorKxuz7KqrrtJ1112XWN7Q0KBQKKTS0lKVlpYqFAopLy9PtbW1qZs1AADIWCn/VNvNmzfr/Pnzqq+vT/yRsY6ODuXn56f6oQAAQAaadvnYv3//mPsej0fBYFDBYHC6uwYAAHMQn+0CAACsonwAAACrUv6ej9ku1R9qNVW2PgwLQGrMlueOyRp9jgFmI658AAAAqygfAADAKsoHAACwivIBAACsonwAAACrKB8AAMAqygcAALCK8gEAAKyifAAAAKsoHwAAwCrKBwAAsIryAQAArKJ8AAAAqygfAADAKsoHAACwivIBAACsonwAAACrKB8AAMAqygcAALCK8gEAAKyifAAAAKsoHwAAwCrKBwAAsIryAQAArKJ8AAAAqygfAADAKsoHAACwivIBAACsonwAAACrKB8AAMCqpMrHjh07dNttt6mgoEAFBQVauXKlXnnllcR6Y4yCwaD8fr9yc3NVVVWlnp6elE8aAABkrqTKx+LFi7V9+3YdOnRIhw4d0l133aV169YlCkZzc7NaWlrU1tam7u5u+Xw+VVdXa3BwMC2TBwAAmSep8rF27Vp9+ctf1tKlS7V06VI988wzuvrqq3Xw4EEZY9Ta2qotW7aopqZGZWVl2r17t4aGhtTe3p6u+QMAgAwzf6obXrhwQf/6r/+qc+fOaeXKlert7VUkElEgEEiMcRxHlZWV6urq0oYNG1z3E4vFFIvFEvej0agkKR6PKx6PT3V6E3LmmZTvcyqcHDPmKy4il4mRjTtycZepuaTjed9t/+l+nEw03WyS2c5jjEnqzDx27JhWrlypjz76SFdffbXa29v15S9/WV1dXVq1apVOnz4tv9+fGL9+/Xr19fVp3759rvsLBoPaunXruOXt7e3Ky8tLZmoAAGCGDA0Nqba2VmfPnlVBQcElxyZ95eOzn/2sjh49qg8++EDPPfec6urq1NnZmVjv8XjGjDfGjFv265qamtTY2Ji4H41GVVxcrEAgcNnJT0VZ0L0E2ebkGD21YkSPH8pRbGTifLINuUyMbNyRi7tMzeXN4N1p3X88Hlc4HFZ1dbW8Xm9aHyvTTDeb0VcuJiPp8nHFFVfoM5/5jCRpxYoV6u7u1ne/+119+9vfliRFIhEVFRUlxvf396uwsHDC/TmOI8dxxi33er1pOTFiF2bXN2FsxDPr5jQbkMvEyMYdubjLtFxsFYJ0/YyZC6aaTTLbTPvvfBhjFIvFVFJSIp/Pp3A4nFg3PDyszs5OVVRUTPdhAADAHJHUlY/HHntMq1evVnFxsQYHB7Vnzx7t379fe/fulcfjUUNDg0KhkEpLS1VaWqpQKKS8vDzV1tama/4AACDDJFU+3nvvPX31q1/VmTNntGDBAt12223au3evqqurJUmbN2/W+fPnVV9fr4GBAZWXl6ujo0P5+flpmTwAAMg8SZWP73//+5dc7/F4FAwGFQwGpzMnAAAwh/HZLgAAwCrKBwAAsIryAQAArKJ8AAAAqygfAADAKsoHAACwivIBAACsonwAAACrKB8AAMAqygcAALCK8gEAAKyifAAAAKsoHwAAwCrKBwAAsIryAQAArKJ8AAAAqygfAADAKsoHAACwivIBAACsonwAAACrKB8AAMAqygcAALCK8gEAAKyifAAAAKsoHwAAwCrKBwAAsIryAQAArKJ8AAAAqygfAADAKsoHAACwivIBAACsonwAAACrKB8AAMCqpMrHtm3bdMcddyg/P1+LFi3Svffeq+PHj48ZY4xRMBiU3+9Xbm6uqqqq1NPTk9JJAwCAzJVU+ejs7NTGjRt18OBBhcNhffzxxwoEAjp37lxiTHNzs1paWtTW1qbu7m75fD5VV1drcHAw5ZMHAACZZ34yg/fu3Tvm/q5du7Ro0SIdPnxYX/ziF2WMUWtrq7Zs2aKamhpJ0u7du1VYWKj29nZt2LAhdTMHAAAZKany8Ulnz56VJF177bWSpN7eXkUiEQUCgcQYx3FUWVmprq4u1/IRi8UUi8US96PRqCQpHo8rHo9PZ3qunHkm5fucCifHjPmKi8hlYmTjjlzcZWou6Xjed9t/uh8nE003m2S28xhjpnRmGmO0bt06DQwM6Cc/+YkkqaurS6tWrdLp06fl9/sTY9evX6++vj7t27dv3H6CwaC2bt06bnl7e7vy8vKmMjUAAGDZ0NCQamtrdfbsWRUUFFxy7JSvfGzatElvvPGGXn/99XHrPB7PmPvGmHHLRjU1NamxsTFxPxqNqri4WIFA4LKTn4qy4PgCNBOcHKOnVozo8UM5io24Z5ONyGViZOOOXNxlai5vBu9O6/7j8bjC4bCqq6vl9XrT+liZZrrZjL5yMRlTKh+PPPKIXnzxRR04cECLFy9OLPf5fJKkSCSioqKixPL+/n4VFha67stxHDmOM2651+tNy4kRuzC7vgljI55ZN6fZgFwmRjbuyMVdpuViqxCk62fMXDDVbJLZJqnfdjHGaNOmTXr++ef14x//WCUlJWPWl5SUyOfzKRwOJ5YNDw+rs7NTFRUVyTwUAACYo5K68rFx40a1t7fr3/7t35Sfn69IJCJJWrBggXJzc+XxeNTQ0KBQKKTS0lKVlpYqFAopLy9PtbW1aTkAAACQWZIqHzt27JAkVVVVjVm+a9cuff3rX5ckbd68WefPn1d9fb0GBgZUXl6ujo4O5efnp2TCAAAgsyVVPibzizEej0fBYFDBYHCqcwIAAHMYn+0CAACsonwAAACrKB8AAMAqygcAALCK8gEAAKyifAAAAKum9am2AACk0o2PvpTW/TvzjJo/f/FzvlL1Z+ff2X5PSvaTTbjyAQAArKJ8AAAAqygfAADAKsoHAACwivIBAACsonwAAACrKB8AAMAqygcAALCK8gEAAKyifAAAAKsoHwAAwCrKBwAAsIryAQAArKJ8AAAAqygfAADAKsoHAACwivIBAACsonwAAACrKB8AAMAqygcAALCK8gEAAKyifAAAAKsoHwAAwCrKBwAAsIryAQAArKJ8AAAAq5IuHwcOHNDatWvl9/vl8Xj0ox/9aMx6Y4yCwaD8fr9yc3NVVVWlnp6eVM0XAABkuKTLx7lz57R8+XK1tbW5rm9ublZLS4va2trU3d0tn8+n6upqDQ4OTnuyAAAg881PdoPVq1dr9erVruuMMWptbdWWLVtUU1MjSdq9e7cKCwvV3t6uDRs2TG+2AAAg4yVdPi6lt7dXkUhEgUAgscxxHFVWVqqrq8u1fMRiMcViscT9aDQqSYrH44rH46mc3sX5zDMp3+dUODlmzFdcRC4TIxt35OKOXNylI5d0/KyaCaPHMdXjSWa7lJaPSCQiSSosLByzvLCwUH19fa7bbNu2TVu3bh23vKOjQ3l5eamcniSp+fMp3+W0PLViZKanMCuRy8TIxh25uCMXd6nM5eWXX07ZvmaDcDg8pe2GhoYmPTal5WOUx+MZc98YM27ZqKamJjU2NibuR6NRFRcXKxAIqKCgIOVzKwvuS/k+p8LJMXpqxYgeP5Sj2Ih7NtmIXCZGNu7IxR25uEtHLm8G707JfmZaPB5XOBxWdXW1vF5v0tuPvnIxGSktHz6fT9LFKyBFRUWJ5f39/eOuhoxyHEeO44xb7vV6p3TwlxO7MLu+CWMjnlk3p9mAXCZGNu7IxR25uEtlLun4WTWTpvrzN5ltUvp3PkpKSuTz+cZcshkeHlZnZ6cqKipS+VAAACBDJX3l48MPP9T//d//Je739vbq6NGjuvbaa3XDDTeooaFBoVBIpaWlKi0tVSgUUl5enmpra1M6cQAAkJmSLh+HDh3S7/zO7yTuj75fo66uTv/0T/+kzZs36/z586qvr9fAwIDKy8vV0dGh/Pz81M0aAABkrKTLR1VVlYyZ+FeUPB6PgsGggsHgdOYFAADmKD7bBQAAWEX5AAAAVlE+AACAVZQPAABgFeUDAABYRfkAAABWUT4AAIBVlA8AAGAV5QMAAFhF+QAAAFZRPgAAgFVJf7YLAAD4lRsffWmmp5C0d7bfM6OPz5UPAABgFeUDAABYRfkAAABWUT4AAIBVlA8AAGAV5QMAAFhF+QAAAFZRPgAAgFWUDwAAYBXlAwAAWEX5AAAAVlE+AACAVZQPAABgFeUDAABYRfkAAABWUT4AAIBVlA8AAGAV5QMAAFhF+QAAAFZRPgAAgFWUDwAAYFXaysff/d3fqaSkRFdeeaVuv/12/eQnP0nXQwEAgAySlvLxwx/+UA0NDdqyZYuOHDmi3/7t39bq1at18uTJdDwcAADIIGkpHy0tLfrjP/5j/cmf/Ik+97nPqbW1VcXFxdqxY0c6Hg4AAGSQ+ane4fDwsA4fPqxHH310zPJAIKCurq5x42OxmGKxWOL+2bNnJUm//OUvFY/HUz09zf/4XMr3ORXzR4yGhkY0P56jCyOemZ7OrEEuEyMbd+TijlzckctF77///rhl8XhcQ0NDev/99+X1epPe5+DgoCTJGHP5wSbFTp8+bSSZ//iP/xiz/JlnnjFLly4dN/6JJ54wkrhx48aNGzduc+B26tSpy3aFlF/5GOXxjG2UxphxyySpqalJjY2NifsjIyP65S9/qeuuu851/FwRjUZVXFysU6dOqaCgYKanM2uQy8TIxh25uCMXd+QyselmY4zR4OCg/H7/ZcemvHxcf/31mjdvniKRyJjl/f39KiwsHDfecRw5jjNm2ac+9alUT2vWKigo4BvABblMjGzckYs7cnFHLhObTjYLFiyY1LiUv+H0iiuu0O23365wODxmeTgcVkVFRaofDgAAZJi0vOzS2Nior371q1qxYoVWrlypnTt36uTJk/rGN76RjocDAAAZJC3l4/7779f777+vJ598UmfOnFFZWZlefvllLVmyJB0Pl5Ecx9ETTzwx7iWnbEcuEyMbd+TijlzckcvEbGbjMWYyvxMDAACQGny2CwAAsIryAQAArKJ8AAAAqygfAADAKspHGgWDQXk8njE3n8+XWG+MUTAYlN/vV25urqqqqtTT0zODM06fAwcOaO3atfL7/fJ4PPrRj340Zv1ksojFYnrkkUd0/fXX66qrrtLv//7v6+c//7nFo0i9y+Xy9a9/fdw5dOedd44ZMxdz2bZtm+644w7l5+dr0aJFuvfee3X8+PExY7LxnJlMLtl4zuzYsUO33XZb4o9jrVy5Uq+88kpifTaeK9Llc5nJc4XykWbLli3TmTNnErdjx44l1jU3N6ulpUVtbW3q7u6Wz+dTdXV14sN55pJz585p+fLlamtrc10/mSwaGhr0wgsvaM+ePXr99df14Ycfas2aNbpw4YKtw0i5y+UiSb/3e7835hx6+eWXx6yfi7l0dnZq48aNOnjwoMLhsD7++GMFAgGdO/erD4bMxnNmMrlI2XfOLF68WNu3b9ehQ4d06NAh3XXXXVq3bl2iYGTjuSJdPhdpBs+VaX+SHCb0xBNPmOXLl7uuGxkZMT6fz2zfvj2x7KOPPjILFiwwzz77rKUZzgxJ5oUXXkjcn0wWH3zwgfF6vWbPnj2JMadPnzY5OTlm79691uaeTp/MxRhj6urqzLp16ybcJhtyMcaY/v5+I8l0dnYaYzhnRn0yF2M4Z0Zdc8015h//8R85Vz5hNBdjZvZc4cpHmp04cUJ+v18lJSX6yle+orfffluS1Nvbq0gkokAgkBjrOI4qKyvV1dU1U9OdEZPJ4vDhw4rH42PG+P1+lZWVzfm89u/fr0WLFmnp0qV6+OGH1d/fn1iXLbmcPXtWknTttddK4pwZ9clcRmXzOXPhwgXt2bNH586d08qVKzlX/r9P5jJqps6VtH2qLaTy8nL98z//s5YuXar33ntPTz/9tCoqKtTT05P44L1PftheYWGh+vr6ZmK6M2YyWUQiEV1xxRW65pprxo355IcYziWrV6/WfffdpyVLlqi3t1ePP/647rrrLh0+fFiO42RFLsYYNTY26gtf+ILKysokcc5I7rlI2XvOHDt2TCtXrtRHH32kq6++Wi+88IJuueWWxA/JbD1XJspFmtlzhfKRRqtXr078+9Zbb9XKlSt18803a/fu3Yk39Xg8njHbGGPGLcsWU8lirud1//33J/5dVlamFStWaMmSJXrppZdUU1Mz4XZzKZdNmzbpjTfe0Ouvvz5uXTafMxPlkq3nzGc/+1kdPXpUH3zwgZ577jnV1dWps7MzsT5bz5WJcrnllltm9FzhZReLrrrqKt166606ceJE4rdePtke+/v7xzX0uW4yWfh8Pg0PD2tgYGDCMdmgqKhIS5Ys0YkTJyTN/VweeeQRvfjii3rttde0ePHixPJsP2cmysVNtpwzV1xxhT7zmc9oxYoV2rZtm5YvX67vfve7WX+uTJSLG5vnCuXDolgsprfeektFRUUqKSmRz+dTOBxOrB8eHlZnZ6cqKipmcJb2TSaL22+/XV6vd8yYM2fO6M0338yqvN5//32dOnVKRUVFkuZuLsYYbdq0Sc8//7x+/OMfq6SkZMz6bD1nLpeLm2w5Zz7JGKNYLJa158pERnNxY/VcmdbbVXFJ3/rWt8z+/fvN22+/bQ4ePGjWrFlj8vPzzTvvvGOMMWb79u1mwYIF5vnnnzfHjh0zDzzwgCkqKjLRaHSGZ556g4OD5siRI+bIkSNGkmlpaTFHjhwxfX19xpjJZfGNb3zDLF682Lz66qvmv/7rv8xdd91lli9fbj7++OOZOqxpu1Qug4OD5lvf+pbp6uoyvb295rXXXjMrV640n/70p+d8Ln/6p39qFixYYPbv32/OnDmTuA0NDSXGZOM5c7lcsvWcaWpqMgcOHDC9vb3mjTfeMI899pjJyckxHR0dxpjsPFeMuXQuM32uUD7S6P777zdFRUXG6/Uav99vampqTE9PT2L9yMiIeeKJJ4zP5zOO45gvfvGL5tixYzM44/R57bXXjKRxt7q6OmPM5LI4f/682bRpk7n22mtNbm6uWbNmjTl58uQMHE3qXCqXoaEhEwgEzMKFC43X6zU33HCDqaurG3fMczEXt0wkmV27diXGZOM5c7lcsvWceeihh8ySJUvMFVdcYRYuXGi+9KUvJYqHMdl5rhhz6Vxm+lzxGGPM9K6dAAAATB7v+QAAAFZRPgAAgFWUDwAAYBXlAwAAWEX5AAAAVlE+AACAVZQPAABgFeUDAABYRfkAAABWUT4AAIBVlA8AAGAV5QMAAFj1/wBijKsI41LEUwAAAABJRU5ErkJggg==" + }, + "metadata": {} + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Conclusions:\r\n", + "* Age - normal\r\n", + "* Sex - uniform\r\n", + "* BMI, Y - hard to tell" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "### Task 4: Test the correlation between different variables and disease progression (Y)\r\n", + "\r\n", + "> **Hint** Correlation matrix would give you the most useful information on which values are dependent." + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "source": [ + "df.corr()" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " AGE SEX BMI BP S1 S2 S3 \\\n", + "AGE 1.000000 0.173737 0.185085 0.335428 0.260061 0.219243 -0.075181 \n", + "SEX 0.173737 1.000000 0.088161 0.241010 0.035277 0.142637 -0.379090 \n", + "BMI 0.185085 0.088161 1.000000 0.395411 0.249777 0.261170 -0.366811 \n", + "BP 0.335428 0.241010 0.395411 1.000000 0.242464 0.185548 -0.178762 \n", + "S1 0.260061 0.035277 0.249777 0.242464 1.000000 0.896663 0.051519 \n", + "S2 0.219243 0.142637 0.261170 0.185548 0.896663 1.000000 -0.196455 \n", + "S3 -0.075181 -0.379090 -0.366811 -0.178762 0.051519 -0.196455 1.000000 \n", + "S4 0.203841 0.332115 0.413807 0.257650 0.542207 0.659817 -0.738493 \n", + "S5 0.270774 0.149916 0.446157 0.393480 0.515503 0.318357 -0.398577 \n", + "S6 0.301731 0.208133 0.388680 0.390430 0.325717 0.290600 -0.273697 \n", + "Y 0.187889 0.043062 0.586450 0.441482 0.212022 0.174054 -0.394789 \n", + "\n", + " S4 S5 S6 Y \n", + "AGE 0.203841 0.270774 0.301731 0.187889 \n", + "SEX 0.332115 0.149916 0.208133 0.043062 \n", + "BMI 0.413807 0.446157 0.388680 0.586450 \n", + "BP 0.257650 0.393480 0.390430 0.441482 \n", + "S1 0.542207 0.515503 0.325717 0.212022 \n", + "S2 0.659817 0.318357 0.290600 0.174054 \n", + "S3 -0.738493 -0.398577 -0.273697 -0.394789 \n", + "S4 1.000000 0.617859 0.417212 0.430453 \n", + "S5 0.617859 1.000000 0.464669 0.565883 \n", + "S6 0.417212 0.464669 1.000000 0.382483 \n", + "Y 0.430453 0.565883 0.382483 1.000000 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AGESEXBMIBPS1S2S3S4S5S6Y
AGE1.0000000.1737370.1850850.3354280.2600610.219243-0.0751810.2038410.2707740.3017310.187889
SEX0.1737371.0000000.0881610.2410100.0352770.142637-0.3790900.3321150.1499160.2081330.043062
BMI0.1850850.0881611.0000000.3954110.2497770.261170-0.3668110.4138070.4461570.3886800.586450
BP0.3354280.2410100.3954111.0000000.2424640.185548-0.1787620.2576500.3934800.3904300.441482
S10.2600610.0352770.2497770.2424641.0000000.8966630.0515190.5422070.5155030.3257170.212022
S20.2192430.1426370.2611700.1855480.8966631.000000-0.1964550.6598170.3183570.2906000.174054
S3-0.075181-0.379090-0.366811-0.1787620.051519-0.1964551.000000-0.738493-0.398577-0.273697-0.394789
S40.2038410.3321150.4138070.2576500.5422070.659817-0.7384931.0000000.6178590.4172120.430453
S50.2707740.1499160.4461570.3934800.5155030.318357-0.3985770.6178591.0000000.4646690.565883
S60.3017310.2081330.3886800.3904300.3257170.290600-0.2736970.4172120.4646691.0000000.382483
Y0.1878890.0430620.5864500.4414820.2120220.174054-0.3947890.4304530.5658830.3824831.000000
\n", + "
" + ] + }, + "metadata": {}, + "execution_count": 20 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Conclusion:\r\n", + "* The strongest correlation of Y is BMI and S5 (blood sugar). This sounds reasonable." + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "source": [ + "fig, ax = plt.subplots(1,3,figsize=(10,5))\r\n", + "for i,n in enumerate(['BMI','S5','BP']):\r\n", + " ax[i].scatter(df['Y'],df[n])\r\n", + " ax[i].set_title(n)\r\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-23T15:17:54.398970\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAHBCAYAAAC7Ry7JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hUZdr/v5M2KSQhIZAZFEloQghdEIyiYECK4loXUFfUZXWV3wpiQ2UXXlREfQVXUBcWRWWBfV1EURAFKVKCKBAhhlXAhDoDppBASCMzvz/CGaac8jynTL0/18WlmTlzznPOedrdTU6n0wmCIAiCIAiCIIgQJirQDSAIgiAIgiAIgtAKCTYEQRAEQRAEQYQ8JNgQBEEQBEEQBBHykGBDEARBEARBEETIQ4INQRAEQRAEQRAhDwk2BEEQBEEQBEGEPCTYEARBEARBEAQR8pBgQxAEQRAEQRBEyEOCDUEQBEEQBEEQIQ8JNgQTS5Ysgclk8vjXunVr3HDDDfjiiy88jhW+nzBhgui5/ud//sd1TGlpqevzCRMmoEWLFgbeBUEQwcR3332H2267DVdccQXMZjMyMzMxaNAgTJ061XXMhAkTfOYek8mErl27BrDlBEEEA2r2JsK/1NRU3HDDDVizZk2AWk8YAQk2BBfvv/8+CgoKsGPHDixcuBDR0dG45ZZb8Pnnn3scl5ycjI8//hhnz571+NzpdGLJkiVISUnxZ7MJgggy1qxZg2uuuQbV1dV49dVX8fXXX+PNN99EXl4e/v3vf3scm5CQgIKCAo9/3scQBBG5sO5N7rzzThQUFGD79u1YsGAB7HY7brnlFhJuwoiYQDeACC1yc3Nx1VVXuf4eMWIE0tLSsHz5ctxyyy2uz2+99VasXLkSK1aswMSJE12fb9y4ESUlJZg4cSIWLVrk17YTBBE8vPrqq8jOzsZXX32FmJhLS9HYsWPx6quvehwbFRWFgQMH+ruJBEGECKx7k8zMTNdccs0112DQoEHo1KkT5s2bh9GjR/u93YT+kMWG0ER8fDzi4uIQGxvr8Xlqaipuu+02vPfeex6fv/fee8jLy0OXLl382UyCIIKM8vJyZGRkeAg1AlFRtDQRBKEeqb2JNx07dkTr1q1x5MgRP7WMMBpaPQgumpqacOHCBTQ2NuL48eOYPHkyampqMH78eJ9jH3roIezcuRMHDhwAAJw5cwaffPIJHnroIX83myCIIGPQoEH47rvv8Je//AXfffcdGhsbJY+tra2FxWJBdHQ0Lr/8ckyaNAkVFRV+bC1BEMEMz97EncrKSpSXl6N169Z+ailhNOSKRnDh7Q5iNpsxf/583HTTTT7HDhkyBNnZ2Xjvvffw2muvYdmyZYiJicFdd92Fd999119NJggiCHnllVfw3//+F2+99RbeeustxMbGon///rjlllswadIkVyKRXr16oVevXsjNzQUAbNmyBXPnzsU333yD77//nhKOEATBvDdxOp24cOECnE4nDh8+jCeeeAIOhwP33HOPP5tLGAgJNgQXH374Ibp16wYAKCsrw6pVq/DYY4+hqakJkyZN8jhWyIz29ttvY/bs2Vi8eDHuvvtu2ogQBIFWrVph69at+OGHH/DNN9/ghx9+wObNmzFt2jT84x//wPfff4+MjAxMmTLF43fDhg1Dnz59cOedd2LRokU+3xMEEXmw7k3efvttvP32266/U1NT8T//8z949NFH/d5mwhhIsCG46Natm0+A3pEjR/D000/j3nvvRcuWLT2Of+CBBzBz5ky8/PLL2LNnD9566y0/t5ggiGDmqquucs0pjY2NeOaZZzB37ly8+uqrPkkEBG677TYkJSVh586d/mwqQRBBCuve5O6778ZTTz0Fk8mE5ORkdOzYEdHR0QFqNWEEFGNDaKZnz56ora3FL7/84vNdu3btkJ+fj5kzZ+LKK6/ENddcE4AWEgQRCsTGxuJvf/sbAKCoqEj2WKfTSUkGCIKQRGxv0rp1a1x11VXo168funTpQkJNGEIWG0IzhYWFACAZfDd16lQkJCTgrrvu8mOrCIIIZmw2G6xWq8/nQrKRtm3bSv72P//5D86fP08poAmCkERpb0KEJyTYEFwUFRXhwoULAJrTtX7yySdYv349brvtNmRnZ4v+Zvjw4Rg+fLg/m0kQRJBz00034fLLL8ctt9yCrl27wuFwoLCwEP/7v/+LFi1a4PHHH8eRI0cwfvx4jB07Fp06dYLJZMKWLVswb948dO/eHX/84x8DfRsEQQQBavYmRHhCgg3BxQMPPOD6/9TUVGRnZ+ONN96gwDuCILh44YUX8Nlnn2Hu3Lmw2Wyor6+H1WpFfn4+pk2bhm7duqGyshKZmZl44403cOrUKTQ1NaF9+/b4y1/+gueeew5JSUmBvg2CIIIA2psQAian0+kMdCMIgiAIgiAIgiC0QJGXBEEQBEEQBEGEPCTYEARBEARBEAQR8pBgQxAEQRAEQRBEyEOCDUEQBEEQBEEQIQ8JNgRBEARBEARBhDwk2BAEQRAEQRAEEfIEXR0bh8OBkydPIjk5GSaTKdDNIYiIxul04uzZs2jbti2iokJHD0LzCEEEDzSPEAShBZ45JOgEm5MnT6Jdu3aBbgZBEG4cO3YMl19+eaCbwQzNIwQRfNA8QhCEFljmkKATbJKTkwE0Nz4lJSXArSGIyKa6uhrt2rVzjctQgeYRgggeaB4hCEILPHNI0Ak2grk3JSWFJhKCCBJCzQ2D5hGCCD5oHiEIQgssc0joOLsSBEEQBEEQBEFIQIINQRAEQRAEQRAhDwk2BEEQBEEQBEGEPCTYEARBEARBEAQR8pBgQxAEQRAEQRBEyEOCDUEQBEEQBEEQIQ8JNgRBEARBEARBhDwk2BAEQRAEQRAEEfKQYEMQBEEQBEEQRMhDgg1BEARBEARBECFPTKAbQBD+oMnhxK6SCpw+W4c2yfEYkJ2O6ChToJtFECFPpIwt4T7t1XWoOFeP9KQ4WFITwvZ+CYLwJFLmulCHBBsi7FlXZMPMz4thq6pzfWZNjcffbsnBiFxrAFtGEMbgrwU4UsaW2H0KhOP9EgThSaTMdeEAuaIRYc26Ihv+vHSPz4bEXlWHPy/dg3VFtgC1jCCMYV2RDdfO2Yhxi3bi8RWFGLdoJ66ds1H3vh4pY0vqPgVsYXa/BEF4EilzXbhAgg0RtjQ5nJj5eTGcIt8Jn838vBhNDrEjCCL08NcCHCljS+4+3XEiPO6XIAhPImWuCydIsCHCll0lFZJaVqB5UrJV1WFXSYX/GkUQBuHPBThSxpbSfboTDvdLEIQnkTLXhRMk2BBhy+mzbBsS1uMIIpjx5wIcKWOLt/08xzc5nCg4XI7PCk+g4HA5aXwJIgiJlLkunKDkAUTY0iY5XtfjCCKY8ecCHClji7f9rMdTIDJBhAaRMteFE2SxIcKWAdnpsKbGQyoXlAnNm4kB2en+bBZBGII/F+BIGVtK9+lOlAmorGlQPI4CkQkidIiUuS6cIMGGCFuio0z42y05AOAzKQl//+2WHMpDT4QF/lyAI2Vsud+nEg4n8NgyecGEApEJIrSIlLkunCDBhghrRuRa8c69fWFJ9dRSW1Lj8c69fcntgwgb/L0AR8rYEu7Tmspm6ZITTCgQmSBCj0iZ68IFirEhwp4RuVYMy7FQxWAi7BEWYO/4DYtB8RuRMraE+1yyvQSz1hyQPM5dMBnUsZXP9xSITBChSbDNdf4qwhyKkGBDRATRUSbRjQZBhBv+XoAjZWxFR5mQkWxmOlZKMKFAZIIIXYJlrqPkI/KQYEMQBBFmBMsCHG5oFUyEOCh7VZ1onI0JzdY1CkQmCEIMIfmI9/whJB8h1ziKsSGIiMPf9TNOnDiBe++9F61atUJiYiJ69+6N3bt3y/5my5Yt6NevH+Lj49GhQwe8++67hraRIFjQmqCBApEJglALJR9hgyw2BBFB+NuEXVlZiby8PAwZMgRffvkl2rRpg8OHD6Nly5aSvykpKcGoUaMwceJELF26FNu3b8ejjz6K1q1b44477tC9jQTBiiCY/HnpHpgAjw0Gq2Di7zgogiDCA57kI5FssSeLDUFECIGonzFnzhy0a9cO77//PgYMGICsrCzceOON6Nixo+Rv3n33XVxxxRWYN28eunXrhj/+8Y948MEH8frrr+vePoLgRY8MSSNyrdj2zFAsnzgQb47tjeUTB2LbM0NJqLnIt99+i1tuuQVt27aFyWTCp59+6vH9jBkz0LVrVyQlJSEtLQ35+fn47rvvPI6pr6/H//t//w8ZGRlISkrCmDFjcPz4cT/eBUHoCyUfYYMEG4KIAAJlwl69ejWuuuoq3HXXXWjTpg369OmDRYsWyf6moKAAw4cP9/jspptuwg8//IDGxkZd20cQatBDMBHioG7tfRkGdWxF7mdu1NTUoFevXpg/f77o9126dMH8+fOxf/9+bNu2DVlZWRg+fDh+++031zGTJ0/GqlWrsGLFCmzbtg3nzp3DzTffjKamJn/dBkHoCiUfYYNc0QgiAgiUCfvXX3/FO++8gyeeeALPPfccdu3ahb/85S8wm834wx/+IPobu92OzMxMj88yMzNx4cIFlJWVwWr13TzW19ejvr7e9Xd1dbVu90AQYlCCBuMYOXIkRo4cKfn9+PHjPf5+4403sHjxYuzbtw833ngjqqqqsHjxYnz00UfIz88HACxduhTt2rXDhg0bcNNNNxnafoIwAko+wgZZbAgiAgiUCdvhcKBv3754+eWX0adPHzz88MOYOHEi3nnnHdnfmUye2mun0yn6ucDs2bORmprq+teuXTt9boAgQhR/JwkJFA0NDVi4cCFSU1PRq1cvAMDu3bvR2NjoYflt27YtcnNzsWPHjkA1lSA0QclH2CCLDUFEAIEyYVutVuTk5Hh81q1bN6xcuVLyNxaLBXa73eOz06dPIyYmBq1aiWvIp02bhieeeML1d3V1NQk3YQwVp5MnEupcfPHFFxg7dizOnz8Pq9WK9evXIyMjA0Cz1TcuLg5paWkev8nMzPSZW9whyy8R7FDyEWVIsCGICCBQJuy8vDz8/PPPHp/98ssvaN++veRvBg0ahM8//9zjs6+//hpXXXUVYmNjRX9jNpthNrMVTyRCm0jYtGshUupcDBkyBIWFhSgrK8OiRYtw991347vvvkObNm0kf+N0OiWtvkCz5XfmzJlGNJcgdMPfRZhDDXJFI4gIIFAm7ClTpmDnzp14+eWXcejQISxbtgwLFy7EY4895jpm2rRpHvE2jzzyCI4cOYInnngCBw4cwHvvvYfFixfjySef1LVtROgRiMx+oUQk1blISkpCp06dMHDgQCxevBgxMTFYvHgxgGarb0NDAyorKz1+c/r0aZ/4PXemTZuGqqoq179jx44Zeg8EoRZKPiINCTYEESHokaaWl/79+2PVqlVYvnw5cnNzMWvWLMybNw/33HOP6xibzYajR4+6/s7OzsbatWuxefNm9O7dG7NmzcLf//53qmET4UTSpl0tPElCwg2n0+lyI+vXrx9iY2Oxfv161/c2mw1FRUW45pprJM9hNpuRkpLi8Y8giNCCXNEIIoIIhAn75ptvxs033yz5/ZIlS3w+u/7667Fnzx7D2kSEHlScTplwqXNx7tw5HDp0yPV3SUkJCgsLkZ6ejlatWuGll17CmDFjYLVaUV5ejrfffhvHjx/HXXfdBQBITU3FQw89hKlTp6JVq1ZIT0/Hk08+iR49eriypBEEEZ6QYEMQEQalqSVCkXDZtBtJuNS5+OGHHzBkyBDX30JikPvvvx/vvvsu/vvf/+KDDz5AWVkZWrVqhf79+2Pr1q3o3r276zdz585FTEwM7r77btTW1uLGG2/EkiVLEB0d7ff7IQjCf5BgQxAEQQQ94bJpN5JwqXNxww03uFK8i/HJJ58oniM+Ph5vvfUW3nrrLT2bRhBEkEMxNgRBEETQI2zapZwmTWjOjhbsm3YjoToXBEFEOiTYEARBEEEPbdrZCESSEIIgiGCBXNEIgiCIkICK07FBdS4IgohUSLAhCIIgQgbatLNBSUIIgohESLAhCIIgQgratBMEQRBiUIwNQRAEQRAEQRAhjybBZvbs2TCZTJg8ebLrM6fTiRkzZqBt27ZISEjADTfcgJ9++klrOwmCIAiCIAiCICRRLdh8//33WLhwIXr27Onx+auvvoo33ngD8+fPx/fffw+LxYJhw4bh7NmzmhtLEARBEARBEAQhhirB5ty5c7jnnnuwaNEipKWluT53Op2YN28enn/+edx+++3Izc3FBx98gPPnz2PZsmW6NZogCIIgCIIgWGhyOFFwuByfFZ5AweFyNDmkC8AafR692kKIoyp5wGOPPYbRo0cjPz8fL774ouvzkpIS2O12DB8+3PWZ2WzG9ddfjx07duDhhx/W3mKCIAiCIAiCYGBdkc0nRbxVRYp4Pc6jV1sIabgtNitWrMDu3bsxe/Zsn+/sdjsAIDMz0+PzzMxM13fe1NfXo7q62uMfQRAEQQQTpGUliNBjXZENf166x0OQAAB7VR3+vHQP1hXZ/HYevdpCyMNlsTl27Bgef/xxfP3114iPj5c8zmTyrCfgdDp9PhOYPXs2Zs6cydMMgiAIgvAbpGUliNCjyeHEzM+LIaaCcAIwAZj5eTGG5Vhk62DpcR692kIow2Wx2b17N06fPo1+/fohJiYGMTEx2LJlC/7+978jJibGZanxts6cPn3ax4ojMG3aNFRVVbn+HTt2TOWtEARBEIS+kJaVIEKTXSUVPuPWHScAW1UddpVUGH4evdpCKMNlsbnxxhuxf/9+j88eeOABdO3aFc888ww6dOgAi8WC9evXo0+fPgCAhoYGbNmyBXPmzBE9p9lshtlsVtl8giAIQi+aHE7sKqnA6bN1aJMcjwHZ6RGtPSQtKxEphOPYP31WWpDgOU6P8+jVFjHC8d1pgUuwSU5ORm5ursdnSUlJaNWqlevzyZMn4+WXX0bnzp3RuXNnvPzyy0hMTMT48eP1azVBEAShK+Ru5QuPlnVQx1b+axhB6Ei4jv02ydIhEzzH6XEevdriTbi+Oy1oKtApxtNPP43Jkyfj0UcfxVVXXYUTJ07g66+/RnJyst6XIgiCIHSA3K3EMVLL6g4lJiACRTiP/QHZ6bCmxkPKdmFCsxAwIDvd8PPo1RZ3wvndaUGzYLN582bMmzfP9bfJZMKMGTNgs9lQV1eHLVu2+Fh5CIIgiOBAyd0KaHa3isTNtlFaVnfWFdlw7ZyNGLdoJx5fUYhxi3bi2jkbI3ZTQviPcB/70VEm/O2WHADwESiEv/92S46i25Ye59GrLQLh/u60oLvFhiAIgggdKKhVGiO0rO6QxpUIJJEw9kfkWvHOvX1hSfVUPlhS4/HOvX2Z3bX0OI9ebQEi492pRVWBToIgCCI88Je7VSgiaFn/vHQPTICHdlSNltUdSkxABJpIGfsjcq0YlmPRHGCvx3n0aose7y5ckw6QYEOEFeE6UAnCKPzhbhXKCFpW7wBdi8YAXUpMQASaSBr70VEmXcaRHufR4xxa3104Jx0gwYYIG8J5oBKEUQjuVvaqOlHrgQnNm3i17lbhAK+WlUXBEinaciJ4obEfumh5d4ILrPfvBBdYXre4YINibIiwgHzVCUIdege1hjJy2ckELeutvS/DoI6tJJ8HazKASNKWE8EJjf3gRSlTotp3FwlJB8hiQ4Q85KtOENowyt0qlNDD4sujCSVtOREM0NgPPljnIjXvLhJcYEmwIUKeSBioBGE0egW1hiJ6uGbwKliMTExAhAbBEhMayWM/WBD6wvpiO97bXurzvb2qDo8s3YMH87IwLMfiej9i765f+zTsPlKJzwpP+LxLHhfYYOmfvJBgQ4Q85KtOEPqgV4BtKKGXxVeNgoW05ZFLsMWERuLYDxbE+oI3wvz03vZSvLe91KOvuL+7dUU2XP/aJsl+xeraWlp2HtfO2Rg0/ZMHEmyIkId81QmCUIteFl+1ChbSlkce4R68TbAj1ReUEOsrLP1qWI5F0QU2NTEW8zb8ErL9k5IHECGP0UX0CIIIX/Sy+GpRsLAmJiBCn0gI3ibYkOsLSnj3FdZ+BUA26YDT6zdy1wxWSLAhQh7K7EIQhFr0sviSgoVggSrGEwJKfUEJ977C068EF1hLquecZkmNx5T8zjhzvpHpPMEKuaIRYQH5qhMEoQa9spNRMgCCBYoJjSzkAvD1esc85xGOlXKB/WLfSd2v6W9IsCHCBvJVJwiCFz0FElKwEEpQTGjkoJQgQq93zHMe92PFEkaEQ/8kwYYIK/TI7BKqKQ4JglCHngIJKVgIOah+UWSgRyC/Et59RY9+FQ79kwQbgnAj2FJwEgThH/QUSCh1LiEFuSyGPzwp5KX6gsCNXVvjm//+5vO5WF/Ro1+FQ/+k5AEEcRFBw+IdgCdoWNYV2fzSjiaHEwWHy/FZ4QkUHC4P6uwjBBFOUHYywh/IBW8HeypdQhk9AvmtqfF4996+WDxhAN69ty+sDH1Fr34V6v2TLDYEAf2K9GmFLEaEN+QaSRDhRyi5LAb7HBRs7eNNEKHUF3j6il79KpT6pzck2BAE9CvSpwUq2kZ4Q4IuQYQvoeCyGOxzUDC2T00AvlJf4OkrevWrUOifYpArGkEg8Ck4jS7aRu5toUewuEYSBBGZBPscFKzto5pWgYUEG4JA4FMcGlm0bV2RDdfO2Yhxi3bi8RWFGLdoJ66dszHgixIhDVUnJwgikAT7HBTM7aOi4YGFBBuCgD4aFi1WEaMsRsGq0SLkoerkBEEEkmCfg4K9faEegB/KUIwNQUB7ikOtfr5GWIyCJSECwU+gXSMJIpB8++23eO2117B7927YbDasWrUKv/vd7wAAjY2NeOGFF7B27Vr8+uuvSE1NRX5+Pl555RW0bdvWdY76+no8+eSTWL58OWpra3HjjTfi7bffxuWXXx6guwotgn0O0to+fyQckArAB4CCw+WGXVvPewu2xAwskGBDEBdRW6RPj6B/I4piBUNCBEId/nCNDMUFi4gMampq0KtXLzzwwAO44447PL47f/489uzZg+nTp6NXr16orKzE5MmTMWbMGPzwww+u4yZPnozPP/8cK1asQKtWrTB16lTcfPPN2L17N6Kjo/19SyFHoN2z9bqu2HH+TDjgHYBv9LX1PH8wJmZggQQbgnCDN8WhXlYRI4piBbvGjZDG6OrPobhguQtiGS3MgBMoq6lHm+R49Gufht1HKg0X0kgY9A8jR47EyJEjRb9LTU3F+vXrPT576623MGDAABw9ehRXXHEFqqqqsHjxYnz00UfIz88HACxduhTt2rXDhg0bcNNNNxl+D6FOsFegV9u+QGYfNfraep4/lLO0kmBDEF7wpDjU0yqi1mIkRbBr3AhpjKz+HIoLlpgg5k6UCXAPaVMjpCkJLaEoDEYKVVVVMJlMaNmyJQBg9+7daGxsxPDhw13HtG3bFrm5udixYwcJNgwEewV6Ne0LpHu20dfW8/yh7sZOyQMIQgN6W0VG5Fqx7ZmhWD5xIN4c2xvLJw7EtmeGqto4UcrJ0MaI4NNgziQkhVQCDHe8m8ubHEMpcyAl4Qhe6urq8Oyzz2L8+PFISUkBANjtdsTFxSEtLc3j2MzMTNjtdslz1dfXo7q62uNfJBPsAfC87QtkwgGjr63n+YM9MYMSZLEhCA0YYRXRs7hWMGvcCGX0rv4canFXcoKYHDxaRSUL1oLxfTBrzYGQ1V6GM42NjRg7diwcDgfefvttxeOdTidMJul3NHv2bMycOVPPJoY8wV6Bnqd9rArG7Yd+0/0ejXYN1/P8oe7GThYbgtBAsFtFgl3jRigjCLq39r4Mgzq20rTYhtqCpSSIycGiVWSxYL3wWVFIay/DlcbGRtx9990oKSnB+vXrXdYaALBYLGhoaEBlZaXHb06fPo3MzEzJc06bNg1VVVWuf8eOHTOs/aGEnnOQEbC2j1XBOH/TYd1rvRntGq7n+UPdjZ0sNgShgVCwigS7xo3wH/5csPQItNdDwJI7B4sFq6KmUfN1/EkkJDgQhJqDBw9i06ZNaNXK07rYr18/xMbGYv369bj77rsBADabDUVFRXj11Vclz2s2m2E2mw1tOxE4lBIOuKN3zKHRyRgGZKejZWIszpyXnq9aJsYynT/YE0coQYINQWhE76B/I9DLvY0Ibfy1YOkVaK+HgCV3Dj2FkWDQXoZLgoNz587h0KFDrr9LSkpQWFiI9PR0tG3bFnfeeSf27NmDL774Ak1NTa64mfT0dMTFxSE1NRUPPfQQpk6dilatWiE9PR1PPvkkevTo4cqSRkQecopIb/R2Mw0GJSjrmYOhrVogVzSC0AE9g/4JwiiEBQvwXeT0WrD0DLRXcvWUg8UNlFUYSU+K85u7aZPDiYLD5fis8AQKDpczJ3IIpwQHP/zwA/r06YM+ffoAAJ544gn06dMHf/3rX3H8+HGsXr0ax48fR+/evWG1Wl3/duzY4TrH3Llz8bvf/Q5333038vLykJiYiM8//5xq2EQ4Uu7ZYujtZmqka/iukgpZaw0AVJ5vZL6XUHZjJ4sNQegEWUWIUMBIC6PeaUJ5NKzusApprBas6aNz8Ngy47WXai0uoZ6e1ZsbbrgBTqf025b7TiA+Ph5vvfUW3nrrLT2bRgQJWlwuBffsuet/wfxNhxSP19Oya5RruBHxk6Hqxk6CDRG2RIKvebAzY8YMnyxDcilXN2/ejCFDhvh8fuDAAXTt2tWQNkYiRi1YRmRdkxLE3PGuYyMnpHnPC9NHd8Njy/bKCi0jcq14J8pYd1Mt9YVCLdsdQWhBD5fL6CgT8jplMAk2PG6mLPsOI5SgRsVPhqLClgQbIiwJF1/zcKB79+7YsGGD628WV5Cff/7ZI8tR69atDWlbJGPEgmVU1jVvQSyjhRlwAmU19WiTHI9+7dOw+0ilopAmNS/8aXA2Vv9okxVajNRearW4hFq2O4JQi54FhvWOOQzkviPUA/71hAQbIuwIxcrq4UxMTAwsFgvXb9q0aeOqIk6EDkZmXVMSxJSENLl5YeG3JVgwvi/SkuL8rmkFtFtcQj09K0Gw4E9XV14300DvO0I94F9PKHkAEVaEYmX1cOfgwYNo27YtsrOzMXbsWPz666+Kv+nTpw+sVituvPFGbNq0SfF4qhgeHARrXacmhxMzVsvPC7PWFGNAdnpAanVotbgMyE6HJUVaaAl0PS2C0AMeBQAregTJB8u+I5QD/vWELDZEWEG+5pcIhhijq6++Gh9++CG6dOmCU6dO4cUXX8Q111yDn376yaf2BABYrVYsXLgQ/fr1Q319PT766CPceOON2Lx5MwYPHix5HaoYHhwEq9Zw/saDsFcH77yg1eKyvtiOugtNot9FmraWCCxa1x253/vL1ZW33YHYd0g9J71dZvXYR/h7L0KCDRFWkK95M8ESYzRy5EjX//fo0QODBg1Cx44d8cEHH+CJJ57wOf7KK6/ElVde6fp70KBBOHbsGF5//XVZwWbatGke56uurka7du10uguCh2Cr67SuyIa5Gw4yHes9Lxi5ILufO6OFGZYUM05V13P7x0u5wAi0TIzF7Nt7RIy2lggcWtcdpd8H0tVVDn/vO5Sek14us3rsIwKxFyHBhggrtE58wWDl0EqgfX3lSEpKQo8ePXDwINtGEwAGDhyIpUuXyh5DFcODi2BJEyq4iLDiPi8YuSCLnbtlYqwrTkDJ0iXMU/aqWsxac0A2DbY5JgrDcvhi3AiCF63rDsvvh+VYgjJA3p8xbv5a3/W4TqD2IhRjQ4QVWnz81xXZcO2cjRi3aCceX1GIcYt24to5G0OqsF2w+PpKUV9fjwMHDsBqZZ/M9u7dy3U8ERwIWsNAxKwIKLmIuGMyAb3btQRgbLFLqXNXXSyul5oY6/G5t3+8+zw15f9+REVNg+z17NX1uhUYJAgxtK47rL8HYHiBYTX4K7bQX+u7HtcJ5F6EBBsirFBbWT1cqnYbEVyphSeffBJbtmxBSUkJvvvuO9x5552orq7G/fffD6DZhewPf/iD6/h58+bh008/xcGDB/HTTz9h2rRpWLlyJSZNmuSX9hLhBY/rh9MJ5M35Bmv3nTRsQWbJ6pQQG41/PXQ13hzbG8snDsS2Z4Z6CDVi85QS4e56SwQWresOz++DMUBe7b6DF3+t73pcJ5B7EXJFI8IOXh//cKraHWwxRsePH8e4ceNQVlaG1q1bY+DAgdi5cyfat28PALDZbDh69Kjr+IaGBjz55JM4ceIEEhIS0L17d6xZswajRo3yS3uJ8ILX9aOiphGPLtsre4xYIDCrCyvrYh8VZcKtvS/z+E5unlKC0jwTRqJ13eH9fbC4urrjj9hCo9d3YR77klGRK3edQO5FSLAhwhKeiS+cMqkFWz2LFStWyH6/ZMkSj7+ffvppPP300wa2iIgkBBcRXgsHC9sP/YYB2elYX2xnjsXRstjzuNUJRFJRPiJwaF131PzeqJpSWjBa4DJyfReL+9NynUDuRUiwIcIW1okv2KwcWqDqwwRxiegoE8b0suIf35bofu75mw5j6XdHceZibIw7UsGxWhZ73vmH0jwT/kLruhNO65aRApdRz0kps6Ka6wTynVKMDRHxBJuVQwv+8vUliFBgXZENCw0QagTEhBpAOhanX/s0pCfFSZ5PLsiYd/6JtKJ8RODQuu7QusWGEc+J18WV9TqBfKck2BARD09GkyaHEwWHy/FZ4QkUHC4PSHYxpTYEY3AlQfgbLTEpeuAdHLuuyIbrX9skmcVMabFXmqcAID0pFnN/75t0gCCMRuu6Q+sWG3o/J14XV57rBOqdkisaEfGwVkvn8aU3CtbaGsEYXEnoTzjUXTIKNTEpRnD6bB2Tq4dSkDHLPPXybZcKcQoKEOobBMA2V2idT4blWJAcH4uCw+UAnBjUIQMDOVK9s65bgZz3AnVt7+tueWoIdh+pdBX4hRMoq6lHweFy2TY1OZzYebgcBb+WATDByaj6+cOg9hiZa/U4N8uzCMRehAQbgoByRhMAAS96yVvsKhiDKwn9CERF51AiWGLiMpLMePI/P8puH9KTYrHlqSGIi5F3omDNvER9g3CHpT9o7TNiv1+55wR3n1NatwLZtwN1bbnrmmOi8OTHPzK1aV2RDc9+sl/ShVaOkblWj/fC8yz8vRcxOZ3OQFnqRamurkZqaiqqqqqQkpIS6OYQEYaYBgIArp2zUVL7KwTBbXtmqGFaiCaHMyBtCNXxGKrtZkVKyBXefKS7bjQ5nFiyvQSz1hzg+l2UCdDLu9QEIDPFjIeu7YCX1iq3Y/nEgcyLv5ymVM46ZEJg+kaojsdQbbc7LHMFIK64Y51P/DUfBXLeC9S15a4rNVWJtWldkQ2PLN3DfX2xvUUgngXPWCSLDUG4IaZZKDhcHvB00OGUkprQRjjVXTIC1rSlwoL9+p29UFZTjzbJ8aisacBjy5oXfy3yjbDpqLvgYBJqAD4Lk5QGVCmuyInI7huRButc4XSKOySxzCf+mo8COe8F6tpK15XCu00AMGP1T9zXF4v7C4X1h5IHEIQCwZAOOhjaQAQHgazoHOwImkQWoQZoXrDzOmfg1t6XYVDHVhjVUzzYNS0x1uN3SiTERQOQzpomhh5ZF1niiiK1b4QqLAlrpI5hnSvs1fWKx0j1GX/NR4Gc9wJ1bS1xgu5t2lVSIfuOpRAL8g+F9YcsNgShQDCkgw6GNhDBAQm54vBkQZML1JcKdhVLHiJFXWMTc7v1rOdgr6rV9TgisGiNjam/4NCtLVLzib/mo0DOe4G6th7n4z3HpCGd0DmzhWSQfyisPyTYEIQCwVA8LBjaQAQH/hZyQyXzGqt2c/robpiQl61Yg8Hb1WtErhUOhxOPLtureA3WOB296zlIpZJWexwROFiSxQDySW0m53fWrT1S84m/5qNAKvcCdW09zsd7jrxOGbLu7KGgZCXBhiAUYE0HbeRmLxjaQAQHlQybUqkij7yEUnYtVg1hRrJZ1Thpcji5kxEooZTimZf0FmZdjyMCA0scQ3PMhEn2mOW7jsKSEo9T1fIKMafTiVPV9aqUZv5SugVSuReoaytdV4koU3NR4OgoEywpZkV3NJZ1IxSUrBRjQ0QMWoprBkPxsGBoA6EePYq7Nm+uixWPmz66G/PmXapdUvEqgjZ4XZGNu/1GUlpWw3ScWk2i3nVxpo/uhm3PDMWwHItuRX8tKWz3xnocERhY4hjs1fWwVysfM27AFQDkq7/PGNNd8Rip+cRfFeYDWck+UNeWuy4LDiew+0gloqNMrncsB8s9BPI9sEIWGyIi0EPz7O17n5FkBkxA2Tnlolh6QYU3QxO9LB+sm+u0JDaNvFS7po/uhllrDihmvhnaNdNVJC6QfbHJ4cTyXUcVj9NiydLTZ9yaGo8Jedm6F/0VtKlyfUQvax5hHHr2tayMRKbaRwvG98ELnxWhoqZR8hgpWOsraYX3Onq60Rp1j1JtFApp7jt+Bv2z0vCTrRo19Zdi91omxjIlJ3l78yEUn6zCfYOy8O69fUXr2CTFReNPgzu6Mqgp4a/3rRaqY0OEPUbkXA8lFx0thOp4DKZ269n/Pis8gcdXFCoe9+bY3ri192Wq28W6KKQnxXpshAI1BgoOl2Pcop2Kx03J74LHGeIOxDYbu0oqmK7Bwrs61A6RQnivgLjLKtWxYSdQ7WbtzywI9ZGUah95r2fpSXF48dZcjOrJ3lf8FY/Hch2j1mg971GqjWN6WfHvH46LCi6CEHJV+zTcs/g75mtFmYCJ12Xj6RHdsPNwOf71XSm2HCzzEJZ4n48/4y+pjg1BXMSInOssQZ3hJNwQ6tG7/+kVuKm2PoI37kINELgxwKrhzspIVDxG2oqVo8nfXWBKfmcMy7Hg2jkbZfvF86uKUNvQBEtqAteGIdi1qYQyWmMrAN9YB6naR1LrmVDT6Z0o9rHsrwrzStcxco3Weo+CMLCh2I7F20t9vrdV1eEf35ZI/r6moQlzN/yCt8f35eojDidc5+1zRRq+LDql+fn4633zQoINEdboXdiSZUMY6OJURPCgd//TK3BT73gRgUAVaNNL4JPbED22bA/+NDgbC78tkbRqpSbEoLr2guRGw5oaj0lDOzP1i/KaBkz5vx9dv9PiNksuq6GFXLIYFlhjHUKh2CIvwXxPrMWDWZi1phjTR3fDY8v2cvWRRVtL0LrFyaB8PnpByQOIsEZLznWxoGoqgEfwoHfOf70CN42sMaB3gTaWpAuCwCd11yYox5awKC1W/2jDgvF9fBJ4pCfF4u3xfTDnjp6u63lf34RL74b3+dtUJGwQtKlC8dFQ3aREKlLJYlhIT4pj0rqHQrFFXoL1nliLB7Niq6pDWpKZu484nMCps+oLsoYCZLEhwhq1mlwpd5QR3dmC6+Sy1RCRgxE5//VwNeK5nhqNMaCP8MTqJ69HOnTWDVFakhnTR+dcDLRuTr1dUdOIWWsO4G+35DC9mwwV6ZadCH1NKsGHt+Xt4KlzmL/pkOLvXhjdjWkeCIViiwB7LEeTw4nth35jOqc/74mneDAPp8/W4dbel7n6yIJNB7HtULlu5w5VuASbd955B++88w5KS0sBAN27d8df//pXjBw5EgAwYcIEfPDBBx6/ufrqq7Fzpz5BcIQvSgM+mIvr+aNtalx35NxR3t9RynTdinPy+eKJyMConP9aXY1Y2zV9dA5mrfHcpLdKikM5Qy0drQXaeP3ktQp8rAv5+mI73t9eKtuubc8MlQ3Ubq5Bwg+P2yIRHrjHMRQcLmcSbCypCUznDoVii6zKDV43L3/ek1Guv8I9REeZUFXbgB+PV+l+7lCES7C5/PLL8corr6BTp04AgA8++AC33nor9u7di+7dm3NkjxgxAu+//77rN3FxcTo2l3BHacAHc+Yuf7WNV5OrV1B1ehL1e8LYwqpaAjdZ2zUi14qbcj0FqH7t03D9a5uYhDU55YXSd2r85LUIfKwL+aeFbP7pPIHaPNirajX8mghGWJV8eitK9DifkQpKVuUGz7gKRAFJI6wf7q61PPcfZQJatzDj9Fl1BVlDAS7B5pZbbvH4+6WXXsI777yDnTt3ugQbs9kMi4XNXYdQj9KAF4JcgzFzl7+zivFocvXSrLBqzIjwJ1izVEm1Ky0pFrf1vgypCXFocjhFBSgWoUiuRgsAWcWGlqQLagU+lk1eWlKsy/2Mp11CTYpnV+7X7I4id30i9OBR8umtKNF6PiMVlKzKjaFdM5ndvAJVQNII64dwD7xubhOvy0afK9IMUbYFC6pjbJqamvDxxx+jpqYGgwYNcn2+efNmtGnTBi1btsT111+Pl156CW3atNGlsUQzLFaFRVt9hRrh+0BmvQhUxhJWTa4emhUqgEd4E6xZqtzbtb7Yjk8LT6KipgGLt5di8fZSyU2KkrAGiNdosVfV4ZGLNVa8cVds1F9wMLVfT00oyybvtt6XiaZolWuXnpmQACBdRXwOEZyoUfLprSjhUXBobTsPrMqNjwpKmcdWoJRJeqTvdufOvpe57oFVGWsC8KfB2Zg2qnl+DkZlm15wCzb79+/HoEGDUFdXhxYtWmDVqlXIyWl+UCNHjsRdd92F9u3bo6SkBNOnT8fQoUOxe/dumM3ik3F9fT3q6y/FI1RXV6u8lciBpSOLJA5ywZtiVk/0Tn/LA4smV6tmxT3zEUG4E6w5/wX/bKW4EbENlpiwBkC2RosU7oqN1+/sxdR2vTWhSpvG1IQ4JsFGaJcermfeWFJC1/eduIQWJR+rooTVTUxJwdEyIRYP5GVh0tDOilYCsbZ7t6Nf+zTsPlKpi5LxSMV5puMmDemEKcO6BGRtVlKaOAE8mJeF45W1+Lr4lOL5qusuuIRNVtfU/72rF27vd7nr72BVtukBt2Bz5ZVXorCwEGfOnMHKlStx//33Y8uWLcjJycHvf/9713G5ubm46qqr0L59e6xZswa333676Plmz56NmTNnqr+DCEQvLWUgsl4EexYW9qDqbpi15kBQxi8RBA9aNlhiwlrB4XLV1glBsQETDEm6wILcgt/kcDK3y4hMSGQNDh+0KvlYilTyuInJKTjO1DZi7oaDeH9HKV65vQdSE+KY215V2+DTjiiTp/JVrF2sSov26cpFdwEgNtoU0E07i6Vt8dZfmQSbr4tP4do5GzGmlxUf7z7BdH1rS1/3+GBVtmmFW7CJi4tzJQ+46qqr8P333+PNN9/EP/7xD59jrVYr2rdvj4MHD0qeb9q0aXjiiSdcf1dXV6Ndu3a8zYoo9NJSBiLrRbBnYVEqjOaEe1C11bX5yWhhBpxAWU09Cg6Xa9Z8BHM2OyK80NuKqodSouxcvWFJF1iQWvB5YhK0CHhSjO1/Bc0DYYKRSj41bmIsgviZ843489I9eCAvi6kdG4rteE9EUPL2KBFrF6uS8b5BWXhr0yGcOd8o25a5Gw4CMCErIzFga6qSleS+QVl4ae0BWY8bAVtVHf7xbYniceGQDIAXzXVsnE6nhyuZO+Xl5Th27BisVmkNttlslnRTI8Rh8deMMgFOp7jrRyA7ulHpb/VE0Kw8+8l+n8myZWKs6/+Fzc+6Ihue/PhH3aw3wZzNjgg/9N5g6aGUaJMcj0EdWwWlHzhrjIMRVuesDDbtNBH8GKXkU2uBZY3VcAL4rPAkU1tWFZ5gsliKtcuIjJJzN/zi+v9AralyVpK4mChMvC6bSWDhIdLc46N4Dn7uueewdetWlJaWYv/+/Xj++eexefNm3HPPPTh37hyefPJJFBQUoLS0FJs3b8Ytt9yCjIwM3HbbbUa1PyJRqj5uQnPmC6nvgcB1dL0qp/uDKhENUNVFjZVQAVyqmrCggeKpFG7E+QhCCb03WILyQs0INsHT3WpErhXbnhmK5RMH4s2xvbF84kBse2aops1Ik8OJgsPl+KzwBAoOl6OJRT3qBUu7jLA6h3JtCcITpXHiPRZY4bHAusMjiJfXNCA9KVa27a2S4lBRI29FUWqXoESwpHr2e0tqvMu6s6ukQtFaI0awrqnTRuXg4cHZ0GMLlJ4UG9AMuIGCy2Jz6tQp3HfffbDZbEhNTUXPnj2xbt06DBs2DLW1tdi/fz8+/PBDnDlzBlarFUOGDMG///1vJCcnG9X+iIVFa9jnirSg03YCwZv+VkCPNJNqMrwFKmMcEdnobUUVlBdS2c+kkFJsaPED93bprKyp94mNS0+KxYu35mJUz7Zc51Zql56ZkILBkk3oi5oaayzuyWotsLxC8229L8N720sl235r77Z4jyHRhlK7RuRaMbRrJj4qKMWRivNon56I+wZlIS4mSvR4VtSu0axJENS4kwu/yWmbig8eGICVe47jU0brmBije1gls9qFM1yCzeLFiyW/S0hIwFdffaW5QQQ7Sv6awZz1IpjbpleaSd7YhJ2/yvvkBzKbHRG+GOHyMSLXigfzsrg2NnorNljTLFfUNOLRZXvx8PEzrlSoeqAUr8dKsFmy/cG3336L1157Dbt374bNZsOqVavwu9/9zvX9J598gn/84x/YvXs3ysvLsXfvXvTu3dvjHPX19XjyySexfPly1NbW4sYbb8Tbb7+Nyy+/HMECq5KPxz1ZrQVWEMRZ48Lycyzon50um0FQjWDj3S6xe//nthLXvWuxYvKsqWLtkEqCAMjX6WI9f3pSrOixrHy08yg+2nk04lzZNcfYEIFFSWsYzFkvgrVt64vtTMexpplk0SitK7Lh2ZX7dTsfQfBghBV1WI6FaWMzaUgn5HXK8EvFcjn+8W0Jel2ehlE9jS8OzEOwWLL9SU1NDXr16oUHHngAd9xxh+j3eXl5uOuuuzBx4kTRc0yePBmff/45VqxYgVatWmHq1Km4+eabsXv3bkRHRxt9C8woKfl4EwGotcCyWlrdfx8dZVKdQZClXSz3PizHwiWQiaG0pkq1QywJAkudLu+xLHV+Hlc+OYKhMLs/IcGGINxYV2Rj1jKxpplU0ijxbsLIz54wArENluBq8VnhCW6rKusGS+/aElrSLE//rAg35RpXHPjLIhs+LDii+JtJQzqic2ZyUFmy/cnIkSMxcuRIye/vu+8+AEBpaano91VVVVi8eDE++ugj5OfnAwCWLl2Kdu3aYcOGDbjpppt0b7MWpJR8atyTtVhgR+Ra8a5E4hyp36vJIMhyXp57F66j1ioqt6byzCesdbrc35cRaeFZrx2ucCUPIIhwRphgWLBeTDOpNfiTZ1JTG0xKEKwIm5Rbe1+GqtoGXP/aJoxbtBOPryjEuEU7ce2cjczBtoFKFMKa3UmM8poGn6BqPRCe60hGbWlep9a4tfdlGNSxleTz0SMJQriye/duNDY2Yvjw4a7P2rZti9zcXOzYsUPyd/X19aiurvb4F0jUJgJgCbqXYkSuFbtfGIYp+V3QMsHTFYrl9yzt8O7SYufluXfhOtZUPqUfy5qqZT7xRux96Xl+3muHK2SxIYiL8Ewwf7slB3ExUZpjE3gntUjysyeMgSWoVU0dDDH8lSjE/Z4Onjqn6Vz26joUHC6HvaoWFTUNSG9hhiXF9zmpCQ7WK1EDpYSXx263Iy4uDmlpaR6fZ2Zmwm6XdjUOtoLhWlKxa4ljjY4y4fH8zpg0tJPmOFj3dghjKi0xDpXnG5CeFAdLagL6tU/D9yUVeP2r/wJoVgKcPiteRkTq3sWuk97CjCNlNZj3jW8tRWHNHtu/Hb7Yd1Iy+P9LA7Kmub+vk2dqdTnndZ0zsPVgGde1wxUSbAjiIqwD/qG8LNfmQevGjfWaLRNj8crtPWjTEqb4qyAry4ZY7+x8RicKYU0SwMqsL34S9W23pJgxbsAVyMpIQmlZDZbvOgp79aXNF4tgoUeiBi1CZ6QX/nU6nTCZpO832AqGa03FrjWOVa842OgoE6pqG/DqVz/7zD1jelnx53/t9nB9m7/pEJLMbHFQpWU1ku1dV2TDv384Jvq71Is16ZoLd15qj1Twv54I72v22mIs3KpPzZoburRmEmwiwZWdBBtCF8JhwWQd8Pk5Fo+/tWzcWK+5YFxf5HXOYDqWCC38pX1n3RDzuICwbnqMShSiJkmAElIBu/bqeo9NkM/3jNYsLcoQLUJnJFl5LBYLGhoaUFlZ6WG1OX36NK655hrJ3wVbwfBQKGjNgtQ4tVXVSRajrKlvYjr33A0HcaUlmTkgX0Ashkgu+F8v0hJjMSA7HbPXFjMV4jQBMJl8ExW4f2+56Br/z20lId9X9IBibAjNrCuy4do5G1X74gcLA7LTYUmRXtTk/HHdYxPk/OLFrskSpzMwCLPHEdpRU5BVTWyF0oYYaN4QNzmcmtxf/Ik/gm558H6OcqgtPKo25iLSCv/269cPsbGxWL9+veszm82GoqIiWcEm2AilgtZSGD1OBWHefcypvaY/5hIngIYLDizisNRMvC7bVXzdHfc+ILjGQ+G4YO4rekGCDaGJcFow1xfbUXfBIfqdURNDOCxchDp4hA0BtUoEng2xVvcXf+GvoFsehOe489dyxWMFZcjNFwuDfrHvpKKgqkboVNPPAs25c+dQWFiIwsJCAEBJSQkKCwtx9OhRAEBFRQUKCwtRXNyc7OXnn39GYWGhK34mNTUVDz30EKZOnYpvvvkGe/fuxb333osePXq4sqSFCloSAQQDRo/TQAbkq+HM+Ua8vLZY0gLjTkp8DN65ty+mjcph6gOh3lf0glzRCNXo7YsfSJTM1qkGxrj4K8CaCC54Xb60xFbwbIhjo0w+hefc4XFpMMJFlTeod9KQjujYugVmrTmAipoGTddm5bF/7cErdyjPF7zuYWqETiNcC43mhx9+wJAhQ1x/C3Ev999/P5YsWYLVq1fjgQcecH0/duxYAMDf/vY3zJgxAwAwd+5cxMTE4O6773YV6FyyZElQ1bBhJZgLWivhL8uu+3UCbU1WYldpJdNxt/Zu6yG0sPSBUO4rekGCDaGaYFww1WykWMzWCbHRGOYVW6MnNBlFHjzChlYlAuuGuLSsBvM2HFR0yWCxIhoR06EmUUBep9YA4DehBgDO1DYqCptqBFU1MReh4lrozg033ACnU7oXTpgwARMmTJA9R3x8PN566y289dZbOrcuMARrQWsl/GXZdb9OoK3JSvxsP8t0XFarJI+/WftAqPYVvSBXNEI1wbZgGuWmA/gn/7vaOB0i+BGLi+HRvquNrRBgjeVavuuorFATZQIWjFd2aTDCRVXqnFK4x8QFatMu5eKl1j1MjetqqLgWEuGJ0tyjhDU1HpYUM1e9OK3XVIMJzZkTLSn6XDfKBNw3KEuHM0UeJNgQqgmmBVPLRirYBDQtUNG+4ENK4K6sqWcu8Kq1j7JsiMf2v8IjfbEYDieQlhQne4wRMR28wcDem/xAbNrlhE0tgiqvHz2rUBsJ2ZIIfeBZZ+TmHhb+dksOZozpLvp7KWHe/Zo8mCT+n/W7GWO6Y8YY9ffqzkPXZiMuhrboaiBXNEI1wZKK0l9uOsGu0YykdK6hgpy70WPL9uJPg7Ox8NsSxZomWvtok8OJ1IQ4PJCXhU8LT3q4ZQmxXPUSiTO8URKyjHBR5Q0G9o5PY52rbu5pwaKtpczXYcE7kJ8nPkjqWfO4rupRO4cgBNSsM1JxpEIdm3//cNwn/XJaYixmu8W18sahCtd8btV+yRTu3gjnA3zr2LB8J9dWXoZ2zVT920iHBBtCNcGyYGrdSKkV0IKpdo9eleIJ/WARuFf/aMOC8X0xa438QqlFiSC2EUlPisVtvS9Dfo7F1W8LDitn8gKUBXxW65KwuZcaN+7j6+Cpc0zn/MOg9hiZa/U5J8tcNX10Dp77dD/TdQAgPSmOKW5HeF5q4oPknjWPHz0lKAlegmkdUUJpnZmc3wVZGYmi9yEI4zt/Lb841zgxqEMGBnZshadHdMPOw+Uo+LUMQHO/HtihlejveZ7ViFwrahsdmPLvQsV7mzSkI6YMu9J1PrlrKbXDva1fFtnwYcERxet7Y68Ofg+RYIUEG0ITwbBg6uWmwyOgBZN1JJyy04UTrAJ3WlIctj0zVHahVKtEkNqIVNY04r3tpejvdh29LLCs1qUPC47gw4IjouNmXZENM1b/pOga583IXKvkZl9prvrZfla0aJ83k4Z0RF6n1ujXPg3Xv7aJ6XnxFhI1wtpNCUqCj2BaR5Rocjjx7Cf7ZV1M5274xfWZ2H2sL7Z73O/8TYc9jlMqQq0mKN6SwjYf5XVq7TPnSl2LpR3ux6gRbGZ98RMSYqOCrh+EAuTAR2hGbbE5vdDDlYzHb10qnscWoNo9WgPLCWPgEbhZEkfwxlbwxLoIWuNRuRbJTTrQbNXYVVIh61vPG7jrHQe3rsiGR5bu4RJqWONEpOaqYTkWvL+9lOlanTOTMahjK+aCeE0OJ6ZJbAilcAIYldsshOgZJ0cJSoKHUKsBN3/jQSbBX0BsXAfifgMdY6Y2kUFFTWNQ9oNQgCw2YUKgzdmBTC+ol6aZRaOpFMTshP+tI+GU/CCcMCJ2i0frzirwzt94ECu+P+ZxrHcdG8tFX3hvlzkxray7dYkFd6vi0K6ZePYTdncw93NMH92NacyJzVUFh8txppZt0+b+vpSsQADQd9Z6nKu/wHRu4NKzX7y9FIu3lwatBp9QT6hZ2ZscTmbBX8B7XAfqfgPtMi9c/xHG+dCbYOoHoQIJNmFAKJmzjUDPiUtJQONJDe0vQS9ckh+EG0Yl12BVIrAKsnM3HPT5TCgh8mBeFoblWFBZU4/Hlu1ljuEakWvFnwZn4x/fljC1QRCyPthRwqUVdmfWmgOIijKpmvNYn1XLxFif9yUlbK4vtnNtZq7v0hpbfvnNpzAqxcmFH8FYA06OXSUVzIK/O8J9fFRQGtD7DbTL/IhcK6bkdxada+UItn4QKpBgg8BbO7TAEjQeTn7VUu9K7cTF++7tVbVM7ZQ6zoi+FizZ6QhPAq0p1CLIClrUL4vseHZkNwx4eYOsS9uzK/cjOT7WFfDb5HBi9Y/8LhRf7Dupus1aBADWZ/XANdmSmcfcNx5NDidmrC7masP+E1Win6vRaIfymhYJhJqVXWs7jlSc98t15AhEjJkwDu1VtSgtq1F9HuG50LhmI+IFm1C2drCYs6d9st8nCDdU7s8bpXfFO3Gpefes1cuF49wnotKy81i+66hHthM93kWgN9CRjtxiE0hNoZLAq4SgLXzuk32KVpQztY2455/fufpzakKcqlSnvzBmPxNDi0sLy7NqmRiLq9qn4bPCE4pzy66SCq6sRsnx0bJzi7fmVq7PhfKaFimEmpVdazvapyf65TpK+NNlXk0WRCnaJMfTuObA5HQ61ax5hlFdXY3U1FRUVVUhJSXF0GtJWTuEpSrYTf8Fh8sxbtFO7t+Fyv25o/e7Unu+VXtPMKWOnPv73kiIjVKc2PR8F0ZMfP4cj3rir3azPvNAadp4s3GJkRgbjfONTUzHCnf0QF4W3uP0ydeT5RMHcm9ghGcFQPR5tUyM9RDw5MbWZ4Un8PiKQq7rs/Dm2N4wx/jOK1a3mJ5gXNNoHvGkyeHEtXM2KlrZtz0zNCgUUkrtlUK4jy1PDWHKIBgs98uCknJB67wLXHou00fn4LFlwTeu/QnPWIzYrGhGVMf2N2rNtqFyfwJ6vyst52NNHXm0vEY0Awzv9XgIdHY6MWbMmAGTyeTxz2KxyP5my5Yt6NevH+Lj49GhQwe8++67fmotHzxZfgKVjUqwGKUnxao+B6tQA1zqz58VqncpM+tQbVtubpSqmi6VdS4tsfnZeVut5LI5ZbQwa70FUUrLxOcVe1UdHlm6RzEdb6jM+eGOYGUH5DPqBcsmX669UrjfB2sGwWC5XyXWFdlw7ZyNGLdoJx5fUYhxi3bi2jkbsa7IpphgiJVLmSi7Ydaa0N6r+puIFWxCNUWu+6JcdpavxoM7wXp/Yuj9rljPN3f9Lz4pbQWXFTmiTMD720uYJzY930UwpnPt3r07bDab69/+/dJZr0pKSjBq1Chcd9112Lt3L5577jn85S9/wcqVK/3YYmVCSTEyIteK6Td35/6dCc1WCl6cAMprGpCeFMud4hQA6i84VPzKEymXFrkNCeCrHPjXH6+WFLSk3vO6Ihue+PdezffgjpCSdvmuo7J9Ts5lMJTm/EiAN317oJFqrzU1Hg8PzvZZF73vI9TuVwolhdb8jYe43c/SEmN95lrhuaQlmUNyrxpIIjbGJtSC9wBxtxfvtKy8BNP9SaH3u2I9bv6mQ5i/6ZCHy4l7PIvUY3c4gTO17OldedsVasTExChaaQTeffddXHHFFZg3bx4AoFu3bvjhhx/w+uuv44477jCwlXyEWlYjVkujgMul7Jpsj6J7PNzW+zK8t73UJ+5LLdbU+IvaywOyLi3pSXGwV9Wi4HA5k3uId9IBdz/8gsPlsvV0vN+zUINHT4R3Mbb/FarfhTvhOs+EIjxxoU0OJ3b+Wo6Cw+UAnBjUIQP9s9Ox+0il7i6uTQ4ndh4uR8GvZQCax8PADq1k2/v0iG6K96FXAL8err1qzsES1/z+DrZMkAKThnTElGFXAoBoez4rPMF0HhrXl4hYwUav4D1/+c5LLcpaFcLBEpwoB6tbB+txvPfsvfEZkWvFgvF9MGn5Xs3PX0u7QoWDBw+ibdu2MJvNuPrqq/Hyyy+jQ4cOoscWFBRg+PDhHp/ddNNNWLx4MRobGxEbq96lSk9CTTEyIDsd6UlxzMkvUhNi8UBeFv58Q0es+P6oqgQE+TkW9M9O1xxA2zIhFgvu6evKuBYVZZIUHgRr0ZT/+xHApdiTYTkWVXU0eN6zUJmdhcS4aJxvYHPxExJN6GHJAtjmGcq+5D9YAtrXFdnw7Cf7PSxy8zcd9lEayMV9sb5T8WsdQsvEWLxyew+MyLWKtpc1MF9rAL8esaRqz8Gi0OJNV5/XqbXrPYg9l1BLNBEMRKxgo0eKXH9lqWDx2fS23FhT41Hb2ISq842hnwKYx6eLAd5sUWIbn7Qks25CTUi9C06uvvpqfPjhh+jSpQtOnTqFF198Eddccw1++ukntGrlO4nb7XZkZmZ6fJaZmYkLFy6grKwMVqv4uKqvr0d9/SXNenV1tb434kWoLTbRUSb8rndb5oD+M7WNmLuhuXDnmF5WLPy2hNny4t6fo6NMGNo1Ex8VlOJIxXm0T09EZrIZL335X2Zh50xtI6JMJlUba0EpMTm/iyoLG8973nm4nGlTM37A5RiZ2xb3vbdL8djpo7thQl5ziulmTb16WOcZyr4UXMhZAVnrSrG+U7lrnTnfiEeW7sG7AXQbY7W6GnUO5npXCbGKdX9YxyOVc+AnYmNstAbv8QQOa4WlKKTD2bwIugeNv3J7DwChH6xXVsMWS8R6nJpASG8/Vr008aH2LngZOXIk7rjjDvTo0QP5+flYs2YNAOCDDz6Q/I3J5PkchMSN3p+7M3v2bKSmprr+tWvXTofWSyMsNlItEmIigmmxGZbD5g7ojr2qDgu/LcGfBmf7+MaL4d2f1xXZcP1rmzBrzQF8WHAEs9YcwEtf/hfTR+fgXw9djcS4aKZ2rC+2o8nhxPZDZXh2JZtVBLi08WN1D/Ee1zzvudltR5llu47jqf/sQ8tE6Rgk4byCUMPaFuGcaud8f65rhDK89ZDE4r5Y32nztX5SvEagYgf1iGtUOocTwIzVP0meg7neVV4W096CZd0PtUQTwUDECjaA+mA2tQNMKhuP0jGsm+iMZLNH0Hi4BOsZoR2XejZKCO9CL018qL0LrSQlJaFHjx44eFC8ArPFYoHdbvf47PTp04iJiRG18AhMmzYNVVVVrn/Hjh3Ttd3ehOJiw5L4whthhlr9ow1bnhrikXHv7fF9ZQOG5TZUjy3bgx+OVDC7Y/3fD8eR98o3uOef33FXQOdxD/Ee13zvmf1dn6quw5mL1nTW/sPSlldu76F6zmfZ9LmvayzrGaEN3npIgKcSjmev0nwtZeVgoALV9UgixKIktlfXY/7GQ6LfsSo6Jg3tjHfu9Z0fBayc63647OX8RcS6ogmoCWZTEzjMYgqWOmZsfzbts9hmOxDVdvVmQHY6LCnxkhO8WlOs+7PZfug3zN90WPE3wjNmMQ+3TIyFOSbKY7GwpJgxbsAVyMpICsl3oZX6+nocOHAA1113nej3gwYNwueff+7x2ddff42rrrpKNr7GbDbDbDYmxa4UgSy+qQb3xBcAn4enraoOu49UYkB2usdcsuWpIaLBy0xBthx1bs7VX8C5ev6EHO7IudLJzSGs73lQx1aYv0l8Q+SN8AxE5wiZ/sPaFjVzPsumz1ZVh/kbD+JKSzK5q+mMWAyMFs+A02frsPPXcua9Cs+1eNulR8yWHnGNrOeYu+EXXGlp4dOXeYphu+8v7FW1qKhpQHoLMywp6u4/kHu5UIu5i3jBBuAPZuMdYCw+nYB4YTV7VR3mbjiIlomxquNl/Flt1wjWF9tRd0Fcs6tVOy48mwHZ6Vi55wSzHyvLBDf79h4hL1Rq5cknn8Qtt9yCK664AqdPn8aLL76I6upq3H///QCaLS0nTpzAhx9+CAB45JFHMH/+fDzxxBOYOHEiCgoKsHjxYixfvjyQtyFJsCoOpBYiqY0xC1//ZMNjy3ajosa3SOWtvS/zOJYpyJbT8qIVJUFObg5hec8DO7TyKeKp1J7K8414flQ35LRNQdm5esX+0+RwIjUhDk/fdKXsRknNnM++6RO3tvLEORCeaFVqilFaVoO/fabsWgbA1adZ4TlWr5gtPTw3eNotlkwE4FNoyY1DNcJCIPZyoRhzR4KNCngGGIvmstmv1SR7jICSliDcUKrg2zIxFrMvZmrRAo8mRoBHkxupHD9+HOPGjUNZWRlat26NgQMHYufOnWjfvj0AwGaz4ejRo67js7OzsXbtWkyZMgULFixA27Zt8fe//z2oUj17E2yKA6WFyHuTXna2HrPWHFA87/s7jvh8ZpPYzOoZZGs0USZg/rg+inOI0nuOjjLhldt7cKd7fmntAdf7kTu/3HvVY+7X6l4rl12OkEZO8SkoNXkybQmWQCkBVAxhY21JMSu6o/HEDuoR7C+gRxC9cA4WpY5cun6tCq1QERb0fH/+JKJjbNTCE1DKorm0V9fL+tEKPuKT87vo6mMZ7D7SLNngzDFRTEHRLPeqxo/VvaDf3N/3xvTR3fD0TVciNSEu6J5nIFixYgVOnjyJhoYGnDhxAitXrkROTo7r+yVLlmDz5s0ev7n++uuxZ88e1NfXo6SkBI888oifWx26sAYKuxdytabGQ8se1Dv2AuAJss1WVcRTTxzO5k2MHuN1RK4V797bl7tukFJwvj+C+tXEYHlDxQL5YFF88iAcz9qT3fcq0VEmzBijXMiXVZDWu4ixHnGN7udgQU5Bo1QMW2rPESoJOkKpCLU3ZLFRAY92X886FlkZidj2zFBJLQGPadNojYEePpmsgX5KRRDF7jUpLhp/vK4D/nJjZx8rDK8mJjrKhKraBry67r9Br4EhAovWcSH3e9aFyF2bvq7IhseW7dVcQNNbu8mqXZ00tBOutLTwqZuhF6wWoVlrDuCf20p0Ga8jcq0Y2jUTH+woxdz1v+B8o3KCBDlrB8vmVw8ribCu6VFgNFjqNwU7rHVRpuR3wfs7SnzGiPf+w5Iaz13I1V0YEARzsfGYxukdYUQRYz3iGkfkWjElvzOTRUutFVNqfzV9dA5mrTF+LOtBqBWhdocEG5WwDjA961iUltVIukPwCCpGmxf1EprWF9uVD4L8Iip1rzUNTXjzm4NYtPVXvHF3L2a/WJ5rBLu5lvAvWseF0u9Zg793/lqOvE4ZTBZRkwlwMko97uOQRfkztv8V+GLfSbRJjseu5/LxzuZDeH97qYcgYk2NR1VtI3P2NHcmDemIQR0zcM8/v2M63sj5jwWpjYI/NxjNm74uXBtjMYKlflOwwyoAZmUkYvcLw7Dz1/KL9YycGNQhA/2z032Sd3yx7yTTOVMTYjDnjp4+fV1Q7u08XH4xhXnzeigUyNX73ryPk1LeCJ/XX3Dg9bt6Ac7mEg9iCiIlBdKkoZ2xfNcxWU8ZHpc79+uVlp3HvA2/+Myrtqo6PLpMXmmgdSyzKM5YlWtGFaH2RyICEmw0IKXdB4CCw+U4fbYO6QlxSEuMRaWENtIEIDPFDMCkmNZx+a6jmDS0s08n4NlYG6H9YxnUvJuGdUU25mKCUosoy8btfEOTZNEx7wHYr32azyICwC/aVCK00Sr8svyetTL9xA9/wBt390JqQpzi5ptVqAGAjCTPrHRSyp+WibFwAh6bZ0FA2z19mMeYq6ypx6PL9rI3wo20xDj0z2Ivxss6XuUWZqWYQBa8NwpGbTCkmDS0E5bvOsKU+tcbtRkqIxWeeN3oKBPyOmUgr1OGx3feG2DWc0ZHSUciREeZkNc5A3mdMySPUUJNsL+U8mZMLytW/2gTVep43z+LAqnZ7U4+Q2RtYxPWF9uZCn6qUWTIoWYsa8m8K6ZcM6LMhr9ii0iw0Yi3dp+nkwvL5owx3fGz/ZyilkzM7YrF/WTG6p9cC7Xe2j/W++XZ5Av3xIKcVoVFgy3g/owA8fuKMjX74wtYUuJxbadWIWuuJfyDVmUC6+9fv6sXU3sEYf7BvCzme2BCZEh7K39Ky2pEXUCklDDXztmoujmCe9mYXlYs/LZENt2zgNJ4lVuYh+VYFBUpLJT8VuPxtxEbDDmEWAuxTZ/7M4y0RDZGYERVeaVzClTWNBjqUcB7b1JKAVtVHf7xbYnP78XmDB4FkqB4kXKDrTrfqPh89FBkiME7lrVm3hW7T737pj89Wyh5gI5IBYVJ4R6UnpWRyPQbb0met+CUnto/3vtlDSzlEUjkFlEerYcgNALS9+UdI2evrsN/9pxgOj/5nEcuWgvLsf5++6HfkBzPrqv6rJDNZaWFOZrpuLJz4hp+Qflzc8+2WPG9eOFUsWBUnnlACntVHRZ+W4I/Dc7mKsYrNl6Vgn7nbzyki9Z23jcHMXvtJcVOv/ZpiskdokzNx+mFXCKVd+/t25wggYoFasaIQr+sAfJGB4Dz3BuLd4U33u1XE+w+LMeC+BjxbbDS81HTZiXckzmwwnrfM1b/xPVs9Oyb/k5EQBYbneDt5K2S4rDlqSGIuzio1GrleAtO6aX90zKoldrMek8P5WXJLqK8Wo/TZ+sMmazUtIUIH7QqE1h///bmX5nbBADlNQ1IT4pFZY18fazfX9UO877RHmjLKqDNXf8z8jq15q64LnVOE4DVP9qw5akh+KiglCm1tfe9MBUc3eGrVVbLP74tQa/LW2JUz7bYfaTSR6nijcMJ7D5SqatVWCmRSjDWbwpFjCj0K5zzuVX7PepOeWO0RwHrvalVYngrhXi9J3aVVMi6XMo9Hz0UL+6oFWRZ51U5pO5Tr77p70QEJNjoBG8nL69p8FiI1Jr9eAtObXlqiC7mRS2DWqnNrPeUr5DmeUB2OtKTYmUndu/rGjFZKT1PMZ99ALRpCBO0KhOMFIpv630Z3tteKutWNCzHgiUFpZJZy0wA0pPiYK+qRcHhcs3BqPM3Hcb8TYeRnhTLdPx9A6/ARzuPSn4vLJq7j1RiQl42/rmthHv+Y81excKdfS9jsvS+8FkRbsq1+j3Gxh25RCrBVr8plJETItUGW4/ItaK20YEp/y5UPFas7+gV5M2SaVRr3+X5vfuxWsaW3uNNrSCrZzvEzqW2Zo97/zl46qzq66uBBBudUPNCeLMIiUnyvAWndh+pVHUdubazwio06eXbGR1lwou35jIFH1tSzFwZZVhgeZ5iPvstE5s3dO4bJUodHTqIJZ3Q0p/7tU9DelIcKmoadG9rfo4F/bPTFTVycoUnnWhW1Ez5vx8BaA9GFVBSSAjPre8VabKCjcDps3Wq51megqNVtfIWsLxOGUyCTUVNI3aVVPg9xoYIDGKCotZga9Z6St59R+8gbyUhWGvfbVZKljMfy3tdseP0Gm+ThnREXqfWqgVHPce91LnUZIpVk1BBr3uhGBtGlAo8qnkh3r9RUyBSTcEpNddxp8nhRNlZvow5PEKTnr6do3q2xcODsxWPmzGmO6KjTLpOEkrPU8pn/8z5Rh/tb7AV7yLEWVdkw7VzNmLcop14fEUhxi3aietf24QxvZr7AG9/Xldkw/WvbdJdqHH35XYvMvvm2N5YPnEgtj0z1KPfCvUtWAo4SvVVLQUg5Z7b0YpapnMIY1vN/MdecDRLsb2W1ASmcwHN8zVPQWgifNCjkKOavhOIApJK7ZRCaH9lTb1iXRqxe9UyttS22fvcU4ZdKVrgkxWt7XBvix5zCG/std7XB8hiwwSL9oI1Ewkgr6FVY/bjKThVdrYeTQ6navOiekk8DuOvbo/6Cw5ZdxX3e9LL73jaqBz0ujwNT6/ch3P1Fzy+a5kYi1fcio7xvEc5po/uhgl52ZK59TNamCWD+cSg1NHBj1zWFyGA3TtlqVx/NirjjtBzpo/uxj3PCHOGvboOs774SdSqItVXo6NMmD46R7GWgxhpXhYr4bkBwDyGmivpSbGwV9e55h7e+Y+94GhnXGlJlp23mhxOZguckOZXDys7ETroVZaBt+/4qxgsTzuluDSPNRe9ZMF7nGgZW0q/dQK4uacVX+zzFQT1HLcs7WBBj7aoiVE2Yg4zOZ08lQqMp7q6GqmpqaiqqkJKSkqgmyO5uRAev1iqQUC6M4n9Tg+aHE7kvbKRKeCW1aTs7VJTWdOAx5ap22h5p0pW2wYtsSZNDqdPgbOBIpoSlvcohzU1HtueGepxXj1z3S+fONBvvu3BNh5Z8Xe7hdTEUu9X2PhueWqITy0kqRTPcudj5c6+l2PDgVM+RS/l6kKwzEsFh8sxbtFOxeO8+yrr77yZe3cvWFITfOLQ1DwjtS41UvOC2JyuNG+t3WdTFPDSk2Kxc1q+K8GMv2pAGAHNI3yoHV9SsPYdva/Li5o6NqkJcUxtnpLfBY/nd+a6LsvYUvqtv8at2HVaJcWhnEGBIvdseFAzv7M+C56xSBYbGXi1F1JWBne0ZDqRg6XglABL3nCpOi5qpWCfVMmMucv1DFCVKnDmDct7lMNb86C35p1SRwcfrFlfWDNX7TxcrlmoSU+Kxcu398CcqJ5MCgqeegJqg27V9l1LaoLPcytQ+YzU1k3gsSJ7z1uCK7PwDm7KteDhwdmi9TkEKmoacf1rm1znVmtlJ4IDQdi1V9eh4lw90pPiYElNEH2HrOPky4tuYUqJBliTExw8dY7puqztY1VMCsfVNjThwbwsnKlthAnNY2hgh2bl49MjfC3MADB3/c9MbZErqaE0tuSUokq/NXLcej9fQXFmr6pFRU0DSstrmOIPWcuNKMHaLyYN6YTOmS0Mm8NIsJFBTYo6706ckWQGTM01HoxeiFg35EomZamNOEuK8eT4GJytu6B4nN5mbT0tO4Dveyw7W8+UJnZKfmePDY4R6aMpSDj4ULsREWPtPhueXvkj87Wl3A28N8bAJUsQq7JGalypDbrNSDIz35dAy4RYOJzNdSr0yKSkZe5Rs0mR00Ir4S2EUSay0ETOYi+msWYdXx8WHMGHBUeYrLCsyQlYYGkfq6VCrg0r9xyXbD9v25XaLDW21hXZfIp4zt902MONXWlcGjFueaxbSui1p2A9T16nDEPnMRJsZFCrlQzk4iMsvEu2l8huxKXyhmvdiLMINUpt4MUoU6/7e2xyOGXTxArXnDTU05yrZ/po1mxwhP9RsxGZPjoHaUlxHhvkV9cdkNXiezMlvzNWfH9Mso95b4x5lDVVtQ2S42po10wf91JvvItGriuyYcZqNl94d87UNuKef37nM6a1LMZa5h6e+X3tvpOiWRntEtXUxdqpRQGkt8KH4EfJYm8TsSDyxnraJPqTnHVSjScB6xrEWmVezbNR2/ZKFQlY1hXZJLNBnjnfiEeW7sG7AShKK3X/Uv1ACr33FHpltNUKZUWTIVTTbEZHmZCRzKYZ9RbK9K7joqYNPPgrg4tSpjYTtKWJVYKChIMb3sw0tqo6PLpsj0f2tL6zvuZalACgc5tkbHlqCNKT4kS/967qzNofNxTbZcfVO5sPMxeNBC6NUy1FN73HtB7ZgIx061y7z4ZJy8VTzfNWWHcvQsiKWIa+a+dspMyKfoRVUeiEZ+V1Yb3RaumXqupuZJA3a5X5hgsO5ja4t1+t8nXWGr7K9k0OJ5MiZsbqn7jOqxW9vECM2FPomdFWCyTYyBDKaTbVCmVqF3oTmgPV1MAjGLqn3d5+qEwys5jUhK4FuTSxC8b3QWpCnE86cDVCb8vEWFctG/dr6J1wgtAPuQmdlapadmunwKw1xfi+pEI2w5b7xpi1P36y94TsuHp/B5sAdvpsnW4LsfeY1uOZG6WUWlfUnBxAz/0Oz9wciJS9hC88ikJv4VXIdqoVMcFYjQKTdQ1itQp/VFDK1Abv9qtVvvIqB4R4KCXs1fVYsr1EdJ+hVCZEDXopn43aU2gtJ6IH5IomQyin2WQxZUeZgMoaz3o0ahZ64e5n3ZqLWWuKmc3nvGZJXp9avVzd3BHzsa+sacCsNeIuO8NyLEym2dfv7IWymnqPoEhyIQlexFx8tCadUIOtqg4f7z7GdOzps3W4uWdbJheXyvPSxTGdgE+dJSmaC+fpZwX2HtOSAf0pZtRdcKDqvHyxTCOUUoIgpzesc3OgUvbqybfffovXXnsNu3fvhs1mw6pVq/C73/3O9b3T6cTMmTOxcOFCVFZW4uqrr8aCBQvQvXt31zH19fV48sknsXz5ctTW1uLGG2/E22+/jcsvv9xv98GrKPQ+PisjyZC2sAd5d0TnzGSuNYj13EcqzjMd531eLVZWnt/yHDtrzQH8c1uJh6usUS7yWq3MfxjUHiNzrYbHewcy0QkJNgroWU/Fn7gLZVI4nMBjy/binYuZPYBmgahlQqxHelgl3J9FVBSYctHzCoZaMovp7W7i7mO/rsimmGGKRTjO6+ybqY2ChIMTpQVLmNC/LLLhw4Ijhrfn08KTTMcp1UThRen3QozNlwZYB9zHtNQiuv6iO52/lVJGufOyxgioSXoTbNTU1KBXr1544IEHcMcdd/h8/+qrr+KNN97AkiVL0KVLF7z44osYNmwYfv75ZyQnJwMAJk+ejM8//xwrVqxAq1atMHXqVNx8883YvXs3oqOj/XIfvIpC7+ONqirPHuTdmruPsJ67fTpfJi7hvFqeCc9vea/jvuYDYIoxUoPWPjEy1+qXcR/IWHNyRWOApTJ3MDIi14oF4/tCae329u19IC+b6fyThnTyeRZSZkjvNvCYJbW6sqh1dVMyHbP6Eg/LsWg2zRph0ib4YXHxESb0kUEyP3i7zApjNDNF2wKp1AOFGBsj3L28zyk881t7X+aq4h0olwgtcURysMYIqE16E0yMHDkSL774Im6//Xaf75xOJ+bNm4fnn38et99+O3Jzc/HBBx/g/PnzWLZsGQCgqqoKixcvxv/+7/8iPz8fffr0wdKlS7F//35s2LDBb/fBEwcm5tZuVFV5I93sK2saZPccwrnvG5QFa6ry3ODdFjXPRM39DMhOh4VjjhRG5ozVP2HGauV9gdo1XG2fCObQCb0hiw0jekuf/spWk5YUJ+vnLaa9mzS0E97fUSLpbmICkJlixqCOrXD6bPNvlfK292ufxlSYUAy1GlA9XN3kTMc8mlEtptlQLswXTvC6+PBmNjICKevEiFwrks2xuGfxd6rOmZoYy+SOxuP+xnptnjHtb5eIdUU2zPriJ+bjHx6czZyaldXKEqpJb1gpKSmB3W7H8OHDXZ+ZzWZcf/312LFjBx5++GHs3r0bjY2NHse0bdsWubm52LFjB2666SbRc9fX16O+/pJ7dnV1taa2snhOANLJZ7RaWKXGv1Fu9lIeDN787ZYcxMVEudrAcrzQFt5novZ+hNqAUlnRxHCiOeZG6RgtFlM1fSLYQyf0hiw2AcCf2WrUaO+io0x45fYeoscJA6nuggP3/PM7yfZ7a1DjYqJ8NKp634N3OwF+VzeeYFveZyumVTaiXYQx8AiygD4JBbSSmhCLyfmdMSzH4vNdWY38AiyGcB8PXMNm1XV3f3P/vRrcxzQAZgummnEH8FtJhbFaUaMs8EWZgLfH98G0UTnY9sxQTBrSialNLHNOKCe9YcFutwMAMjMzPT7PzMx0fWe32xEXF4e0tDTJY8SYPXs2UlNTXf/atWunub2C5VDKOmGVsCAK/a/+ggOT87vIWlitqfF4eHC2zzXkrJOXLLeeGVQzU8zMFs2GCw4s3vor/vpZERZ9e1jSUiEQZQIWjO/j4+Eh9WxaJcVhwXjftkhZY5US7/CO6RG5Vrx7b1+fc+rBl0U21d4XUvevph+EI2Sx8TOs+d31Qq32ThjQ3pYCQVPrra21VdWpyunOYrlSo1lMT4rDrFtzNbu6yRUtZK3SrFYzGg5BwOGEGiVBIBIKuHOmthFzNxzEiu+PqS4C6I4QTzcsx4IV3x9lSE7SHBeix3MQrg0Aea9s9HD5ykw2Y/zVVyArI0kXqwyvlZTXXXb+uL4Y1bP5PNFRJuR1ysD8TYcUf8fyzkI56Q0PJpNn+51Op89n3igdM23aNDzxxBOuv6urq3UTbgTLob26DhXn6pGeFAdLaoJoXxXrf5YUM6bkd0ZWRhIyWpgBJzwSzkRHmfD0iG4qrJNSiXnlmb22GIu2lnBl/nM4gTSvIr3uz+arn2xYueeEqx5e+cXEPFFREBVuxKyxgHjiHbWeD8J1dv5ajv/8cAyrGGMalXCvaabG+0LOGq2uH4QPJNj4EaM2qnLCgeAnKuX3Lefa4T1wMpLMmPrxjwCkNZLPfrKfuf2sEw1L0admjYoTleeVJ0RvtBYtlEJr5qVwCAIOJ7QoCXwz6dVj1poDfhN2vBUnTQ4nHA6nbKIQqYx9wthmS06yB+9ENV/T+zmU/FaDNzcehJNhYzR9dDdMyMvG+mK7qGvIqbP1mLvhoOtvLa6aapRPrO6yrZLi8NJtvgoXvQvbhWrSGxYslmbro91uh9V66T5Onz7tsuJYLBY0NDSgsrLSw2pz+vRpXHPNNZLnNpvNMJvZasDxwurOLtX/TlXXY96Gg3jn3r7I6+SbbIbnGvLXUVayzl5bzF1zS0BMQRQdZUJVbQM+2HGEa9xJ3a/3Z1oVyoLyYWCHVthZUiE7TpstYCacqmZzvdWi1Ja6/0AG7gcD5IrmR3hdWVhQcmtbX2xH3YUm0d+yaO/c3TiiokyKgbFnzjdi/kZpzaNgCv6fz3/CI4wuVkpFn5xoTk8rCDVy5xKDVRO/XqJooRh6aEbDIQg4nNDi4uPtDjWqZ1uPhCT3DbzC0La7B62u3XcS187ZiHsWfycr1ACXMvaJuXE1Jyfpw52cRHgOV3doxSTUtEqKw4SLCU2e/WS/8g/gOfaNSAjifQ7WMfjC6G6imxcjCtuFatIbJbKzs2GxWLB+/XrXZw0NDdiyZYtLaOnXrx9iY2M9jrHZbCgqKpIVbAKN2v7nz+s0XHBg0VZ1Qg0griAy8r71PDfLOJ0xpjtmjGF3vTWi5l6kQ4KNH+Gp+s2CUvzF7LXF+PPSPZJBvi0TY7m0BKztf3+HeLEqdyHsve2lor+VGuRyGY6k/F9ZJwxWTfynhSeZXU308GkN9yDgUEKwio7Mtbisq+6o2Xy6b/L7tjc+3kFQnDy6bK+icM7af9OSzMzJSbxhnU9u7d0W0VEm7Py1nLl+jtCkaZ/sR94r3zDHM6pVPukxVo3I4qY2vijQnDt3DoWFhSgsLATQnDCgsLAQR48ehclkwuTJk/Hyyy9j1apVKCoqwoQJE5CYmIjx48cDAFJTU/HQQw9h6tSp+Oabb7B3717ce++96NGjB/Lz8wN4Z/IYofzU+zofFZSqKjwrp/gx8r5Zz71kewmT8oNlnEodo9QGre+VaIZc0fwI6+K3eHsp+l8s+CcFixZi4bclshtxc0yUaFCx2LWaY0rOKh4LNFttvN2jeOrQSLlYibn0OBxO2cxOLO5aLG4gaUmxstXdBSYN6Yi8Tq118WnV2z2FUIeYy6TJBA9rg1YXH560okbSMiEWC+7pi4Ed2DbBWqyKpWU1TL8V5qiCw+VMxwsIllxv5Fw/1N4Pawa8qR//iBljpPtJoAvbBQs//PADhgwZ4vpbiHu5//77sWTJEjz99NOora3Fo48+6irQ+fXXX7tq2ADA3LlzERMTg7vvvttVoHPJkiV+q2EjR5PDiZ2/ll/s004M6pCBgRezjLLgfpyYKzogXeC5yeHE9kO/cV9HgLewpjtSih/e++bJKst67llrDrj+35ISr3mcqqlptv1QWUSOd72JaMHGXymXBXjSvyrF2rD4dCtdw15drxifIbapY8F74lVTh0bKF9e9vZ8VnlB9LvdzKgXb3tb7MiyWsDK50zkzWTff1kgJAg5mpARyQaH3UF4W8nMsmucOYW7gHWdCv3gwLwuXtUzwWJzVcKa2EVEmE/O9qLVUrCuyecTESOGp4dXHTUMunlHt/bCmYGWJX4h0/3gAuOGGG+CU8VM0mUyYMWMGZsyYIXlMfHw83nrrLbz11lsGtFA964psePaT/R7Wx/mbDqNlYiweuCaL6RxC/xNbnwUPBvfzCzFnALjWc7HxwFtYUyBVJrMYz7jjTQKgxqPBXq2cDIllnLofwyLYzN90CCv3HA/5OLhAE7GuaP5MuSwgLH4sy7OSWVKvuAq580i5urHgPpmorUPDMiHp5a6lZF7OZ7Bs8bSHlUAVGSSUBXITgLVFdl0UIsLcYAJfSmRLajzevbcv/npLd0zIy9ZczA/gm1vUxB0Jz1UJ79oegzqIB0yrQcr1Q0sclVT6XO/rAuRPH6msK7LhEQn38DPnmzMYtkyMZep/UuuzWNZS+8WspWJxrUrX8ea+QVmKcXViVJ1vlIx5ZR13lTUN3OUPtBQ5nfbJfl3GKU8bqJSDdiJSsAlkbZARuVY8mJfFdKzcBkOvDXTZ2Xo0OZw+AbYNFxyqrCxAc7Bvv/ZumWg4hTCeOgt61myQC7YNZG2IcA0CDnb85e8uwOuXDQDTR1/S7PEoTuTgmVvUBL2zKjom53fx6OMDO7bSvZ6E99ykNYh/RK4V/3t3b9lrBoM/PW89D0I7TQ4nZqxWFugFH1e5/geAa33mebtK/TwuJgoTr2OrYyXWBjGhnmXcTR/dDbPW8CcB0FJHq/J8I3b+yucCKwZPG0j5oZ2IE2z8kXVEadFgiWsB5DcYWrQQ7sxacwD9XlyPfi+u97BeDZz9jepUtOU1Dbj+tU0uAVGNECY1qXo/W+FYgG0jovRupIJtjchaJIfYfYZiEHAoE4isdCNyrZg+uhvSk5Q38CYAs9bwzVWs2mBv5MaNlECWlhTrUYxPgPV5ZWV4urzIFQ5Wi9jcpNVKWnaOrfCp93Pwl7ARCG8FAq4aNkqcqb2AyfldZPufWi8IFlj6+bRROXh4cLaP5UZpWZIT6pXGXVqSWbWiSY3SSIA3tk8KnjYEg/IjlOGKsXnnnXfwzjvvoLS0FADQvXt3/PWvf8XIkSMBNBe/mjlzJhYuXOgK6FuwYAG6d++ue8PVYnRtEBb/Tz2Cwll9ulkQM4uzBMrL4R6gOyzHwhU/4K2pFZB7tiw1G9QW6BLwV20Ire0k9CEQWenWFdnw2LK9qpJsKLl4mbz+nzVmi6U/jsi1wuEAXvisyDV3VNQ0YtaaA4iKMqkqDColdLw9vg8mLd8rm5kpygQkx8eguvaCqjlWSxC/mvtbu+/kxWfnGxeh55j3d4Fo4hI8CpCsjERse2aoZP8zKsV/j8tSMKZXWwztmql47NMjuuHajq2xcu9xnG9oQv+sdKQnxmLqf/Yp/lZMqN9VUoH6Cw68flcv0eKjPPG0wvm8i6FueWoIdh+pZA7mB4DjlefxWeEJXeKwhXll7vqfMX/TYcXj7dV1KDhcbkgcuL9jzP0Jl2Bz+eWX45VXXkGnTp0AAB988AFuvfVW7N27F927d8err76KN954A0uWLEGXLl3w4osvYtiwYfj55589spUEEiO1sKyLhl5B4YGuag40bx6EKsHueAfo/u2WHNHCemJ4a2oBtmcrtxDotaAbnbWINh7Bg7+z0qlNsiEsftsPlSkqbc6cb8SU/C5Y8f1RJuGctT82C2Tixz2ydA8ezMvCsItJFlifa7/2aaKL+qiebTEfJjy6THo+mT+uL6KioGmO5Qnid98kZCSZYUmJlyzQ591vpIod2nQe80YViCbY4FGAtEmOl+1/RqX433+iGvtPVGP2l//FxOuyMW1UjuhxYsqO/SeqMLY/Wz0u9/bLKU7c75/1nkvLanDtnI2ic6Fw3pG5VmbB5tPCk/i08KTH77WMx+Zin62ZBJtZX/xkiLIj3JWnJqdc6hEG0tPT8dprr+HBBx9E27ZtMXnyZDzzzDMAgPr6emRmZmLOnDl4+OGHmc5XXV2N1NRUVFVVISUlRUvTRCk4XI5xi3YqHrd84kCfSUVOwm1yOCUHk0CrpDgUTLsRcTHNHoB6dS6XdqKqFrPWHEBlTYNO+YPkaWGOxrl68eKf7gjP8s0NBzF3wy/MxwsoPVtho7DtmaGS7mtafu8vgrGdRo9Ho9Cr3cLGHhDfHOspaLLOTd6kJ8V6LH5KvDm2N27u2VZROGfpj5kpZrx2Zy/8v+V7JYt9uuOenUnuuf5pcDZW/2iTnRtZ5k9/LOBSmanOnG+UFKqEfrN2n01WQBPaq8eY17L2Ado0vJE+jwDNzy/vlY1M7mhvj++LUT3lyz1cO2cjU4ZVLTw82Fe4kVJ2CD0hNTEWVecbZYV6oT8rnct9flW6ZxOax51Yinfv4xaM74P/+aIY9mo2t1G5dqlB7fvT4/o8zzyY4BmLqtM9NzU14eOPP0ZNTQ0GDRqEkpIS2O12DB8+3HWM2WzG9ddfjx07dkgKNvX19aivv9S5qqur1TaJCbVaWKUFksXntbymAQNnb8DLt/VwFXHSQ/vvrtlJiIvWxT2NBRahBrhk/Zo0tBOW7zoiOZlIPXut7oNGux/qRai0M5Lwl/shoN69hEeoAZS1wQIs/dFeXY/73tvFfG13S4/Ucx3Tyypag8vbSsRbS8KfFtaqi5ur1IsCjvv9Cf2myeHEC58VKV5DrzGvxVsh3DW8/iA6yoQZY9g8F2atKcZNudKWMz1d0eVYtLUEU4d3dSljWax+Jrf/l7OU8loQWTxdWF14Z605gL/e3F1RqcDSLjUo3YvUfWi9fqRYbbmTB+zfvx8tWrSA2WzGI488glWrViEnJwd2ux0AkJnp6ZuZmZnp+k6M2bNnIzU11fWvXbt2vE3iQk0QOEsWNdZFo6LGM+Wh3pWhpQLUWIKRjUIwITdP7N1FU9rKuYdodR8MRBC4GkKlnZGGEVnpxALFjXIvEWDJ3OfeLtYifjwIC+rzq4pQ29CE1+/shX/98WrXc93y1BCs/tHGnNyFZf7UMsfKBfSzbBLiY6I87s+93+wqqWCOZdRjzGupORSoLKLhxohcK6bkd1Y8jiVwXGqtb5kYq1v2QIcT+Kig1PU3i7Kj8nwjpuR3Vky+oSbrpFyCgcn5XUTjhcWwVdUhLSkO797bl/tZ6RXYL71XizPs+v7O9BkouC02V155JQoLC3HmzBmsXLkS999/P7Zs2eL63mTyXDScTqfPZ+5MmzbNVVUYaLbYGC3c8GhhWSXc1+/qxdUGI6ViMS1lv/ZpuP61TYabrr2JMgGVNZcsNGo04GoWZHe3ibKzbOZm1kroRhGIYHWCDT2LJoppvy0pZoztfwUSY6NxvpHNEsoDS1yJ2mK8vDjRbL2e8n8/AvD0py84XB40VkutVnrBohVlMuHW3pf5fM8jrOgx5tV4K0SKhtefZGUkMR0n1T+8XQKFgHh3iyQAror3chypOK/YJm+yMpJkY155zuV9nPv+xl5Vi4qaBqS3MOPQqbNM53M/7629L8OwHAt2HCxzJUFIjIt2xdTwtEsNYns1e1Wta26UY/uh37it0JGiPOUWbOLi4lzJA6666ip8//33ePPNN11xNXa7HVbrpc3p6dOnfaw47pjNZpjN0gXNjILVRYFVwoXzkl+1Ev5YnMU2Yjyma73M2w4n8NiyvXjHLTPSiFwrhnbNxEcFpThScR7t0xNx36Asl7nbG94FWWxDEmWCbBYlAJi74SCutCTLauKNzCTi72B1wv9IBuNX12PeNwcNu66S65xUu/yBu4tZ/QUH02/0WnilxjNL0gStbWUVVtKTYnUZ82qS1pB7rP5oUWDJCdvewjNPxXs52qdfSubD03YlZZCW5xAdZUJVbQNe/epn1YoY4bzri+2qFDp6KRi9nxNremn35AOsbqGRojzVXMfG6XSivr4e2dnZsFgsWL9+veu7hoYGbNmyBddcc43WyxgCi4sC6wK68b+nmM2gvOfWC5486pbUeCaTOQBMvrGzYv56d/eRdUU2XP/aJsxacwAfFhzBrDUHPOreeMPjPijlNsFSEkLQPkrVjzC6/oO/a+UQ/kVt1jMtTBrSUdF1LhDtcsfdxSyjBZuSS4+FV2o8r913kqnWWUaStrYKigwlXrw1V7cxz1ujJ1I0vP5EbbFnNS6BWuvdRZmA+wZlaW67GFrOJfUsWBHOq+Y8PPeoBjXvjNUtNJCFxv0Jl2Dz3HPPYevWrSgtLcX+/fvx/PPPY/PmzbjnnntgMpkwefJkvPzyy1i1ahWKioowYcIEJCYmYvz48Ua133BYF9BVjDnW1ZxbT4QCgHJMye+Cbc8MxaShnZkGQf+sdFnBwV2rpzQ5r91nE/VpZ1mQtW7Q5PxL/eVnrrU4IBG8GFlUzxthbE4ZdqViXIk/2yWFu+XbHwuv3Hh+dNleNiu9SVtbBUWG3Abm4cHZGNWzrey98MITMxYpGl5/okaBxVNY3D0ubFdJBaaPlr+WHBOvy/bwpNBT+ab2XFrXeRMuFfXmPY8/FIxyz0UKsfhD3nOHk/KUyxXt1KlTuO+++2Cz2ZCamoqePXti3bp1GDZsGADg6aefRm1tLR599FFXgc6vv/46aGrYqIHFPSg9KQ7lHAUtA+lS1ORwYtaaA5LfmwCs+P4oJg3txOy6UFbDFsNir6rFq1/9LDs5T1q+x0NIcjexKrkP6rVBEysepqefuZI7m9GZnAjjkHu3/tJq8y5QwaRtL6up16XGlxwsm0Smtp7T3lapmMNWSXGYdWuubMpfLbDGjJF7rDHwxpqyugTO33gQK74/5uOqJpY+XbjW3qOVWLS1xGPdjTJBso6Nnpki1ZxLyzrvvp9QiucTw4hsmGKoqVHI6hbqz0yfgYJLsFm8eLHs9yaTCTNmzMCMGTO0tCmoYNnc39q7Ld7bXsp0vkBLxbw+0yyDgNUntKKmQXGQeisbxIqbSg1avTZo3tpHPf3MWdOm6hmsTvgH8aQA8Rg34ApkZSQyJ7Hw5vouGdh95AzO1XsWwm2ZGIvfX3W55IZlWI5Ftmq1IIQdPHVOVbuMoE1yPAZ1bGXowquXAiSjhRl5nTI0t1UPRYZRsX96FZMOZ9Q+e55YU5baN0BznKjPb6vqsPDbEiwY3wdpSWafdo7ItWLq8K7MMa9C29X0WbFnxXsuNev8fQOvwKgebVUpmiYN6YjOmck+7Wq44OB6Zrx4P5eDp85h/qZDir9jua9wV56qrmMTSSht7lMT4pgFG62Ls9YFTI3PtPcgyGhhBpzN2tWCw+Xo1z6NSauXzug/746YRUTqGWh1h5DSPurlZ85axZ0IHYS+uL7YLjoH2KvrPIrSsiSx8GbLL2Win1edb0SfK9Lw9IhuPuNhfbHdp7imuwDtrwxoAiNyM/HVT6cgVQ7ae+wZufDqZqG6eC96tFWLIsPoGjORoOFVi5ZnL/bbf24r8fntuiIbZn3xk+o2CmvorDUHJAu9xsVE4aHrOnCdl7fPKj0r1nOpWedH9Wjrc37W8+R1au3z29lri32sXC+tPSBp5VKL+zMuOFzOJNiw3lc4K09JsGFEbvFqcjhlN/YA0DIhFgvu6YuBHdTXqtFjAVPrMy0MgnVFNjz58Y8+bRCK6slp9VIT5POzS+FuEamqbZB8BsNyLIrvQQo57aMefuaUNjX8UCMc8Ag1JgAmGUHICWDaJ/sxLMfisUApCdB/GpwtWgDTKBLjovFV0SnF63mPPaMWXr3iQdxdcAO1SfCXsiTcNbxq0PLslX4rWFc2FNuxmFFpKkegs9dJ3a+tqg6PLN2DKfmdMWloZ6b+pOQeKUaliLu8WjfL2WuL8Y9vS3yOdzjh+lxP4UZreyMR/exmEYBUFjWlgCwTgFfu6IG8ThmahBo9gteNyEQimLr/NDhbNuhda4aWDcV22WewvtjOHXQn1k5v9MgkEimFsSIFrVl5lKYBQUGgJAhVnm/E/I2X3E+UBGgnmquJs24IEuOiGY+UJspkkr1elAlYML6P3zT/WuchgUAHzPMElOuB3sWkQxktz55ljE5avhfjFu1kEmp43kIg4ulYgv3nbjiIvFfYMoyqCa6fteaAz7tQE0jfcMGBRVt9hRp3Fm0tQQNjKngeIiXwXw9IsNEJI7NZ6bWACW4zo3ItkhI/IJ2JZMZq+Tas/tGGLU8Nkcy24z4w1bCq8ITiMxiWY2FOaS3QKikOW54aIvmO9JhQWBeU7YfKdNuIEMagR3pkhxOYProb3hzbG1Pyu8CS4jtvPJiXxXSu97eXuvoMS/wIS/cS0kTvn3ET3h7fB2mJnsZ9S4oZb4/voyggtDBH+8QGibUnTSF1snumJ/dsiWpgGc8tE2ODPiUqKUsCh5Znr9cYFUiOZ3e8KS07r3yQzrDGtNmr2ZW0PKUrAOl3wbtv+6igVPHdOJzNxxkBZU1lg1zRdMQoc70ewessRSvlfKbnbzwoG8AotGH3kUrFjByT87t4xB0owZJ5zv0ZuL+H7Yd+8yhkJUZ5TQNTu7X4mbNqd+dvOoSVe45HvO96MKNb8Hmy2VVUb9LQTj7zxq6SCqbYvTO1ja6xr5dGtnNmsms8jOrZFjflWkXntagok2TRXxOA31/VjknrLNduI2JIpMZzZooZ4wZcgeraRtF2B5NmlGrMBA4tz17v9zGmd1ss3XmU6di5G35B5zYtcFMu2z5FLJ4VAPMep8nhxPZDv3Hdj7dLtlRMrbDOz13/s+IaD0g/d54kDkcq2ARD1uPUwFvgPBIhwUZnjPC11rqASfm3CoG8D+ZlYViORXKCWldkE822oratWRmJiscI8Gae21Bsd7lJ8Gz0jM4kwuMXTMkEghsjsu+JzRuVNfWiAoNcm/Ryj5KKsfNGSkAQBI/UhDgmwcb9eu4bmdKyGslMT1rHiPd4Li07j+W7jnpcj0f542+oxkzg0PLs9X4f2a2SuI5/bPkepMTHoKr2kiVVTFEgplBomRgLAB7FyKWUDGpiEL2VtEpKjegoE/I6tWYSbKSeO2sSBwBon862d2E9Tg087Y1UIlrE09O9wUi0TKIsQetfFtllNTYzPy/Wra1NDidX2lvBxDosx8J0/OLtpR6mbL0XfyU/c6k+xeMXbIR/PKEfemTfU3JlWldkw2PL9jK7uwltYokfiTJJ90E1blZyBR+F9ighBPeuK7Lh2jkbMW7RTjy+olBSoaLXGBHGszkmCvM2/OJjlXZX/sgVsgwEkVJFPBjR8uz1ivESrnHfoCyu8zmd8BBqAN9YXakYwjPnGz2EGrHfyv2eldNn65jjio2KGxZzi7tvUJZifGSUqfk4I/BXofBQJ2IFG+8FdNyinbh2Dlvwmr/RMnC1+mHzuN1YU+PhcDglBUXhmcsVCBVomRiLfz10tc8GiWXydt/s+HPxV+pTPH7B5B8fvGjdmDgBjO3fDl/sOyk6TnhjeNKTYtGvfRoAtkQmE6/LlvweYHez8q5wPiA7XTSxilD5XI5Zaw5g7T6+zZAwRuau/0WTYkqr8idQUDBx4NDy7NUEv3vjfo24mChNsauAp6Kg4YKDa/7xVjI0XHDguVX7NcUgZrQwM8cVq30XamKX42KiXPOnFBOvyzbELczfyUJCmYgUbEJN6hUGrlR3dUJ6EtXqisXjdlPb2IR7Fn8nuqln1eC4ssjd3gN5nTM8Nkhyz8Add4FAj8WfxbLH2qcE7fakIR0Z7oT844MRnr4ohgnNWYCEcZL3yka8ueGgq3/t5KyIXVHTiMGvblIUoAXr57RROZoDUNfus6H/SxuYFENpScpp3m1VdXjhsyJVz3T+pkOaFFOhHIRPwcSBQ8uzl/otqwzqfQ3hfOkMY00KoZ9/VFDKbWkRfjt/4yEMnP0NKmoaFX8jhqBohBNcY1LNu1A77qeNysHDg7N93lWUCXh4sL51bNwJ5XnK30RcjE2k1RPR6orF43YjZaJeML4PZq05wLRpkfNhH5FrxYN5WUyxNt4FRtUG/rMELvP2KT38gonQxad2hVcRz5YJsdzntFc314O4vksGrkhPRO/LW+L1u3q5Cul6x4NpiReTquNg84p7EWJlvmQUNipkkoOwoDbuJtSD8KnGTODQ8uzFflt2rh7/b/leyd9MuKY92qUlIr2FGakJcS6LBQAMy7EgKS4Gj/xrN2rqm1Tf03caNsY8SYGkGNv/CnxVbGc6duvB03A4nSg71zzHbZx6A5Z9d4QpqF7LuJ82KgdTh3cVDeBvuOBgCuznLbbOnln1t4gf/xEn2OiRYczfNDmcePaT/bLHCIX6vDuz1qJOLEHvUgHOwqb+hc+KmDQ400d3w4S8bNkBOSzHwiTYlJ2t95j01SxArAXY1PSpSC22NXv2bDz33HN4/PHHMW/ePNFjNm/ejCFDhvh8fuDAAXTt2tXgFiojpD43ijO16rSdALDllzIAwEdozpIkCOFic5maRCdr950UFWoEnGgW4h0OJ2atOaBL9jhW1CqmwiEIP5yriAc7Wp69+2/XFdnw8lppN+3EuGh8WnhSNHAfAHegvhRfF5/SfA4t8AhHb2/+FW9v/tX1t3eyD7mgetbU11LjPi4mCg9d18Hjs9lri7Foa4lHG15aewATr/O05KjJ9MieWfUwVu45EdHJBCLOFS0UtXM7fy33sYZ4U3m+ETt/Lff5XKsrFsvv5SwxToDZLJ2RbFbcjLDGN8xac8DHNYWnwBxLETXBn1VNn4pE//jvv/8eCxcuRM+ePZmO//nnn2Gz2Vz/OnfubHAL2dhVUiGb+jyYsFXp517b5HDihc+KmK756LK9zJus5nTu/FYqMdS4Y1AQPhFoWFy1zzc0iXpFPLJ0Dx7REKgfTGiNDvH2EpcKL1hXZMM8BQGKd9wLlmzvNjicwD++LcHstcWua6sJheCJ7QzWsAp/EXGCTShq5woO+wosPMdp9cOW+/3Qrq2Z2sYCyzPnCbzUMrhZkiYIGyi1fSqS/OPPnTuHe+65B4sWLUJaWhrTb9q0aQOLxeL6Fx0dbXAr2QgmpQcL7kK4FnaVVKj2nZdCGMMv3pqrS6YoAZ53FIlKBiJ40FLwl8LE5RELqmd93nKxy940XHBg0VZpSzYALNpagtqGJtUJACizKjsR54oWmi5AvPlJfNHqhy32+8qaBjy6bA/T79OT4lBZ06DLM5eKmfFGzDWF1a+VVSNvr67DmF5tYU2Nl2yL3P1Fin/8Y489htGjRyM/Px8vvvgi02/69OmDuro65OTk4IUXXhB1TxOor69Hff2lNOLV1dWa2yxFMCk9WGkO7D2Ix/O7cPt2Cxgh0LnHuUkV+xRaNjm/Cxqbmphj03juU2sBXm/UPmMi8tCr4K8/aGGOxjkN8TuBwNsVnPV5T8nvzDzuPyoo9bHUeONwAi+vVd6zyIVCsO59WM4VzkScYCNIvXILaLBp5wZ1yGBazAd1yJD9XqsftvvvmxxOXDtnI9PvrKnxmD46B49JCEFOAGN6WbmeuSAQLNleIps+WhjcS7aXwJoa7+P3L+XXWnGOrdZOxbl6REeZMKaXVTb2QMndL5wnnhUrVmD37t344YcfmI63Wq1YuHAh+vXrh/r6enz00Ue48cYbsXnzZgwePFj0N7Nnz8bMmTP1bLYkA7LTYUmJDxl3NIG5Gw7ifMMFrP7RxuXbLaCnQPeHQe0x8mIad/c4OCXhosnhxMo9J2Rj/lomxqKyph7XztnIdZ96KRnU+M8TkUuwW4Bv690Wg7u0hiU1AfbqOkz5d2Ggm6QK4TmzPu+sDPbCp0cq2OJ1SsvZjpNrozBPzV3/C+ZvOqTpXOFKxLmiAaHnAjSwYytXxV8pWibGYqAfN8c8Wqa/3ZKDUT2t+NNg6fzvC78t4XYZi44yISPZzHTsrDUHRP3+pdzVjleyTUDpSXFYV2TDQhmh5k+Ds4OuT/mLY8eO4fHHH8e//vUvxMezbYyvvPJKTJw4EX379sWgQYPw9ttvY/To0Xj99dclfzNt2jRUVVW5/h07dkyvW/AhOsqEv96snNIzNSEG6Ynq068awT++LWEaA2IpzlmLbbIwMtcqGucmV+wTYEu1feZ8I9dYd4cnDk+MUCslQASeYLcAryo8iVe/+hlVtQ2wpAR3W+UQnrMR4Qjt0xOZjstqxXac0rWbM6vKK7JZzxWORKRgAygvoMGAsLn4Yt9JPHBNluyxr9zew69WJlYtwEN5WS5N6+of5Rd1Nf6gWgetkAhgxuqfXNdeV2TD+zuOMP3+0OlzssXITABW/2iLSD9XANi9ezdOnz6Nfv36ISYmBjExMdiyZQv+/ve/IyYmBk1NbG4NAwcOxMGD4lXoAcBsNiMlJcXjn5Gw1Gapqr2AivPaUhj7A2EMPLtyP7YfKsPafeKFZr8qsmNs/ytkz/XQtdmGB+IPy7EoKnrEMNrvnAroEWrQWvBXC0LdOCUEwbyypp5buAnUvbmTlhjrmnMqGdLK885R9w3KUqxBFGUCnhuVo9v8SElPpIk4VzR3eFyA/O0zLebO0DIxFnA6cab2guszS4oZ4wa0R/0FBwoOl3u0y6g2NzmcOM3ohjO0ayYA49Jss6SjZsFeXY/5Gw9h0tBOmPk5eyrfBZvlXQQj2c8VAG688Ubs3++ZqvyBBx5A165d8cwzzzAnBNi7dy+s1uBROuhp3k9NiEGV25hWol/7lthz5IzugcNnahtxzz+/E/2uOdOZcjzd2v02jOllxcJvS1S5+rK4ce0qqVDMEimFkeMxFEsJEIFHzj3eaBLN0aipb1K8rhCvOmvNAfz15hzFuWBKfmdkZSS59h2vrjsg66ptNMK9NTmcmLVGeX2fProb114pLiYKE6/Llr3HiddlIyEumisUQm4PF4phFf4iogUbVvztMy1VP6Xq4mI+Jb8LsjISUVpWg+W7jnrkfZfLa69Hm8WehSwXx5RRabb1XBSE52hEIGck+rkCQHJyMnJzcz0+S0pKQqtWrVyfT5s2DSdOnMCHH34IAJg3bx6ysrLQvXt3NDQ0YOnSpVi5ciVWrlzp9/ZLoad5f/64voiJjsKXRTZ8WKBsKdx95Ixu19Ybe1UdFn5bgj8NzvaJ5VEKxGetG6XHWDJiPBo1x1EigvBHcI9/blWR5kK1AulJsYpZDGvqmzAlvzNWfH+MORg9LSkO797bF89+st9HwdAyMRav3N7DZ4wLNVy8a7x4YzIBTgMkuzPnG10p4FnW97QkNhd3d6TuMcoEjzo2rIlKWPadeic9CRdIsFGAdbHVC5Yq9iu+P4rpo7th3oaDou16ZKm4NkVrm6WehRxlF4Pw1fi1Ki3owvf1FxyYnN8Fy3cd1RzQ/f4OY7RKkejnyorNZsPRo0ddfzc0NODJJ5/EiRMnkJCQgO7du2PNmjUYNWpUAFvpiV6WQgB48uNCjBtwBc5qKMwZLAjPYvWPNmx5agh2H6lk2pCzzHtCdkM9xpIR49EI331KRBDeeK9xz4/qhqkf/6j6fJOGdETnzGS0SY5nDvQvr2nA63f1wvZDv3kUu5TCXl0HS0o8/nZzDsrONeBMbQNMaE5eNFAmLm3aqBxMHd4VHxWUoqS8BiYAPS5Lxf4TVXA6m4Wa3LYpeHHtf3G2TtyCbQKQmWLG/97dG2Xn6pGRZMaOw2WKnhMAn0Jh68Hf4HA6UXaunkuZ4H6PRyrOo316Iu4blIW4GM+oD6VEJVJ7LdvF/d3b4/tgVM+2TOeKREiwkYFnsWXtREqbdVZ3hhc+K5L15Zb6rZo2C+1Wk2tfWMRZNoKWFLPLH1RpQRf73pJixp19L8N/9pzgbOUl1Lq4SBGc6cMDy+bNmz3+XrJkicffTz/9NJ5++mn/NUgFeloKT51twLxvlLPbhBK2qjrsPlLJ7HLF48alRag0cjzqXUrA30o1wr+IrWFaC9XmdWrtGnOs9e8+LDiCDwuOIJ0hbhAAZn3xk4clSFiX8zorB7PHxUThoes6AOD3/hB2KzPGdPcInI+KMjEJNjwKhbc3H8bbbufkUSa436McUqEQLHutScv3Yj5MGNXzUlIVcm+9RMQmD2CBZ7GVwj270JsbDiLvFd+gXPdMOaxaBbWF8tRU5gb4c+27B64JwtyoXIvsYK274MD6YrtiZqFJy8QrLZ+qrsd/9pxAy8RYTcGKLRP0qYIu5ecqlnGK8D9a34NUdkWima+L7czH8rhxsRTUlPvOKL9zPQt9UiKC8EZqjVO7rosFivNmMWQJqgd826gm45/U/cshlbWWJ4hebaIGf2Y1ZNlrOZzAo8soy6IUZLGRQavPNItGwlv75i+XpQ3Fdi4Jn8eM676Iry+2+zwDKQ131flGPLJ0D1omxsou6F/sEx/MgkVK6TpKPJCXhbkbpDNwsSLm50quJcGBHu+hyeFEakIcnh7RFXuOVOCjnUeVfxQEsPje68GSHaXo3z7N5TIhB68bl5JvOeAbY5iaEIsH8rIwLMfCcxvMCP3hwbwsrCo84fGMeX3eKRFB+MLq/cC6fkkJzdFRJkwfrRzoL6BWROb1BOHx/khPisX0m7vDkiLtXsUbRK/G0q7F24UXnr2WP9oTipBgI4MWn2nWeBTvAaOn774ci7eXon92OvNCyyNwuW8uxJ6B1H0Jn2txB3Ne/P2U/C5YvusI7NVshTaBS64ik4Z2Ruc2LTBp+V7FasLev09PisMLo7vBkprgMxGTa0lwoMd7EBOM/J3RiBehf295agi+L6nAY8v24IyBcT1OJ/Dosr14N8qk+DzVuHEp+ZYPy7Fg/sZDeH97Cc7UNuJMbSPmbjiIFd8f012RIO5WFIff9W7rmtd5Nh9GJSIgAg+r90OSOQbn6j1jTRLjohEXE+WxRsoJzSxp6fWAR9Dm8f6oqGmEJSVe8Zw8QfRSxyrhL2UCz16LlBvikGAjg1qfad54FO8B46/UjzzSPovA1TIhFgvu6YuBHZoH2bVzNgZso9fY1IQ7+l7O5HsL+Gp2RvVsi/kwMWu7BF66LVd0gTEiXovgR4/3ICUYBbtQAzT377iYKOR1zsArd/TAny8mGgmGeWZs/3aillI5Ny453/L1xXbM2/CL7oqEJocTO38tvxjD4ER0VBT+/o1vIpfKmga8v71UVSCvEYkIwo2zZ89i+vTpWLVqFU6fPo0+ffrgzTffRP/+/QEATqcTM2fOxMKFC1FZWYmrr74aCxYsQPfu3f3eVvfY2oOnzjL9xluoAYDahibUNjRhSn4XXN4yHoXHzwAw4URlLRouOFxB6sL1vvSzq5KUoO15/+d0Oaf3uesvOPD6Xb0AJ1BWIx/0LyhF5q7/GfM3se0R3NvDkqmw4YJDMYmAGMJei1Xo0lO5ES4ZGEmwkUFtnnDeeBQBoYNqSf3IIwzZquowf+NBPJ7fRfFYlmfxyh09XEF9BYfLDUmbzArvZCWm2RnV04opp7t4pNOWolVSnKRQA5BrSbCg9T2oTaKhFy3M0bjn6it8Uil7E2WCh7UxPSkOs27N5dZctrzovtW5TQvMWnNA1ZhW6tdKLrtqUpcapUhYV2QTTXMrhnCdGat/QnJ8LFeGJb0TEYQjf/zjH1FUVISPPvoIbdu2xdKlS5Gfn4/i4mJcdtllePXVV/HGG29gyZIl6NKlC1588UUMGzYMP//8M5KTk/3WTu4SCTIIfeof3x5GXWOTxxh/cc0BjO5pxahcK2at0ed6vEh5r2i5fznhXc6lWGkdjY4yIa9Ta+69QmlZDa6ds1HWjXn22mKftM8vrT3gkfZZrl1/uyVHMrutN3opN8LJTZ4EGwXU5AlXK0ELHVTw1R7dw8Ltty+0a1dJBd7bXqp4/NwNB3GlJZmp4/I8i1BykZg+uhsm5GWLbjYmDe2k6NKWEh+D50Z2RWpCHJocTtHzkGtJcKD1PahVWujFrN/1wG19LsPTI7phV0kF7FW1qKhpQMvEOJw534D0FmZYUuJRfrYOf/38Uvai8poGzFpTjKgo+Ag3zS5bB0WtJVW1jZi34SDeubcvtj0z1KXNy0gyY+rHPzKnV5eLQ5Rz2Z2S3wWThnbi1hoaoUhYV2Rj3my4X8deXe9R+JRls0DF9+Spra3FypUr8dlnn2Hw4MEAgBkzZuDTTz/FO++8g1mzZmHevHl4/vnncfvttwMAPvjgA2RmZmLZsmV4+OGH/dJONSUSlHACON/QJPr5F/tskjGorHgrRViQErS13r93QgSWc/NYZHlc/01ortMjNk+6X3Pv0UrRQp0OJ1yfKwk3I3KteHt8H1l3eD2VG+HmJk+CDQO8ecJ5JWj3DqpGuzF9dDdkJJs92pWaEMck2ADAlH8X4lhFLe6/RtlUyvos1GoRTABSE2N1T7ssdS1LarykUAM0bzBmjOku67JTXXcBU/+zD4D0poVcS4IDre8h0IJn2dk6bD9U5tL+j+l9mU/fXVdkw/9bUci1SK34/pjo9bytG+5CwIwx2rSKLNav93eU4Kr2abL1McRgfU/bD/3GZEFpcjgxY7VyxXIWWDcLVHxPmgsXLqCpqQnx8Z79KiEhAdu2bUNJSQnsdjuGDx/u+s5sNuP666/Hjh07/CLYBNq6q5Ybu7XBhuLTALQlL9B6/yaRc7Kcm8ciy5q2XziDXHywYJ09fVY+rnfR1hJMHd5Vca8l5w6vp3IjHN3kKd0zI4Iv9629L8MghUWWJ6WgdwYxnhSIQhrDCXnZPu0akJ3OnBO/ttGBl9YeQNfpX2L2WuXFm+VZqEmr6M/ga56JgSetr1RaSJ6UlIRxaH0PgRY8X1r7X9zzz+980sULqatX7T2B51bt50oTvFPBbVQqRXyzVrEvlNa6lgmxcDidPqmJWaxfZ8434p7F3/mkxVeC9T3N33SY6dy7Sio0F/8V4EnXPCLXim3PDMXyiQPx5tje+NdDV+P1u3qh/oIjolPFJycnY9CgQZg1axZOnjyJpqYmLF26FN999x1sNhvs9uZU45mZmR6/y8zMdH0nRn19Paqrqz3+qSXQ1l21FJ2oxoLxvuudNTUeDw/O9kkhLZWGWcv9WyXOyXpunrIWLOu7JTUek/O7yCpcBeus0pB0OIGPCkoV2wU0u8O/e29f5meuBj2fZbBAFhsD4CneJ2jfhuVYuILthb3E9NHdRK0n0VEm3Nb7MixmtNoAfKZSpSAzJVcKJ5rNuu4TRcvEWFSeb5SdPKSe58hcC74sYq+bwav1dLdU2avrfIqUCUhpOMi1JDjQ+h54AztZaWGOxrl6X/cSJewXK1F7jyUpvF2w1hXZMPX/fmS6lpgVZFRPK+ajDx5dtlfyd2dqG3HPP7/zsWbyWL94XSJ4XExYzq23pY7HFU5QJK0rsuHJ//wYFj7wevDRRx/hwQcfxGWXXYbo6Gj07dsX48ePx549lzTcJpPnOHY6nT6fuTN79mzMnDlTl/ax9pnhOZn4uviULtfUA1tVHdKS4rDtmaHYcagMK/ccx/mGC+if1Qr3X5PlcoP1Xvu9k2o4nGy7mUlDOqJjm2RUnKtHelKcaEZRb1ifrb2qFtsPlqHg1zIAzeNoYAdfZay3J0pGkhkwwSMu7ot9J5muycKRivPMx47ItWJo10xViQhYCEc3eRJsDELSjSDFjHEDrkBWRpLHpMAbbG9JjceYXlafgF73hS4/x8Il2AgomUpZg8yUXCk8JpIWZkz9v0LJNgkuavEx0R6aU+G6yeZYJsHmsRs64trOrVVl+xA2GAWHy2XrgEhtWsi1JDjQ8h54AzuVEHqgWoFWbYr002fruGNGpKwgo3q2xbtRJkNrdvG6RPAol1jObZSljnWzEG4+8HrQsWNHbNmyBTU1NaiurobVasXvf/97ZGdnw2JprlVkt9thtbrFfp4+7WPFcWfatGl44oknXH9XV1ejXbt2qtrH2meuzk4PKsEGaO6Xr6474BEA/3Xxacz+UjwAniephjd5nVpzJ8xhfbbTP/vJI7vc/E2H0DIxFq/c3sNnvMhlWOS5Jgvt0xOZjxXbb/1zW4lue4ZwdJMnwcZAeGJzWBe4Pwxqj5G5VlTWNOCxZfIL3bAcCywp8dwuFIKp9KHrOvh8x7vAKj0DYSIpOFwuG6Av1Kf510N9ERVl8jnX9kNlTPd2TacMzVnHtGg4eOO1CGPQ8h5YAjtZSU+Kwx8GZTFl3tMTIfifBZYgVeF5/v2bg6KpjwHtNbt4A/556lUonXtAdrqquVQJls1COPrA60lSUhKSkpJQWVmJr776Cq+++qpLuFm/fj369OkDAGhoaMCWLVswZ84cyXOZzWaYzWZd2sWa2e6+QVn457YSpnGQmRyH0+cawGgMUc364lOiSQjEvDrUJNUQUOt+zTp3iKXMPnOxEPi7nMoAlveZmWLG6bPy7mhRJuC+QVlM1/SHQiMcMzBSjA0Dgv/6Z4UnuP2aWWNzWKXhkblWDMhOx6w10gudE81BbEBzgK8axEylSgssADy/qgir9hz3eE4sz4BVWCirqRc9V9k5tkKcrMfJoVXDwROvRRiHlvcwqmdbzB/XV3MbXhjdDVkZ7No7rQgxRDCBeZPuBJub5PpiO96UEGrczyUIEIJVhRcelwghRmXSkE6azt2cRES5rVPyO2Pu3b3w/KhuSE2QjnHkiakLRx94Pfjqq6+wbt06lJSUYP369RgyZAiuvPJKPPDAAzCZTJg8eTJefvllrFq1CkVFRZgwYQISExMxfvx4v7TPvX97jxzvulJKxz2Yl4XlEwdix7R8/Om6bKOa7GLtfvmYs0VbS9BwwaE5qcb00d1UrX9yz5YVlhg31msKf88Y0x0TFd7PxOuymdzIWPZbvPcgBms/DaV9CllsvPCOHamsacD/fPGThzXBkmLGjDHddTX9D8hOl/WTd5eaWYLy7NX1eOubg7i6Qys8lJeFFT8cQw2HD7+YqZRlgS2vacCUiz77PP7fWoUF3t9rKUTFVKw0MVaThiNcCmWFMzflWphjW6Q4/FsN0hLZknzogRPNmwkeAf/BvCzFMSwswqxsO/gbth/6DYd/qxGtsC4Hr0tEc72KDMzfdEjTuUfkNgfyirncCO4tABQtRLybhXD0gdeDqqoqTJs2DcePH0d6ejruuOMOvPTSS4iNbR5PTz/9NGpra/Hoo4+6CnR+/fXXfq1hw+r2yuMeK1hKFm4tMcxywxoAn9M2VZMVMy1JvXVM6pmlJ8XKuooLqKkbx/KehHflXccmygSmOjYC/qx9F25u8iTYuMGaatleXa/KlCnH+mK7YsYNYSFkXcDmfXMQ+OZSzvX0pDhc1T4N64tPyWpVpUylvAunnvnklcyhPL/XWoiKJc7izPlGrC+2q+of4VQoK5zZVVKhOS25sNlWUztCLbPWHMDY/uxxA8NyLIrH8GZAWrCZrygeoM0lQi93C8Hlzj1IelCHDAzs2MqV1VLpNfJuFsLRB14P7r77btx9992S35tMJsyYMQMzZszwX6NEkAtM336oDHA2eyK0SY7HlqeGYPeRSlGFlruy64YrM/HoDZ1x3+Kd+OlkNZq8NtD+mEuOVJxHRrI2tz01wri30s/7mdmr6zDl34WGXZ/FjXnaqBxMHd6VK+Df+7601gjjJZzc5CNSsBHThrMuSu48+8l+XfyaWbSdLRNjXRsMtQtYZU0Dvi4+hdzLUlB0QjqNpZSplPe6SpW3vd/D9NHd8NiyvaqyVbFmu5J6z7w+q8Ny5LX1av3eKUg4dNBTQ+7PrL22qjrM3XAQLRNicaZWXjCLizbB4XBKFp4VMNpaoNUlQs+shIIFKK9ThuszlpodLRNjsWBcX+6aPOHoAx9pyGW2c0dQYN3a+zKPz1mUriYAo3taMSrXgscuZikUy0aqF+3TEzUL07y/l1P6Cc+sWeFgzPUFlBINAEBcTJRonLIYYvfFWq6jtKyG6TgWWO4rFIg4wUasA1lSzKi74OAe9GfON+K9bb/iwWs7aBJuWOs5CCZHtSlnhfuTEmqUTKW8wb7CNcUqb4/pZcXqH20+E9SfBmf7fM6q4WTJwiaVUps3CFdJW6/GTExBwqEF66LI6hoBACYTDA8MFlASagCgocmJexb7pmr2xmhrgR4uEUa6W7DO4VEXU/HzQKniwwMppZU7Ygoslt8Bzf3ii302XNYyXrSf61n4WvDqiI4yqXLHVSOMsyr9BmSnIzUhBlW18u6twVI3Tuq+WNeMuRsO4kpLMik83YgowUZyYMhk41LipbX/xXvbSz0WRt74iA3FbPVX3LWiY/u3w9wNB2WOZueGLhm4rnNrRVMpTwpVOWxVda7MKu7Yq+qw8NsSLBjfF2lJcarMoXLmVKWU2jzCiBF+7/70qSW0wxpr9ebv+yDKZELBr2WYv0neBcvpBJ4f1Q1VtQ345dS5oEkD651t0Xt8qVF68PD6nb0w8GKqdS1uEka5WxgdBxNuPvCRBotFD/BVYOHi//OMqUVbS/DfWV193N+asyDqI9gIXh1aAtd5hHEepR/gW79IjOmj9VMGqI2JZe0XcngrPCk+N4IEGz06kBTuiz7gGzwqp+1scjixqvAE03XaJMczxwGxYgLw86lzWDxhAHOqW9YUqrwIE9SsNcXY9sxQ1YNRypy6XoUAKYURfu8UJBy8SC0WSoL+mfONuO+9XbCmxmNUrnKsCgC0STFj4uAOKDhcHjSCjTA2n/1kP2asLhatJaWH0kOKb/57SrfilEa4W/gjDiacfOAjDZ4YNO8sd7zrrHu5Bs9yCtrXDW+vDjVxhulJsXj5Nt86MnLwZgZkaVNaUhzz9eXQEhPLG5sohvu9V9U2UHwuIkiw0aMDSSEs+tM+2Y9KkQElFx+xq6SCyeTYKilOsnaNFtRYAdwXWHt1HWZ98ROz2dSI9gDKGpN1RTa8x1istOxsPT4rPCG7cTDC752ChIMTpYWLRdC3V9UxF8sV3q/RVhBehFpS3lpf9/lN7FlYU+Mxtv8Vmmr1iI3dYIo781ccTLj4wEcaapRR9uo6HD59TtX1dv5ajvSkOFTUNCAtMQ5bD/6m6jzu5LZNhiUlHqeq67H1l99wTacMVfd191XtUHSiGkUnqlyJN5SEcyOUfnooCLXGxNqrajW3QWBDsR3vbS+l+FxEkGBjtJbbCYgKNcJ3UvERrO26pZdVsnaNHvA+H/cFNiE2Cn++mCFMr/bxtEdp48mTijbK1Jw1SiA9KQ4v3pqLUT19qxTr7fdOQcLBB8vCNSzHgmRzLHYcLsOSglLRtOqs48JkAnq3awlAP9dPo3Gf37Y9M1TUqgAAy3cdUeX2K5XliTfuzEgXDYqDIeRQo4yatnIf6i44VF1v/YHTWH/gtKrfSlF08iyKTp4FAHxaeBKJcdF4eHBH7vO8u+VX1//P33TYlSpdbtNthNJPq4JQa0zsuiKbx15DK6sKT1B87kUipkBnoLXcUkXUWNvVLi3RMIsTTzvEELTWllT9njFre4SNp/ezETae64psXNY67w1URU0DHl22B7PX+gpGUvdtSY1XpR0Jx0JZoQxLgbRnP9mPvFc24p7F32HB5sNctaLEcDqBvDkbsa6ouUCe0Mf0cpswCu/Cm96FT5sLXHZXdW45N37W4pTrimy4ds5GjFu0E4+vKMS4RTtxrdtz1gO95wMifKis4Rfo1Qo1/uJ8QxPmbvgFiXHRms5z5nwjHrm4VkshKP2kVj73grc8x2pBS+FcYd9SUdMgew0TmpNbWVLk76dVUpys10ykFfGNGItNv/Zpfq0VIYW3JYLF3STJHI2dvxrXIfUY5GK5+qd+/CNOVfO50fBYJVg1Jk+P6MrRAnH+8W0Jel3eEqN6tvX4nNXvnVVbTEHCwQPLwiXmmqWVipoGD9eBYTkW7D9epar2Cyt6WYTkLK1CgcupH//IJACmJ8Xitt6XMbnwyV3XnynUKQ6G8KbJ4dRVMx9snG/QpswRmLH6J0mLAq9F1B/WU7Xucbzx3oJCSO5+bu3dlsnVPlLicyNGsPm+tEKTUPOXIZ3w4c4jTClS5fC2RLC4m9TUN2H9AeOCiPWyAgiaWmETP6qHhTmuRU17WDUmFRxV1uV44bMi3JRr9Wmbkt87b3AhbY6Cg0AvAjM/L4bD0ZxMw0hrLQB8+OAA/HLqLLYe/A2bfylTfR4lS+uIXCtqGx1MBfSm39wdlpR4JsFG6rqBSKFOcTCEO0bG94YT9up62dhaHqWfPxSEat3jWPtDWmIMJlyTjfoLDrRJjseC8X0wa80B0ftJTYhj2msF2nPJX0SEYLOuyIZnV+7XdI6P9xzH7/tfjoUX0xSLSc2pibGoOt/IHR8hDMJnP9mvS555Hu3rQ3lZuloBxDbxrO1pmRCLV+5gz5bCuvFMT4rTJQi7oqaRO6mBWm0xbY4CTyAXAUEof3TZHsOvZU2NxzWdMnBdl9Z46LoOsrW+1Mxv3lhS2J6rJSVec9wZpVAnAo0RCpJel6fix+NVup830Cg9Kx6ln9EKQrVzE2t/cDhNHiU9rKnxmD46R7QURpPDSfG5boR9jI2wsdRqaRFqrPxpcLakD/Urt/cAoD4+Qq/iWZbUeEzJ78x0bH4OWwpaFqTiXViFiQX3SLuENDmcKDhcjs8KT6DgcDmaHE7mjaclNUExdoUVnkWKJUZj5ufFmmoBEMah5KsdDpjgOy+NyLVi2zNDsXziQLw5tjeWTxyI7c/eiN9fdbnsWGa1tPL4wLPEnY3tfwW+2HfSNS+4QynUiUBjhIIkHIUagO1ZicXwaTlWbG/BgtqYWNb+UFXrm33ysWV7UFXb4HM/FJ/rSVhbbPSsXSOc49/fH8db4/ogKsqEsnP1PloA0Yq/CbF4IC/LVTxKqp1qEdKpZmUkutrzVZFdMaZIz8q7Wp91akIM4Gw+j/fgk3Llmj46h1lLER1lkjRNTx/dDS989pNiIB/At0iRtji0CZWsZGmJsW7xPuzI1ZPwthiuK7K5rNVi/GlwNrOllddfXsqtpOXF+3ZPI+3t4kkp1IlAo3fadn/ECpsAZKaYcfpsvd/iki0pZr9bFLTUoAHUubyp7Q9KrrMUn3sJk9PpDKr1urq6GqmpqaiqqkJKSoqmcxUcLse4RTt1apknSkU35288hPe3l3hYiqR+o7adfxjUHiNzraI1W8Tcn7x5ePClQlta0etZez8jqXsR7vZPg7Nl3QO9Xb2kgvjX7rMpuv1YU+O5Cod+VngCj68oVDzuzbG9cWvvy5jO6W/0HI/+RM92ryuy6eYmqjfDc9rg/kHZ6Ns+DXlzNjIJ5wCQEh+D757LRwJDRqMmhxN5r2yULfDHOzYAeYWFlLuFMHZLy2o83DTcMeHSuG9yOHHtnI2Kyg8tBYEJZSJ9HhHWMUC9gsRfyhX3tXPv0Ur8Q0ahoSfv+jlzoNLegiepCG8qea39YfnEgZLKUCPT2gcSnrEY1hYbXveCpLho1DBm+JCLkVhfbMe8Db/4dFhbVR0eWboHb4/v61EXRa0bxE3dmy1AX+w76VEvgtVysvpHG54e0U2XTs96D4lx0bJZVGxe9UGUAn9X/2jDgvF98D9fFHvUyMhMMWPGmO4+70YqdmVUTysePp4tOYmLuewoQdri8GBYjgUzVhdD7+xnevB18Wl8XXwa6UmxXEVyq+suYOj/bmbS5M3feFCxarkay6OYD3xlTb1PsgR3ZYeQnOTaORslz+uEp1aT6ssQgYa1kK8cltR4jMq1MBf6ZcXbAuTuYSLMDQu/LVG1Ae/bLhUnq+pk61clmaMx57aeSE2IUyyMzYrY5h6AR9bWGav5korICQw8MbFNDidSE+LwYF4WVhWe8Ji3WybEMoVNyO239I7PDUVBKawFG9YN46M3dERepwxMWraHWbCR6/xKgsWk5XswH31cqYPVbGwT46Iw9f8KPSYMa2o8fn9VO+aJk2UzwtqpWe8hPlZesAEubUyS42OZXLkOnj4H7dEzwLRROeh1eUu88FmRz2Qj50rojvvzykgyX6zUTAF9ocyukgrFjX2g4RFqBFjSHa/dZ5O0jHjDotwQm0+E+WddkQ2PLdurmGiDJauQ+9xGLhpEMOAtyJedrWdOAz19dDdMyMvG/I1sY1GO+we1xxXpiUhPioMlNQH92qfhnc2HXR4mZ2obMXfDQaz4/hj+dksO+lyRhjbJJ3Hq7KW9RgtzNM4xpGzfc6wKLRNi0cIcg3P1F1yfuysZauqb8Jd/7/UQrnjcwbwRswS3TIwFwO6u6+0mrtVlTa5t6Ulx+F3vthiWY4HD6cQ9//xO8Tz+Uobqdd/+JqwFG5asFelJcejcpgX+a6tGJaeriViMBMui63ACjy7bi7cBjOrZVpXP5fkGB843eGpBbFV1mPcN38QnbEbENhzri+3MnXpAdjosKWZJzYwJQFpSLLOrjK2qDgWHy5mOFdt4naqW37RJCWyjerbFTblWD1dC74leakBLTaiCEEza4tAkXAPLlXy21+47iUnL9zKfT2mxlVskWayzQjvtVbVM7XE/jlKoE8GAuza9yeHEoq2/ylozgOYxMiEvG+uL7UxKBjmXNROAr4tPebheriuyiXqY2C96mIjBU4hYzALhfS3vOB61Naak3MvUuhGfPlunWx0sqfNU1jTg/e2lGJCdjmE5lqDJbubP+l96E9ZZ0eQyRQDNg6u8pgFT/u9HTQW03Dc+PJugScv3Yu0+m2I7jaRNcrxoVe5+L67HIyIZzoRO7V0leH2xXbJSsnBPt3HHkaj3KJbLOqZUhVxwJfSekKXuXTinWEa4qosTaupFjZEAVSMPHcLZVVCqIvW6IhseXbaXOXBYKRGJ1PgQxtT8jYeYrLM7D5czK0e8j+PJpkQQRhMdZXIVX5RD2BuwJhiSG7Le450lcyfvNfRATdZQPZNFCWS0MOuS2ZQ1QyqAoMhuFuoZXcNGsBFL2Sf4Mj6Ql4W0pDjDrt0mOd51/YOnzjH/rtlyswdvbjiIYTkWvHNvX59U0kZiTW32aRfbcEhpOLw7dZPDiTc3HMQjS/dI/iY1MRbv3NuXO7X0oA4ZzDUvpNrqvWlT2mCt3XeSe0CzFAGMj4nCv/54tSt97rZnhpJQEyJEQtpnd4WMmiyNcostyyL5/g62AOXHlu3B8Uo2i016CzPTcQQRKEbkWvHuvX1drlLupCXGugLq9S7yKYx3Pc6bnuTbdj2QUrpIoeczElLOwwnmzKZa2uZ+HsF1VqqsiD/2DTztDUbCwhWN1acyPSkWt/a6DJ/9eEKVT7o3glmwsqZBMWuQHHM3/ILlu45gxpju2PbMUOwqqcCXRTZ8WHBEcxulMAGYPjoHs9bwaziETj1/40Es33VU0ZSeEBvtik9hdbmzpsZjYMdWGDfgCo90rmpwd7dTEkC842vEjuN1P3SiuapylMkUtNnPCGncA9D9gdbsR+lJccxWDQF3qxTvBmFKfhfZxZZlfLC6ipypbcT7O0qZjtWiFCEIoxHcoesvOLBgfF84mpz4rrQcQLNlcWCHS1ZFvd1hBWXs9kNlms81/ebuOHz6HOZvOqRDy3zxdy0q9/pYXxXbdbk27z2wus4aFdjP6u4brG7aIS/Y8PhUVtawL4pKCF1nTC+rLtXB7dX1Pn6LRgk2gl97akKcJg0Ha1CxuyAwppdVMX2kewayrIxE1e0TEDZtLBssVoFXjfthsE4ChDIjcq1YML4vJi3fo2tdB7EaNJaLKY+9s4MpIShatjw1BLuPVLoSWEz9+EeuBBY8/dSSYsakoZ1kj2E9X8uEWFTVNjIJdf6s0UUQesMblK2XO+wlZWw9rp2zURcLhyUlHkfLa7Q3TgK/Zxc1NStjeRSqStdWcw9K2c2MCuxfV2RjDs0IVjftkBVsmhxO7DxcjmdX7mfWbmrZj8TFRKHBLYZEKOz43KdFGs7qixAgq3dRL6A5+9t1nVu7pPrPCk/odGZlhCA8uSJ/gPoCe2J4b9r0FCzc20VpncMbQStWbKvWvVjdS7/rgZtyxTVzUVGQDN6V4m+35CAuJspjQZwxhj3dcZPDibKz8hZYd2aM6a6oRcxgdAl7IC8L8xiVJcJ7oKQcRKihJihb2A+wCCImE+B0So+NMb2sotkHeXEXkliVnGrOz6qg0GvP5HRCMXMrbxtZElnx3KtRgf2sNRCDPaNrSAo2YpKq0TQ2OfDRAwNQUdvg2nzs/LVc16J93m5OelY9t6bGY+rwKz0We39utH+2V2PF98dl7yM9KQ6v3t4TFbUNKDhcjgHZ6aonK7ENjh73Kzag9Z60iODByLnGBGDWmmLclGsR1cyNyLVi/tg+mLRCOTNZZnIcZt6aK7qYsaY75rnXKBMwf5zv4il2DkuKGS0TY1F1XtwaI4yPSUM740pLMp5duZ+plsODeVn4sshOKZyJkIHFHVosS2F0lAnTR3fDo8uU54I/XpuNfu3TRMe7WvdzKYTz6Y0aBYVczSoj4GmjnvW01PYhLecVI5iVRyEn2LBKlHrjdAKf/XgCr9/d2/UZazpiXtz9LMU2JNbUeIzpZcW/vz/OtAEAxDuhEVYhKd7e/KviMRU1Dbjv/V2uvwXrjdKE8KfB2Vj9o01xg6PX/Xo/SyoCGJ4YPdcIiowl20swIS8b0VEmH2vHyJ5WTDxxBou2Sls6b+5pxZtj+8j2LyWfbd57/fvve3sUGZY7x6nqetdnSuNjRK4VyfGxTLUchuVY8PzoHErhTIQMPEHZ3sqOtCQ2y+fQrpkY1LGV6HjXK8A+PSkWL9/Wg9md3buOjbcrqfffahUUUnsmMZdfrfC2Ua96Wlr6kJbzCgjvPpiVRyEl2Oidzo9Xql+73445dzrdFk5jtjzulgW5DcngLm2YNgBT8juLdkJ/azh4cTerKk0IT4/oprjB0Xq/LRNj8crt4gNaadIalmNBweFy2oCFCEakDpVi1poD+Oe2EozpZfUR0AXhPsoELNpa4rMZmHhdNqaNymG6jpTPtpp7fenL/yImJso1Fli0iKmJsYiPifZIsiK2qA/s0IrZAqp3lW2CMBJWd+jF2w7D4XCif3Y6dh+phL2qFlt++Y35GoKC5OSZWhQeq4TD6cTa/Sfh0MmXdvrN3TEi18rszj7r1u6wpCa41r9+7dNccYBifwtjWyw4vsnhxEcFpThScR7t0xNx36AsxMVcSvArtWcC4Prs4Cn1yQ6u65yBG7q09rkuC3rU0zIqppf1eOHdBzMhJdjooW0QFsXpo7th1poDXOc739jkIQUP6pCB+ZsOa2qPN2JBr1KLt9IGQDjfpKGdJa8ntSEPBoQN0YzVP+F/7+6Np0d0RcW5elfFZPcJgXWDo+V+F4zri7zOGbLnFpu01hfbfQI1Q6F6bySjd3pVJWxVdaJJNdyF+//O6iq7oKuhyeHEku0l3Pfq7cvNmvnsXw/1RVSUSbUCgiygRCjD6g694cBv2HDgN1UKuNKyGt0SA0ghZBwsLTvPdnxqgs/6rPS3mFtrYlw0ahub4HR7KC+tPeCj4JHaDwifFRwuVy3YbD1Yhq0Hy/DPbSWq1nCtyhijYnpZjw+FbJMhJdhoDf52XxRH5Fpx08UF+eSZWjz58Y9ME4h7GwZ2bIWWibG6mjf18inl2QAIG/L5Gw9pTq2sN0KqZHfLlCAUqN3YeAsgGS3MmPp/hR4uM+4IwvBAhsnIe9IK5eq9kUywZLDz9pl+6LoOup1bS/yQd7tYn1dZTT1TynO93DYIIpjgdYdWY18xIpDfm8qaeqwrsmGewn5BbXyp1LopFtTvcMKlFGK1XvMkY5AiUGs4Sx+ypJi5n3k4xQpzqftmz56N/v37Izk5GW3atMHvfvc7/Pzzzx7HTJgwASaTyePfwIEDdWksjwSalhjrU/TKu8CRsAm9o9/lGN2TrWN6p+N75fYezG1SQqkehDtCQdD6Cw5Mzu+CTC8pWk0xpxXfH+Vqb6AQJpR1RTbV53CvQp7XKcNVAVrPar+hXr03kgmmDHbexdDEihHzIlWoVm27tGoRxe5pRK4V254ZiuUTB1JhWyIsEJSRoc7/fFGMGauV3Ved4F871boBL9pa4pG5Vg4hGYMWArWGu/chqadad8GB9Yw1eFjOG2qWci6LzZYtW/DYY4+hf//+uHDhAp5//nkMHz4cxcXFSEpKch03YsQIvP/++66/4+LidGksi6TaMiEWC+7pi4EdLhVPZClwdGO3TKwvPoV6iYEhJa0Oy7HoYrVpYY5G2bl6LN76q6KLiVTmocdv7HRxgF0q8CWHu/9q2dn6oHNFk0JL5g8pjNAQGxXkRxgPy1yjVEtFb4SU6VprF+gdP3T6bB1u7tlWtbZP6Z5obBDhhLDWPPWffThbd0H5B0GIUlFuAan4XjnUugE7nMBHBaXMVm3WZAxyBGoNF/rQs5/sF917Vp1vVGVNChdLOZdgs27dOo+/33//fbRp0wa7d+/G4MGDXZ+bzWZYLBZ9WugGi+vVK3f0QF6nS3EQvAWOxJCTVneVVOjiinauvgkf7WwuyCnmM+reZlHXpup6vPnNJZ/R+ZsOyW54tKaxDXSyASMmFD0C+9yhwp2hi/tc443QGx66NguLtpb6rU2lZecxb8Mvmt0a9Y4fapMcr9otllw1iUhkRK4V2w+V4aOdoeEloZbGJidW7TmOipoGpLcww5Iir2BuDuw/q/p6peU1zEl69Fx3A7GGD8uxYMbqYgC++08tyl+990GBQFOMTVVVFQAgPd1TC7d582a0adMGLVu2xPXXX4+XXnoJbdq00XIpF3pJlDzpTeXOvYHT3MeClM8or6ZVanOgRxpb4ZkAkNQaiKG3QKT3hKJnliUq3Bn6pIpYY1smxuKl3+UyV2fWiglAZooZy3cd1aV2gZ5jJsrU7G8P8M/NRtVjIIhQIKtVkvJBIY5YgL63wlXPWmGfFp70EBbllLt6rruBWMN3lVR4ZJj0RovyN9SzTaoWbJxOJ5544glce+21yM3NdX0+cuRI3HXXXWjfvj1KSkowffp0DB06FLt374bZ7Gv6q6+vR339JbNmdXW14rW1SpRKAoIJzcUiXxjdzSf7ljtr99mweHsp0zXVsGhrCaYO7+pyS+PVtIptDrS4oaTEx+CWXm0RZQJ6X94SqQlxGJCd7ko88P72Eo+6OmK544UiYc99yi4MyRHMQkE4BeNFGnLCf+X5Rhw8fc4vrpvCrDNuwBWyQcE8i5ieY8bhBB5bthfvXKxBwzM36+GqKZYOloQgIhS4b1AWXlp7wK/urCyYAJhk3GwFRQtgwqlq/ppwNjeFKwBda4V5u/bJWX4HZKfDkhIvKxwAl+bgYFvDySNEGtWCzaRJk7Bv3z5s27bN4/Pf//73rv/Pzc3FVVddhfbt22PNmjW4/fbbfc4ze/ZszJw5k/v6WiRKlgW1vKZBNEWhwNp9JzFpuXIVYC14+4yq6aDemwMtbijVdRfwr++atSEfofm/gkbk8fzOmDS0k2zuePeNR1QU8IiIm4/A4zd2xr+/PyY7carJ/OFPKG1taMKi+HjfQIWGO4K1Qyr2zxuWOcKIwrzuyhPWuVnrwqxHvBFBBIq4mChMvC5bNM17oBBWoonXZWPhxXaJrVtCsh0tNfBmfl4Mp9NpqEu7nOU3OsqEGWNyZPch/7+9c4+Por76/2eTbDYXkk1CJLsRhChBSYIgIBKCIEgoQkXF2oq2D2gfCuVSgbbQgLShKAHro+gDhaIWLxTwaYFCRVOI3AqGotwkYAFjEhAT8ksICYRkQ7Lz+2OZZS9z+c7s7P28X6+8XmQzO/OdYebM95zvOZ8D2BqAr91fEXDvcMoIEUdVE4RZs2Zh+/bt2LNnD7p27Sq5rdlsRvfu3XHunHC0saCgAI2NjfafCxcuqBmSIrR4oU7fcMwnkZaqy7d04j25Qflz0dp756MvxWXVTkpjuXd1dprkOH4G2Fbd1vy4P8xG53MyG2Ow5sf9MSe/Fx7rZ5Y0emqUP3wNn55jcjlPNap1hG9g6snSop3EuxAzR/R0UgHT8iXGoqqjBFfVNlY8OScxVTctFBMJwlcUjM3C1GEZ0Ik8iEqfzx/07yr4XmWFfy8VjM2SfW+JvdtY4G0GqwgBT3x0pNu1Ert2rscSsk/8PMRVQRewpRyvYbwW/oAPUImdvg7CfRHDAUUrNhzHYdasWdi6dSv27t2LjIwM2e/U19fjwoULMJuF//MNBoNgipq36LByqLvK9jAJvVD5aK6v4DgOHVYOkRE6jyKt/LmkdmK71gvH9kZqggFLPjqFy83SkzgO2hepFZdV2yNGYggpfwilpgDy6njeJBSK8cIJVuc/KVaPxpYbmkccTYkGzMnvZb8/OqwcrFYOSbF6UYdKaUqEaD1MogGt7VY0Xld+XkqDJmpTNak2hwglCsZm4Zej78F7n1XicEU9Wto60KebEUMyUgEd8O+Ky9h75hLKvpMvqr90tRXG2Gjs+/UIzP/bCWw9/p3sd57ol46H7uni9l4Sem8N6J6MI1UN2Hb8IrokxCA/y4T8LBMOfVOP0vJ6/KemCSVf1Xp8TRyZOaInMtM62cfXYeWcGhUnxUXjl389IbsfMfvEnyd/DgCH3DtT7X3r+LYar/6gL6AD6q5ZAuId7q+MEC3Tf72VSqzIsZkxYwY2bNiAbdu2ISEhATU1tmi50WhEbGwsrl27hsLCQjz55JMwm82orKzEggULkJqaiieeeMLjwXqKEhU0sUmCrzuSf3DoPEq+qrWnV4jdyGK4nsvnjFHVLHMiIiJ0sk4Nj5ZFaqx1QK6TmF2na9z+f/lIjGM9j7fSVaQe0mAvxgsnWFcSnsvLwIqSs4qeRZbtCsdn2+8bFpul9iUm5nDvOl2jKsVE6Yqy2hczyagToUZ0VASmDLsTU4bZ0s6Ly6oxb8uXiuca/zpXh3+dq4PZGIMfDezG9J0fDOzmpCTriON7q7isGsP/sMct9XN8XzO2n6j22rwor2eq03McGaFzknS2OSPySNmnyAgd8nqmOl0HqVTXQLErvpZn1jL915upxIocm9WrVwMAHnroIafP161bh8mTJyMyMhInT57E+++/jytXrsBsNmPEiBH48MMPkZCQ4NFAPYVVCUxukuCPQizXAjihG1kK/lyKy6qx4lO2rsR1zcqWiAHtro0S55GfxKzcfQ4rSs65/f8KCRR4Q0qW8v1DhwaGe99sjMHMkT1xt6kT87NojNPjRwO7SubUTx2W4aQWxGKzpF5ichExIYdbqY3xpIBWzYuZimaJUEYL1dKaxla88ek5xEVH4npbh+h2yXF62X53UmOqbmxVVSPE2wyO43CpyeJRYb43RHqCSYbeVxkhWl4Tb19fxaloUsTGxuKf//yn6sF4CyVKYHKerj8KsVxXJhxv5JLTNZLKbD+7OVFSmkKXGm9AhMIHQ6tro2ZCsu5gJfOLQOt0lWAygv6mqKgICxYswAsvvIAVK1aIbrdv3z7MnTsXp06dQnp6OubNm4dp06Z5fXwdVo5JxnnROFuwwDGNYcZfjkrW3sREReDDL74V/bsOwPYT1Zg3xtYRW85mOTYjFrqHPXG2XV+WlXXNeL3knFdSHpS+mKlolghVtGqey7/jDFERko5N0YQ+TimvQs+g1g19efg6P09TqbROyQrGVFdvZ4RoeU18cX1ViQcEG6wrAAkxkVg0rrdTvUZpeT22Hb+I0vJ6dFg59OuWhISYSOZja3XfuxbA8TU3H5dJF89vP1FtN1hKlop/+dcTaGhukyxOc0TLIjU1ExKlxdxqC55dkXtIAdtD2hFomp5+4PPPP8fatWtx7733Sm5XUVGBsWPH4sEHH8SxY8ewYMEC/OIXv8DmzZu9PkbW5yQ5Ptr+78gIHSJ0Otl7sKbJIilx7nhPsozjSssNROh0ok6NJ8X1rpOcmSMzsUaggDY5Xo9Vz9znseMuJjIiBBXNEqGKlqnuHGzS9HNGZcKUKCzS47g6PHT5bkx86xBe2HQcE986hKHLd6O4rFrz9HszgwCB0sJ8LUV6lKS6hgtaXhNfXF+PGnQGC6wrAFdbO+w9GQC4RTvjby7rKpmiaj2fdTwXFoPD3yBKG4leamrFjA1H7VKHUuigbZGaEpEEHYSbKLLiaboK5fuzce3aNTz77LN466238NJLL0luu2bNGtxxxx32FZ3evXvjiy++wKuvvoonn3zSq+NUm+akZdpTyeka3NstSdU4AM8jYlIrPYvGZeHFbWW43NwGALjcfANLdnyFiJurV76AZNSJYEIqHdT1bzWNLUz7fLxfOuqb2/Cvc3Wy2/ZIjcfB34x0Ko5/oEdnRETqsO34RftqrCt8EOT5vB5KTleUnwzujrF9zG6rsVr0JTxccdlW4P9UX4CzpdKnxhvsxf6l5fXM+6RUV3e0vCa+uL5h4dgoWQHgAMz9vxOCy7fNEku6vsLxXFj/43edrsGfFfbd4CdAfztyEZOHdMe2E98JCgl4UkciZvClJi6O8CbquSEZeL3krOLjA56nq5ARZGPGjBkYN24cRo0aJevYlJaWYvTo0U6ffe9738M777yDGzduQK93l+bUCtb7ITXegNLyevu9mxqvnbLjOwcrMWdUJtO2dVctdtVEHk+cbam0SrF+D/5IufR10SwRWLS3t6OwsBB/+ctfUFNTA7PZjMmTJ+PFF19ERIQtEYXjOCxevBhr165FQ0MDHnjgAaxatQrZ2dk+G6dUkABwD56mOKwES/Gj++8AACbHpktCjJuwzkqUy36PnwNsPX6RaUxyjO1jFg3uqU2lEru+QoIGrHMVSnV1R8tr4ovrGxaOzaCMFKTER9ujjHJI5aT6k87x0ahpbLFHH1j/4//OIPkoBN+odN1nVQBsRndQRjJioyKRnhSLIXfZJBHVREY//vK7m5FfYbUylgJmfhKTn2XCps/PK5LB5gsKB3RPdpqgKi26IyMoz6ZNm3DkyBF88cUXTNvX1NQgLS3N6bO0tDS0t7ejrq5OUDreYrHAYrlV9N/U1KRqrCyFqMY4PX751xNOHatNiTFIitOrkkkWYuPh85LyzjxLdnyFtw9UOL2w1TrbLGmVQvgr75xk1MOX5cuXY82aNXjvvfeQnZ2NL774As899xyMRiNeeOEFAMArr7yC1157De+++y569eqFl156Cfn5+Thz5oxPxIzUBAkaZOYoroXwLEXzDc0WzNhwTJVd4mBblU2Jj0ZDc5uqfXgiLiKFUkED1gCMN8QIgh0tr4kvrm9YODaRETo83i9d8apFoFHf3IY5/2fTazcbY7BoXG/ZGyQ5Xs/s0MlxubkNxWWX7L9vOXZRVXS06OPTgoan2sXwuE5cHJeWXScxSmSw+WnP+L5mQflKJedERlCaCxcu4IUXXsDOnTsRE8Pu3Olcuq7xwiWun/MUFRVh8eLF6gd6E7k0Jw680p6zw3Gp6db/v1KZZCGUNK5zfWGzOtGVdc1Ov3uSS++vlEuSUQ9PSktL8dhjj2HcuHEAgB49emDjxo324AnHcVixYgUWLlyICRMmAADee+89pKWlYcOGDZg6dapXx+dJkEAMoTRLuZTMReOysGSH54X/j/dLx7qDlaptG79C5UkQ0RE1ggasARhKdXVHy2vii+sbFuIBAJCfZfL3EDSlprEVMzYcw/i+tgm46y3A//5Ev9u9OgalXb4//rJaUh6Sb/bJF9s7FhXnZdp05oUKjMWKB5Pj9G5dhU3GGHvtkKedy6W6uIerEXTkyJEjqK2txYABAxAVFYWoqCjs27cPb775JqKiotDR4b46ajKZ7D2yeGpraxEVFYXOnYUnsQUFBWhsbLT/XLhwQfWYxe6ltESDYIdq4NZLMzlOjy4JbOkkWsHd/Fm4tQxt7VYMykhxKxYWYuPh806iFlqkS4Z7yiXhG4YOHYpPP/0UZ8/aUpBPnDiBAwcOYOzYsQBsAiQ1NTVOKa0GgwHDhw/HZ599Jrpfi8WCpqYmpx81aFFwnxLv/t5yXW2QK5pPjo/WpPA/P8skeByzMQZTh2XAbBS2N7xQAABRcQI1qL2+rIXpWooRhApaXhNvX9+wWLEBbkXWfdlc05vwE6ntJ6qx6pn+WLJDONfcGBstKQetxRiUyPy9uK1Mdr/Vja1492AFUhMMiiI7YqkpANy6Jw//wx7N5AYp31+chx9+GCdPnnT67LnnnsM999yD+fPnIzLSXWEwNzcX//jHP5w+27lzJwYOHChaX2MwGGAwaFfnInQvWTkOz779b9Hv8CpEC8f2xssfy0tGa019cxsGF5Vg6RN9MHHQHbJ1ZzVNFqcVFi3SJcM55ZLwHfPnz0djYyPuueceREZGoqOjAy+//DImTpwIAPbAiFBKa1VVleh+tVr51cLBX/T9bJgSY9yyFVwL4aVSMrd5WB/jmHEQGaETPc68Mb1xuOIyahpbcLm5DSmdDDAlOjf8FUoZm7b+KOaM6oWZI3syzR/4Y5+7dM2j82L5/6FUV3e0vCbevL5h49g4Ln+FivAuH31Ijo/GgfkjRTXoWRXGPBkDiyNyuOIyc1qcYy8RJelhYqkpjp+VltdrrmRGRlCYhIQE5OTkOH0WHx+Pzp072z8vKCjAxYsX8f777wMApk2bhpUrV2Lu3LmYMmUKSktL8c4772Djxo1eHauQmIXj/z/rJOFCw3VvDVGWy803FCkZOb7glagRuhLuKZeEb/nwww+xfv16bNiwAdnZ2Th+/Dhmz56N9PR0TJo0yb6dUEqrWDorYLNFc+fOtf/e1NSEbt26KR6fFg6+KTEGuXd1RnFZNX71txOSKdNi7z1PxiGUcSB2HLHPWVLGXi85i42Hq1A4Plv0HS8kEuAJrNeFUl3d0fKaeOv6ho1jAyjvqB0s1F5tlTQ4SupP1MLiiKiNYmmtuuQtJTMyguqorq7G+fPn7b9nZGTg448/xpw5c7Bq1Sqkp6fjzTff9KrUM0szy9RObCtC3ZLjvDJGJbAqGTm+4B1thRIo5ZLwNb/+9a/xm9/8Bk8//TQAoE+fPqiqqkJRUREmTZoEk8mWes4rpvHU1ta6reI4otXKr1ZBAk+bP3syDi0yDlhTxmqaLKLnI3YN1EABmPAgbGpseMbkmHFg/khsnDIYr/+wLxaOvQfGWO/Jx/oCueiDWD6jtxCrU1EbPdK60SUpmfmXvXv32nvUAMC7776LvXv3Om0zfPhwHD16FBaLBRUVFZg2bZrXxsPczJLx1rsnLYG5sa03cFQyYm1iyTcjtrRb8WR/ZXV54Zx3TviH69ev22WdeSIjI2G1WgHYgiMmkwm7du2y/72trQ379u3DkCFDvD4+x9pLJTgGCQB43PxZzTiS4vT4y08fwIH5Iz1+ppUEB13rawF1IgFiUAAmfAiLFZu2dis+KK1E1eXr6J4Sh5/k9nCKrN+eFIfpG5RFKcXwZFVEzXdZO2w7pkod/LoOK/d8rWqMLIjVqXhS56Sl6hIpmRE8SppZ1jWzKZVdbmnzySqpHGJKRq4veLVpHv+V2x2P5Lg33CMIb/Poo4/i5Zdfxh133IHs7GwcO3YMr732Gp5//nkAthS02bNnY+nSpcjMzERmZiaWLl2KuLg4PPPMMz4ZIx9QXLD1pGAPOCEcV0m0Spkek2PGz4Zl4K1/VTA1DL9y/QYibvaT8xSlwUHX81EjEpAcp4el3erWtiMpTo+iCX0oABMGhLxjU/TxabcH+uWPv8KUBzNQMDYLxWXVWLLjtOB3DVERsLRbmY81dVgG/nrkomp5ZTUToPF9zcwGiE+VGpSRgs1Hv/Va3Q0gbHS1qHPSoiiT5BwJHiXNLJWs9OXe1dkraa8x+ghERUTgmqVddtv8LBMGZaRIilp4kubxSI54wz2C8Cb/+7//i0WLFmH69Omora1Feno6pk6dit/+9rf2bebNm4eWlhZMnz7d3qBz586dPulhwzMmx4yWG1bM+fC47LYzR9yFOfl32987WqRMd1g5rNz9taQSqdJ9KkFNKlxNY4viccwccRcy0xJQWdeM10vOCW7TcJ3NuWRFrMG4vwi08fiTkHZsxPqlWDngT/sr8E1dM0pO14o+cKxOTXx0JH50fzc8dHcaMrsk4Fd/+9KDUStj+4lqzBvTW9ENzE/sxZqEiaEm+uxqmMTqnBJjotDUKj9Z0yo9jJTMCEDZ5OH796YrWunjV0kPfVOP0vJ6dFg5fHCoEtcs6hsAG2OisPfXI5G3/FPRKLDrOBIMepR+UwfAFtgYfGdnu7CImjQPb65o0suZYCEhIQErVqxwSml1RafTobCwEIWFhT4blxDn65vlNwKQ1/M2p3vd05Tp4rJqFG4/pagnltJjy6Gmbs8xMMw6jryet2FQRgoGvLRLdBstmwiz1GT6kkAbj78JWcemrd2Kt/4lHaXYdbpWk2M1t3Xgzwcr8eeDlehkcJev9SZq07Pys0xIitPfbDbIhpqorpBhElIQ4yWYpSI7neOjMaB7sopRCENKZoSSyYOalb5dp2s0XbW5dLUNxy9cwdIn+tgnC2LjEDr25qPf2l92atI8vLmiSS9nItQoLqsWXUHgEQsUNDBmfjQIpMiqXYn1RtCCT4VjXTVKcRBpUZI2vnL315LzGa3S2T0VdNCaQBtPIBCy4gEflFYy5ZNqjSfRWLWoWTY+XHFZkVOjFNfiZFccG2/m3tUZ0VERoo0ueeqb2zD8D3tUN/ViGQc5NeEF/+JkLbIXbQQbr8fzeT1gjI22F7+KiRJ4Su3VVtkGZwBkBRHU2A1vCQUwCzgQRJDAr4iy4Boo6LByoinyrizZ8ZVmBfecwFg8pcPKYfsJ9ufXsbkwawNsAFh3kM1x8iTNTq4mE9BO5CgYxxMohOyKTdVl//WS8DVSUWex1A5vdgh3NTil5fVMKyIsctzhHIUgtEfNKozjSt+u0zX4+/HvcLm5De8crMQ7BythNsZg0bjeWLLjK6/UsPHPu1RD2qHLd8sKIrz6g75Mx1s0rrfiZrlKUCLgQIEHIlhgXRGdPaqX27tMyWqqFgX3PD/o31Xz96qS8QgFQ1nSxkvL63GlhS1Q60manZKaTF/UHwbaeAKFkHVsuqf4v5eEL4iLjoTVyqHDyrm99KVSO7wpZZyWaMDEQXfgcMVlLNha5pQzK5daMibHjJH3pGFwUYlgDQFNdAitUVNvFRmhQ2NLG9YdrBRMAZi+4Zjm4xRKExHqncSqpgQdmNI8JudlePU5o5czEYqwBg97pLrPVZQGHmuvttqDmJ94sLoZ50EqvRZBVKGVq8MVl2Fpt+LVp/oCHFDXbHELsrAeIylW71Ganbd64Kkl0MYTKISsY/OT3B54+eOv/JKO5kuut3Xg2Xf+7eQw8Eoor5ecddu+urEV09YfxXNDeiAlXs8sQ8lCUpwek3J74MPPL4jmFTuuuIjVtxypapAcF010CK1RWm/VYeVQuF06BcAb8C9+qSJ71pdY3TVLQKgD0suZCEU8Kf5XGnisrLuOvGW7UdPk2TOiNiCsRRB1jsvKldQ+Xd/7rMd4Lq+HR/Ys0HrgBdp4AoWQdWyioyIw5UH2grVA5YWHM/FeaaVsPUz1TYfhZ8MysO34d7JKKOs+q9RwlLaJ0I8GdsWbn56TnNjxKy4FW066KbbwRotVjY4mOoSWCK1+iLFy9zmPJxFK6GSIxKtP9bVLNEsV2bO+xCrrruOFUZl+VweklzMRinjSL02JTHJSnF4wiKmUCJ0tIKwUueL1Vc/0lz0XU6IBM0f2ZN6nayo6y/VKjtNj5shMpafnRKD1wAu08QQKISseAAAFY7MwdVgGgjVbyZRoQCdDFHORPwebjLUaeUdHzMYYzBnVCzNH3MW0fUq8Hque6Y/tJ6qZotUcbJryruPkjVZlHZs8Jk10CH/AonSkNbwoCUuRvZwgAs+KkrMoLqvGmBwzDswfiY1TBuONp/th45TBmnQdZ4UfrxysKlEEEQiwFr4LrSA4fleOGwp67Ukx5cEMREcpmxKyFK8v2XEai8b1BiB8HXQACsdn26+DmoJ4qWvNf1Y0oY/Hq8+e/J96g0AbT6AQ0o4NAMwb0xvvPTcIj/dLR37vLojRe37KOtiiJPxD6S1abnTg5Y+/8uIRbOhgk1J+/Yd97ZOaF0ZlYk7+3bITpM7x0ThUMArJ8dEeqz9xN3/+fLACyXF6yfFKKa4ppcPKobS8HtuOX7T3GyEIR/h7ZOuxi1iw9aSi74q9cJSy+B+nUbj9lOwLH7C9zFjuYn6CwKIO6K3nJDJCZ5/4SLFkh7u6Dz27RCAjp14oFTzgvyvm9JuNMZj9cE80t7ErscZFR0Ln8mhH6GzNxQvGsjlSjrDWxyXHG5ivg5KaO0fErrVZYyVHT/5PvUGgjScQCNlUNEA4R1MpYrnnyyb0AQDNO4s70tgi37BSCzjYpJRNxlinVBwWxaiXn8hBdFSEpmlhUuetdRSCemcQcqi1IxE64KdDM/DRl9WCaV4AFDXQkzu+4wt/TI4Zc0ZlSq4sKalV8/ZzkhxvkN3Gdaz07BKBiGv9W36WSXW/NF5M54PSSlTWXwfAoV/XJKQnx2FQRgpe38WWgjY6qwuey7sTgzJSbI2CSytRdfk6uqfE4Se5PZhXalzPraaxhel7tVdb8Vi/20Wvg+N+z126xrxPV3zVmy7QeuAF2nj8Tcg6NmobVDkyZ1QvbDx83imX3jX3nDc6VZev47qlHf869/9w6eqtlIlYfQRabmizVOxtxAwFSw6+r9LCtMz9p8ZWhBye2BErB7z9rwqseqY/kuOjBV84+VkmUaEPtfDPcY/UeEXbi+GL50SpgAA9u0QgorWzLbS/EmOtQ2CPzTL1SkuwBwQiI3T46YN3ajKWlPhopu/y8wOhOka1gSOxOYeSWklP8NVxWAm08fiTkHRsPGlQxWNKNCCzSye4Go6Ojg6UnL6Ez8rrBR0ZU6KtPqVHahwq/l8z3tzt21x8T6i7ahGUjWaJBigpdlSCDjbj+eK43jAZYzWLQlDvDEIOLewIYEuhOjB/pGgu/QujbAWtWjk3/Atfi6J8Xz0nSsZKzy4RiGjtbLPsL/fOVKzcUy67r9w7U5mPq2QscnVvcsXragJH4VoQT7ATkjU2njSo4nmsXzpmbDjqliZSe+0G/nb0It4vrcLfjl50cmoA4FJTK1aUnMXp7xqx4tNzQSU3vWTHVxi6fLdgl2+5HHy54j0eszHGXp/EgmuanFYTFbV5vET4oIUdYb2PZo7sCVOieDoWX1dmSjSIPjuutWdyIgIstWq+ek6UjJWeXSLQ0LoDPOv+7s9IQZJEPSpgqwce7EEkn2UsQsiljasJHGmRik51eaFPSDo2ntR7xEVH4o/P3Mes8OUKXwD/1r8CU2ZazhQ4qiuxwhsKS7sVs0dlokuC8/J0cpweP83rYRcm4OuTlJglraWdqXcGIYeW//f8vjqsHA6eq8Or//wPXv3nGRz8us6+Slo4PltQkMTxZV44PtvpM6Ft+Be+Foo5vnpOlIyVnl0i0NDa2Wbd35GqBvv7VIxlHqqBsQZ4UuKdHSy54nU1gSNPC+KLy6oxdPluTHzrEF7YdBwT3zokGswlgpeQTEVTU+/RyRCJ/x56J2Y9nKlJpFZtECBCB8ToI9HS1qFZSpfZoVhZLpdVaSqHUH6s61cMUZG4PyPFnv8pVrcjhdY1PNQ7g5BDy//7LgkxKC6rxm+2nHSSb1+552skxemxbEIf5no2JX1nWPcpNW7W8/MUrev56NklfAWrE13T1IrS8nrZAm8lzvtj/W7Hmh/3dxMiMSUaUDg+W5ETINT4l3Usi76fDVNijOi5qRUeGJ2VZq8RGnyn+qwNqssLH0LSsRmUkYKU+GhcZuh7MHNET+T1TFXVudsbWDng+k35RvbSQGGeG9Ido7PNbsXK7x6swJId4jLSrGpJYobC1am71ORuOPi6nUPl9Zix4SiutAj36vFWPi01tiLkYLlHkuOj0dFhRWOrsJIffx81NFswfcMxwW2uXL+BaeuPYs3N50Ounk2pAo4nijm+fk60qOejZ5fwNaxO9JKPTuFy8613nZiwAOv+6q5asO34RXRJiMH+eSNxpKpBtSqWmPDB0/ffwfR9U2KM6HzBE+GBnacvYefpS9h89FvVIgxUlxdehGQqWmSEDo/3S2faNjOtk1vtRmXddW8NjQkdbOlbaS45965LvVJMHZaB343PcTu3yAgdUhPkpVUBaQdPSX6sVFOtvMxULHuyj2wKjtbGhhpbEXLY+qsI94Ph74qlT+Rg+Q/ulbx/F43Lwu8/Oi17PCU9ZVi28WR7x+/5+jnxpJ6Pnl3CH7A2xXV0agDx1G+W/UXobHWxfErV8D/sQWNLm+JnHJBu/Lui5KxkXaxcrZ7YvpU23FWTJs9DdXnhRUg6NoBtZYIF18hIh5XDxsPnPT5+hE59Iz4OQMP1G/ifH/Zz6gZ+qGCUrLHT6YCVT/eTbLalRSqH0nQ9KcPhrwZT1NiKkKK4rBpLdgg7JI73iNx9lBwfzdSrJlBfrIH4nATimIjwhcXZFkIq6CcnxuOaGaF04m9vOnz0WyzYWiYpDsBnjygNJKgVHhBCjQgDD9XlhRchmYoG3Ip4SE2+U+L1GNA92emzwxWXnfrWqGXKgxn4037PBARqm1phMsbaf5dqmMmzamJ/jL1X+qWuRSqHWgMg9j1/NZiixlaEEHIypIvG9XaaPEvdR9uOX2Q+bqC+WAPxOQnEMRHhi1iNWEp8NOolVifEUr/F9hehE67hVZJSpaR3DB9onTMqE5s+v6CoVk+J8IDrapbYWFibCjtCdXnhRcg6No5OACDsBFxuvoHhf9jj9GBqMbGYM6oX7jZ1AuCZY7Nkx1dOdUJ8Pq6QsVPSBEzKQWJN5VBrAKS+568GU9TYinBELs1SB9uz+b0cs1vX7C4JMfj+velOz46SZ0VoW6GCXn9M3gPxOQnEMRHhi5CzXdPYgjn/d0L2u2INsh33V3fV4lF9bIeVU90QuEdqPA7MH6nIFikVHvikrBrvl1bJbq90nkZ1eeFFyDo2AJv6lqsihhYe+523xWPxP+Rz6uVwFT9wHCuLgZGaEHmqljTopn6+o8KTFEKGI1AmbAThiJJ87MaWNtkgw6CMFJgSDbLpaEJ56lp3MicIwru4Otul5fVM3xObezjuj3X1V2jiX1xW7aacpoQuCTGKAwms8ylH4QEWx0bpPE2LYC4RPIS0YwPYJvAj70nD4KJPBVXSXJdv5Tx7Fgq3n5JcelaL61jlFMvkJkS+SuUQMhw0YSMCFdZoYMnpGvz5YKWsfCjfo2bazdVjMVxfrCRPShDBj5arBWpTquRSa6XwZDVD6bl7c2XF02AuETyErHiAI0eqGiSlnx0jsI5Fe2rxhlPDw6LeIaVw4lpcqFYt6XDFZebVGteCXiXjIwhfwzp52Hr8InOn8TE5Zqz5cX/BLuHJcXq71DOP1p3MCYLwD1qq+MmppQkplClRMBXan5LxuaL03L2teDgmx4wD80c6iTIdmD+SnJoQIywcG6WKGLxnnxTLLq/saxw7mZeW12Pb8YsoLa9HW7vVJxMi1ms6c8RdToaDJmxEoMMyeegcHy1Z7CoUgBiTY8aRF/Pxl58+gJkj7sLMET3xl/9+AF+8mO/2YiV5UoIIHbRS8VMz8fek4bgWKoNKz93biodqg7lE8BDyqWiAuuXbMTlmJMTo8ezb/1Z1zOQ4PRoYVzTUwHcyF1JgYV2d8qTolvWa5t6Z6pTqZrVyzBM2Kgom/AFLPvZj/dLx54OVsvtyDQDwvZvyMlMVfc/T7QiC8C9yqd8dVg6HyutR+k0dANvke/Cd7hNvpSlVSm1EQkwkHu/XFT06x+EnuT0QHaUs/i1UO+utpsJa1emyXnsiOAgLx0Zt3ubgOzvLSkYL7SspTg8r570VB/PNTuYzNhxzOx8pp8YRTydELNfUGKfHL/96wkk+m3UVjCZshD8RmzykJRowcdAduNHB9nx7Qz1Qi/2rhQQ/CEI9YsX3xWXV+M2Wk07p3Sv3fI2kOD2WTegjuKrB6igobTh+tbUDHxyyFfC/faBCUf2JXO2skmClnFCBVnW6Sq89EfiERSqa2rxNNfU2vOZ7Y0u7usEysGhcFpbs+Eq1uAHg+YRI7ppyAK5cv+HWE+hKC9sqFunJE/7GNR97zqheAHR4veQcVu75WvK7ct245VCTS+9tisuqMXT5bkx865C92/nQ5bupJo4gPKC4rBrT1h8VrFm9cv0GponUnbKkVBWXVauSduZRUvfqy9pZrY6l9toTgU1YODaA+rzNMTlm/PGZ/mAJSibFRgkWB2vJnFG9kBwfrTpnVssJkdg1TYyJQieDusVAf0zYCEIMfvJgiIrAipKzTM17tShy9XYRrVJI8IMgtKfDyqFw+ynZ7dTUndr2zdZ2Qux9zVr36svaWa2O5c1rT/iXsHFsAPWKGGPvNWPlxPtk93+lpZ1ZKcwRfjJvSjSIRmgBwJRowMyRPVWnaXljQsRf0zmjetnTzBpb23HNonzFivTkiUBEqaqQY7DEVdxDyQvS20W0rJDgB0F4h8MVl5n6ylQ3tuLQN2z9cJz3zTZXkHpfswiV+FLsRKtjKbn2JNISXIRFjY0jajtVj703HX+EDjM3HoWW72/HyTwAyYLlwvHZiIzQMadppcTrnZSbvKXXvut0DVaUnFWcGpcUq3dKTSM9eSIQYVUVmjniLuT1vM2e665FDrivek1JoWQiQYIfBMGOkiDljL8cxbIn2Ws+tK5TldqfL8VOtDqWkrFQzW9wERaOjZKCV6ltk+OjNXVqAPfJPIvaCasYwr5fj8CRqgbUXm1FarwB0AF11ywoLa/XbHLkiUb+qmf7I0Kno0JkIqBhfallpiXYJ/ZaNtdUG4zRClJoIwjvoKSW9ErLDUW2Q+s6Van9+VLsRKtjKRkL1fwGFyHt2HRYOazc/TXWHaxwWhkQi5oKRViTYvV4Li/DoxQwHh1sqkr/88N+qLtmEZzM52eZkBCjR2l5PQAOuXemYrBLYaCcHC0H4On7u+GTsmp0SYiBPkKHX/3thMfqIUKo0cjnHS+SUySCAaUvUrnULR1sqVv5WaaguP8DVaGNIIKdQRkpMCUamFKieFhth23fMbLpaGkJ0dDpInCpSZlqrOux1CjPqkGrY7Fee6r5DT5CtsamuKwaA17ahddLzropcQkVvIoVx15puYHXS85iwEu7FMsmClE4Pht5PVMFlUx41aFn3/43Vu75Giv3lONXfzuBXadr3PYjln9vjNMjKU6P10vO2ZWLpm845rWiX6XOHtXREMGGUoWyUGuuGYgKbQQRCkRG6FA4Ppt5eyW2w7ZveVXXxY/l2LdTK1TiS7ETrY7Feu1prhJ8hKRjIyXhB7gXvLKkU125bnNw4qIjVY0pJV4vuYSsRnVISI628foNJgEDrYp+lUZpfV34TBCeovRFGmqpW4Gm0EYQocSYHDPW/Li/IkVVVtshte+kOD3W3HwXayFU4uk+xIRWhD7XSlhF6vokO1wfIrgIuVQ03kmRwzXywZpOdb2tQ9W4Jg66A/lZJsG/eZK6wuffd1g5DF2+W1Gti1DRL19jVNPUisvXLEiJj4bJGCta/yK3LAwAnQyRWPJ4H5gSA6+OhhoOEiwo6fbtq9QtX967SrudEwTBDi8S8ucD3+Dlj/8ju70S28Hv+9A39ZIp7loIlajdh5jQyvi+Zmw/US2aRq+FsIr9+pTXo/SbOgC2ORWlygcvIefYKK358FXUdNWecmw5elFwEqCF6pCaWhce/hoIGRcesZocPpo7bf1R0f1fs3QgVh8RcIpJWnUuJsID1hepL/LN/XHvBoJCG0GEKpEROtyeFCe7XXKcXrHtiIzQIa9nKvJ6pspu5+l7Wuk+xIRWqhtb8af9FW7buwqwaDGviIzQIS8zFXmZ0teHCA5CLhVNqaPSJSHGo8ipMTYKKfHRkv1neMTSyrRIXfHEQeuSECOaCsdTLZESl59lklxG51ecAqnPBTUcJNTA0u3b26lb/rx3Wc6fIAjldFg5/P4j+WwTKxc471FPUaOqSr2zCDlCzrFR4qTwBa98hFUNjS3tmJTbA4D7JMYVsQdSi9QVNc4ZX/Q7oHsyk3HhIGxMDldclqzrCbRiaWo4SHgbbzXXpHuXIEIT1oaajS3tAfMu9RS1mSaBNqcgAouQS0VjqfkAbJN6x6ipXDqVFI0tbVj94/74zZaTsoX7QmllWqSusJ634z4B23kfqWpgNi5CKXHBVixNDQcJNTjWtKR2MgAcUNd8S7YdgFOaVn6WyS11a0D3ZBypasC24xdVpXLRvUsQoUeHlcPBr+uYt6+92qp5jZ3c/rxR0+fpnCBQ5hREYBFyjo1Ujxee5Dg9iiY4d/Adk2PGT/N64J2DlYqP+eeDlRjYPQUxUZEA5BXJAKCmqRWl5fV2I7FoXBZmbBDuSwOwyy1KnbcjjkW/245fZBozj6sxCbY+F8HmiBH+R6r+DIA9FdMxsOFa81JcVo3hf9jjUV0M3bsEAfTo0QNVVVVun0+fPh2rVq0Cx3FYvHgx1q5di4aGBjzwwANYtWoVsrPZpZV9hZxtEaKy7jqGLt+tWY2dXM2et2r6PJ0TBMqcgggsQs6xAcQVfIyxUcjvnYa8nqkwxkbb0zX4KER6UqzqY764rQyXm9uYt1/y0SlcbnaeBP1sWIabAojJGIOn778DlnYrSsvrJaMkYudtNtocp+T4aMFoi1Lj4Lq9L5tzaUGwOWKEfxErbnVEaKXWscgVgOA+XAth5aB7lyCAzz//HB0dtxRKy8rKkJ+fj6eeegoA8Morr+C1117Du+++i169euGll15Cfn4+zpw5g4SEBH8N2w0W2+KKMTYKK0rOemxL5MbA7+9nwzKwdn+FZsdzRGmmCU+gzSmIwELHcYFVidbU1ASj0YjGxkYkJiZ6tC/HpdPKuuvYePi8Uw6rUJSVZbXDG/Cuyqpn7kNyvOHmmJtvjvlWZ1yWKInSJWNeKprFuJiNMTgwf6Tb/njjCAivOAVS7xq58+WNptB5hhtaPo++RKtx8/eKWsVB/l7iOE60w7WS+43uXSIY8bYdmT17Nj766COcO3cOAJCeno7Zs2dj/vz5AACLxYK0tDQsX74cU6dODYhxq7UtSXF60ZR3pc+/3Bh0AHQ6QKxkTwt7IzZ3ECMQ5xSE91HyLIaceACPq1OzouSsW2HeFYFmlv7y8vjjLtnxFQZlpMAQFYEVJefcJkMsykdKlYscVZykcK1LcsRbxdLegBoOEqx4IqMO3Kp5EXNqHLdh7SZO9y5B3KKtrQ3r16/H888/D51Oh4qKCtTU1GD06NH2bQwGA4YPH47PPvtMcl8WiwVNTU1OP95CqW1JitNjzqhMTYV6WGr2pHRItCjiF5s7mI0xmDosw03YKRDnFERgEZKpaGpyVrUgOU6PBhnxACl4I3GovF51w061iKWx8fDpbMbYaNHC52Dqc0ENBwkWfFmroqSbON27BGHj73//O65cuYLJkycDAGpqagAAaWlpTtulpaUJ1uU4UlRUhMWLF3tlnK6wPu+js9IwKbcHBt/VGR99+Z2m+9bKvnm6H6m5w7wxvYNiTkEEDiHn2KjJWdWC5Di9Zvrypd/U+UX5yNG41DS14vI1C1Lio2EyxqKh2YIlO+SLB7Vo8OUrgskRI/yDL2tV1HQTp3uXCHfeeecdPPLII0hPT3f6XKdzfhY4jnP7zJWCggLMnTvX/ntTUxO6deum3WAdYH3en8vLsL9Tta6x08q+abEfsblDMM0piMAgpBwbNc2etMKTlRp32CYnWkRbhOpxXI1IcVk1Zmw45pXiQTXj03LyRkaTkEJtcSuPY43NpSaLaF1MWqIBVo5TJANN9y4R7lRVVaGkpARbtmyxf2YymQDYVm7M5lvvpdraWrdVHFcMBgMMBoN3BuuCGtEdrYV6WPbHUmNDRfxEIBFSNTae5sOroZMhCnHR2lxGvmEm62TF0yhJcVk1hi7fjYlvHcILm45j4luHMHT5bqf6HX82BGQZH0F4E6maFjkca14Kx2cL7oMXK2ltt+LZt/9N9zlBKGDdunXo0qULxo0bZ/8sIyMDJpMJu3btsn/W1taGffv2YciQIf4YpiBq6uW0rrFj2d+UBzNsDo4GxyMIXxBSjo2vezfER0fimqUd19usmuyPg81IDL6zM8zGGNGJFO8AeRIl4VP2XB1BV3ECJQ0BtYR1fAThbcSKWx1JjtPbVRZ5HItcxfZhFFBmBOg+Jwg5rFYr1q1bh0mTJiEq6lbyiU6nw+zZs7F06VJs3boVZWVlmDx5MuLi4vDMM8/4ccTuqBHd0VqoR25/BWOzgkYYiCCAEEtF83Xvhua2DvmNFDB5SHe7kRBrtqlFlERuFcZRnMAfDQGVjI8iRYQvcK1pSe1kADigrtliTx0DIJk26baPeAN++dcTEGrqS/c5O95OVyUCk5KSEpw/fx7PP/+829/mzZuHlpYWTJ8+3d6gc+fOnQHVw4ZHTb2c1jV2cvujmj4imFDk2BQVFWHLli34z3/+g9jYWAwZMgTLly/H3Xffbd/Gnx1/lebDxxsi0WzR1jnxhG7JcfZ/e1P5SMkqjD8aAioZH9UYBDarV6/G6tWrUVlZCQDIzs7Gb3/7WzzyyCOC2+/duxcjRoxw+/yrr77CPffc482hysJS0yL3d8d9lJbXu0nQO0L3uTze6ohOBD6jR4+GWBs+nU6HwsJCFBYW+nZQKlFTL6d1jZ3c/qimjwgWFDk2+/btw4wZM3D//fejvb0dCxcuxOjRo3H69GnEx8cD8G/HXz5fVGylgwMwZ1Qm7ugcj7qrFqzcfc6r4+FJitXjSou8uEBKJ+eiRW9FSVhXVw5+XYdfPJypabGiluPzdeohoZyuXbti2bJl6NmzJwDgvffew2OPPYZjx45JBjvOnDnj1ITrtttu8/pYfQ3d554h1zGd0mQIgiDCD0WOTXFxsdPvfOHekSNHMGzYMHAchxUrVmDhwoWYMGECANtEJi0tDRs2bFDU8VctcisdAHze4+a5vB54vUTeiTIluq96eCNKwrq6snLP19h89FuM72vG2v0VXkmL82R8vk49JJTz6KOPOv3+8ssvY/Xq1Th06JCkY9OlSxckJSV5eXT+he5z9VC6KkEQBCGER+IBjY2NAICUFFu03pOOv1oyJseMA/NHYuOUwXjj6X7YOGUwDswfCQCCBeneZM6oTMwcmenWPdcVT8UAlMCn7LG87msaW7F2fwV+NizDZ8WDcuPTQjyB8D0dHR3YtGkTmpubkZubK7ntfffdB7PZjIcffhh79uyR3bcvO4ZrBd3n6vGXqAlBEAQR2KgWD+A4DnPnzsXQoUORk5MDQF3HX4vFAovFYv9dqwmJ60qHP3rcmI0xmDky0ylFDvDNqocUUil7rvDRz+0nqrHv1yNwpKrB68WDcimFAElMBhMnT55Ebm4uWltb0alTJ2zduhVZWVmC25rNZqxduxYDBgyAxWLBBx98gIcffhh79+7FsGHDRI/hy47hWkH3uXoojY8gCIIQQvWKzcyZM/Hll19i48aNbn9T0vG3qKgIRqPR/uOtLr++7nGjg/OkRGuJRk9hkbDl4aOfR6oakHtXZzzW73bk3tXZqxOuQLtehHruvvtuHD9+HIcOHcLPf/5zTJo0CadPnxbddsqUKejfvz9yc3Pxxz/+EePGjcOrr74qeYyCggI0Njbafy5cuOCNU9Ecus/VQWl8BEEQhBCqVmxmzZqF7du3Y//+/ejatav9czUdfwsKCjB37lz7701NTV5xbmoaWzTfpxhJcXosm9DHbVLiL8lEMTlUfjyv7zqDlXvKZffj6+gnSUyGBtHR0XbxgIEDB+Lzzz/HG2+8gT/96U9M3x88eDDWr18vuY0vO4ZrDd3nytG6AztBEAQRGihybDiOw6xZs7B161bs3bsXGRkZTn937Ph73333AbjV8Xf58uWC+/TVhORyc5vXj8ETq49EfpZJ8G++lkyUk0ONjNAhr+dtTI6NP6KfJDEZenAc55R+KsexY8ecAiWhCN3nyqA0PoIgCEIIRY7NjBkzsGHDBmzbtg0JCQn2mhqj0YjY2Finjr+ZmZnIzMzE0qVLA6Ljr6uUsjcJlN4TrHKoFP0kvMWCBQvwyCOPoFu3brh69So2bdqEvXv32hUWCwoKcPHiRbz//vsAgBUrVqBHjx7Izs5GW1sb1q9fj82bN2Pz5s3+PA0iAPFmry+CIAgiOFHk2KxevRoA8NBDDzl9vm7dOkyePBlA4Hb8FZJSVgIfFYyLjsT1Nvmmnv4uWlUqh0rRT8IbXLp0CT/5yU9QXV0No9GIe++9F8XFxcjPzwcAVFdX4/z58/bt29ra8Ktf/QoXL15EbGwssrOzsWPHDowdO9Zfp0AEMJTGR4Q7YqnmBBGu6Dix1r1+oqmpCUajEY2NjU4N+jylrd2KexZ9AqvKs+XTtxJi9Hj27X/Lbr9xymC/rNjwRu7g13VYuedr2e0dx0ldvAlXvPU8eptgHTdBhCLB+jwG+rjpnU2EC0qeRdVyz8HGkaoG1U7NzBE9MSe/FyIjdOiwcj5P22KNyAgZOTkcV5Yo+kkQBEEQgQ9rqjlBhBth49h4khqW1zPVPrn3ddoWa0RGzMjJ4SoIQEXMBEEQBBFYOAY4U+MNKNzOnmpOEOFE2Dg2ahW9OsdHu62++KpolTUio6b5KAkCEARBEETgozQbg+89FwgiRgTha8LGsZFT/hLjsX7pghEPLdK2pFLMlBT/K20+SoIABEEQBBH4qM3GAKQzVUh0gAhVwsaxkUohk0KsHw2/T7XRELkUMzlnxTEiozTNLiU+Gi8/kUP5twRBEAQRoKjJxnBELFOFRAeIUCbC3wPwJXwKmcnIlpZmFkjV6rByKC2vx7bjF1FaXo8OFYoEfATG1XHhU8yKy6qZnRU+2qKEF8f1JuNFEARBEAGM0mwMHh2E5y8A2/yDIIKZsFmx4XFMIdt5qhrrPqty20YsVYs1yqFFitmrT/VlOh9+/2ZjDLMBNBljmbYjCIIgCMI/qBE9kko1V9rfjiCCkbBzbABbClljSxuKT10S/LuQCABrIb9WKWbgwCwr7ZhmJ7V+RIIBBEEQBBEcqBE9khIxUpLiTqIDRLASlo6NXDHeonHuKzAsUQ6rlcOMDccknR9Lu5VpjHXNFkWy0nya3W+2nMSV6zfc9keCAQRBEAQRPMiJHukApCUa8D8/7Ie6axZZEQAlKe4EEayEVY0NIF+MpwOwZMdpp9oZ1ijHi9vKRJ0fwOb8pHYyMI2zS0KMaE2QyRgj2HxrTI4ZR17Mx5xRmUiK1TN9hyAIgiCIwIPPxgBuBSd5+N8Lx2cjr2cqHut3O3Lv6iwZuGRdAVLbHoMgAoGwW7FRsxTLGr243Oy+UuK6Xz7FTGoMjkV/SmWlIyN0eGFUL8wcmUlSjgRBEAQRxGjZN49lBYjS1YlgJ+wcGzVLsVpGL2qvtmJ8XzP+tL9CdJvxfc1OTogaWWlPpKgJgiAIgggMtOibB0i3vaB0dSJUCLtUNDVLsXyUQ+xR1wHoHB/NtN8lO77Ch198K7nN9hPVqmSkCYIgCIIIPfhgJUvKmRRKU9wJItgIuxUbNUuxLFGOJY/lYMmO06L75bnc3CY7RlIlIQiCIIjwQqpVhJZotQJEEIFI2Dk2apdiWfJcIyKAn68/qsk4SZWEIAiCIMID1j55WkHp6kSoEnaODaC+GE8uysHvd8HWk5JCAiyQKglBEARBhD6sffIIgpAnLB0bQP1SrFyUY0yOGS03rJjz4XHVYzMlGkiVhCAIgiBCHNY+eflZJkoVIwgGwtaxAby3FGtK9Gy1pbXdil2nayhCQxAEQRAhjJoWFARBiBN2qmi+QE5FDQCS4/RIihX2Kxuv38DP1x9FcVm1dwZIEERI0WHlUFpej23HL6K0vJ5UFQkiSFDTgsIVev4J4hZhvWLjLaQECnisHAedTtj1oeVngiBY8XXRMUEQ2qGmBYUj9PwThDO0YuMleCEBY5xe8O+NLe24cl1cYMBx+ZkgCEIIvujYNZWFLzqmVV+CCGxY+uSZXVpQ8NDzTxDukGPjRfKzTIiJ8uwSk+wzQRBCyBUdA7ZVX0pLIYjAhc/wAODm3Ei1oKDnnyCEIcfGixyuuIyaJotH+yDZZ4IghFBSdEwQRODCZ3iYjM7ve5MxRlTqmZ5/ghCGamy8iCerLTrYjBrJPhMEIYQWRccEQQQGSltQ0PNPEMKQY+NF1K62SC0/EwRBAJ4XHRMEEVgoaUFBzz9BCEOpaF6EpSgwKU7v1vdGavmZIAgC8KzomCCI4Iaef4IQhlZsvIiU7DNvjJZN6KNo+ZkgCAJgsy+06ksQoQk9/wQhDK3YeBmWokB++fmxfrcj967OZIgIgmBCTdExQRChAT3/BOEOrdj4AKVFgQRBEKyQfSHCkYsXL2L+/Pn45JNP0NLSgl69euGdd97BgAEDAAAcx2Hx4sVYu3YtGhoa8MADD2DVqlXIzs7288i1hZ5/gnCGHBsfoaQokCAIQglkX4hwoqGhAXl5eRgxYgQ++eQTdOnSBeXl5UhKSrJv88orr+C1117Du+++i169euGll15Cfn4+zpw5g4SEBP8N3gvQ808QtyDHhiAIgiCIoGH58uXo1q0b1q1bZ/+sR48e9n9zHIcVK1Zg4cKFmDBhAgDgvffeQ1paGjZs2ICpU6f6esgEQfgIqrEhCIIgCCJo2L59OwYOHIinnnoKXbp0wX333Ye33nrL/veKigrU1NRg9OjR9s8MBgOGDx+Ozz77zB9DJgjCR5BjQxAEQRBE0PDNN99g9erVyMzMxD//+U9MmzYNv/jFL/D+++8DAGpqagAAaWlpTt9LS0uz/00Ii8WCpqYmpx+CIIILSkUjCIIgCCJosFqtGDhwIJYuXQoAuO+++3Dq1CmsXr0a//Vf/2XfTqdzLqDnOM7tM0eKioqwePFi7wyaIAifQCs2BEEQBEEEDWazGVlZWU6f9e7dG+fPnwcAmEwmAHBbnamtrXVbxXGkoKAAjY2N9p8LFy5oPHKCILwNOTYEQRAEQQQNeXl5OHPmjNNnZ8+eRffu3QEAGRkZMJlM2LVrl/3vbW1t2LdvH4YMGSK6X4PBgMTERKcfgiCCC0pFIwiCIAgiaJgzZw6GDBmCpUuX4oc//CEOHz6MtWvXYu3atQBsKWizZ8/G0qVLkZmZiczMTCxduhRxcXF45pln/Dx6giC8CTk2BEEQBEEEDffffz+2bt2KgoIC/P73v0dGRgZWrFiBZ5991r7NvHnz0NLSgunTp9sbdO7cuTPketgQBOGMjuM4zt+DcKSpqQlGoxGNjY20DEwQfiZYn8dgHTdBhCLB+jwG67gJItRQ8iwG3IoN72eRzCJB+B/+OQyw+IcsZEcIInAgO0IQhCcosSEB59hcvXoVANCtWzc/j4QgCJ6rV6/CaDT6exjMkB0hiMCD7AhBEJ7AYkMCLhXNarXiu+++Q0JCgqTefCjQ1NSEbt264cKFC2G7zB3u1yDQz5/jOFy9ehXp6emIiAgeEUWyI+FDuJ8/EPjXgOxIYBPo948vCPdrEOjnr8SGBNyKTUREBLp27ervYfgUkpWkaxDI5x9MEVYesiPhR7ifPxDY14DsSOATyPePrwj3axDI589qQ4IndEIQBEEQBEEQBCECOTYEQRAEQRAEQQQ95Nj4EYPBgN/97ncwGAz+HorfCPdrEO7nT3hOuN9D4X7+AF0DwjPo/qFrEErnH3DiAQRBEARBEARBEEqhFRuCIAiCIAiCIIIecmwIgiAIgiAIggh6yLEhCIIgCIIgCCLoIceGIAiCIAiCIIighxwbjdm/fz8effRRpKenQ6fT4e9//7vT3zmOQ2FhIdLT0xEbG4uHHnoIp06dctrGYrFg1qxZSE1NRXx8PMaPH49vv/3Wh2ehnqKiItx///1ISEhAly5d8Pjjj+PMmTNO24T6NVi9ejXuvfdee6Or3NxcfPLJJ/a/h/r5E55DdoTsCNkRwlPIjoS3HQlbG8IRmvLxxx9zCxcu5DZv3swB4LZu3er092XLlnEJCQnc5s2buZMnT3I/+tGPOLPZzDU1Ndm3mTZtGnf77bdzu3bt4o4ePcqNGDGC69u3L9fe3u7js1HO9773PW7dunVcWVkZd/z4cW7cuHHcHXfcwV27ds2+Tahfg+3bt3M7duzgzpw5w505c4ZbsGABp9frubKyMo7jQv/8Cc8hO0J2hOwI4SlkR8LbjoSrDSHHxou4GhKr1cqZTCZu2bJl9s9aW1s5o9HIrVmzhuM4jrty5Qqn1+u5TZs22be5ePEiFxERwRUXF/ts7FpRW1vLAeD27dvHcVx4XgOO47jk5GTu7bffDtvzJ9RDdoTsCA/ZEUItZEfIjnBceNgQSkXzIRUVFaipqcHo0aPtnxkMBgwfPhyfffYZAODIkSO4ceOG0zbp6enIycmxbxNMNDY2AgBSUlIAhN816OjowKZNm9Dc3Izc3NywO39Ce8LxHiI7QnaE0JZwvIfC2Y6Ekw0hx8aH1NTUAADS0tKcPk9LS7P/raamBtHR0UhOThbdJljgOA5z587F0KFDkZOTAyB8rsHJkyfRqVMnGAwGTJs2DVu3bkVWVlbYnD/hPcLtHiI7QnaE0J5wu4fC1Y6Eow2J8vcAwhGdTuf0O8dxbp+5wrJNoDFz5kx8+eWXOHDggNvfQv0a3H333Th+/DiuXLmCzZs3Y9KkSdi3b5/976F+/oT3CZd7iOwI2RHCe4TLPRSudiQcbQit2PgQk8kEAG6ebm1trd1rNplMaGtrQ0NDg+g2wcCsWbOwfft27NmzB127drV/Hi7XIDo6Gj179sTAgQNRVFSEvn374o033gib8ye8RzjdQ2RHyI4Q3iGc7qFwtiPhaEPIsfEhGRkZMJlM2LVrl/2ztrY27Nu3D0OGDAEADBgwAHq93mmb6upqlJWV2bcJZDiOw8yZM7Flyxbs3r0bGRkZTn8Ph2sgBMdxsFgsYXv+hHaEwz1EdkQYsiOEVoTDPUR2xJ2wsCE+EikIG65evcodO3aMO3bsGAeAe+2117hjx45xVVVVHMfZ5PWMRiO3ZcsW7uTJk9zEiRMF5fW6du3KlZSUcEePHuVGjhwZ8PJ6PD//+c85o9HI7d27l6uurrb/XL9+3b5NqF+DgoICbv/+/VxFRQX35ZdfcgsWLOAiIiK4nTt3chwX+udPeA7ZEbIjZEcITyE7Et52JFxtCDk2GrNnzx4OgNvPpEmTOI6zyQv+7ne/40wmE2cwGLhhw4ZxJ0+edNpHS0sLN3PmTC4lJYWLjY3lvv/973Pnz5/3w9koR+jcAXDr1q2zbxPq1+D555/nunfvzkVHR3O3Y+T99wAAAM1JREFU3XYb9/DDD9sNCceF/vkTnkN2hOwI2RHCU8iOhLcdCVcbouM4jvPumhBBEARBEARBEIR3oRobgiAIgiAIgiCCHnJsCIIgCIIgCIIIesixIQiCIAiCIAgi6CHHhiAIgiAIgiCIoIccG4IgCIIgCIIggh5ybAiCIAiCIAiCCHrIsSEIgiAIgiAIIughx4YgCIIgCIIgiKCHHBuCIAiCIAiCIIIecmwIgiAIgiAIggh6yLEhCIIgCIIgCCLoIceGIAiCIAiCIIig5/8Dvz4HGblo7fEAAAAASUVORK5CYII=" + }, + "metadata": {} + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "### Task 5: Test the hypothesis that the degree of diabetes progression is different between men and women" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 27, + "source": [ + "from scipy.stats import ttest_ind\r\n", + "\r\n", + "tval, pval = ttest_ind(df.loc[df['SEX']==1,['Y']], df.loc[df['SEX']==2,['Y']],equal_var=False)\r\n", + "print(f\"T-value = {tval[0]:.2f}\\nP-value: {pval[0]}\")" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "T-value = -0.90\n", + "P-value: 0.3674449793083975\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Conclusion: p-value close to 0 (typically, below 0.05) would indicate high confidence in our hypothesis. In our case, there is no strong evidence that sex affects progression of diabetes." + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [], + "metadata": {} + } + ], + "metadata": { + "orig_nbformat": 4, + "language_info": { + "name": "python", + "version": "3.8.8", + "mimetype": "text/x-python", + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "pygments_lexer": "ipython3", + "nbconvert_exporter": "python", + "file_extension": ".py" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.8.8 64-bit (conda)" + }, + "interpreter": { + "hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/1-Introduction/04-stats-and-probability/solution/notebook.ipynb b/1-Introduction/04-stats-and-probability/solution/notebook.ipynb deleted file mode 100644 index e69de29..0000000 diff --git a/data/diabetes.tsv b/data/diabetes.tsv new file mode 100644 index 0000000..980b383 --- /dev/null +++ b/data/diabetes.tsv @@ -0,0 +1,443 @@ +AGE SEX BMI BP S1 S2 S3 S4 S5 S6 Y +59 2 32.1 101 157 93.2 38 4 4.8598 87 151 +48 1 21.6 87 183 103.2 70 3 3.8918 69 75 +72 2 30.5 93 156 93.6 41 4 4.6728 85 141 +24 1 25.3 84 198 131.4 40 5 4.8903 89 206 +50 1 23 101 192 125.4 52 4 4.2905 80 135 +23 1 22.6 89 139 64.8 61 2 4.1897 68 97 +36 2 22 90 160 99.6 50 3 3.9512 82 138 +66 2 26.2 114 255 185 56 4.55 4.2485 92 63 +60 2 32.1 83 179 119.4 42 4 4.4773 94 110 +29 1 30 85 180 93.4 43 4 5.3845 88 310 +22 1 18.6 97 114 57.6 46 2 3.9512 83 101 +56 2 28 85 184 144.8 32 6 3.5835 77 69 +53 1 23.7 92 186 109.2 62 3 4.3041 81 179 +50 2 26.2 97 186 105.4 49 4 5.0626 88 185 +61 1 24 91 202 115.4 72 3 4.2905 73 118 +34 2 24.7 118 254 184.2 39 7 5.037 81 171 +47 1 30.3 109 207 100.2 70 3 5.2149 98 166 +68 2 27.5 111 214 147 39 5 4.9416 91 144 +38 1 25.4 84 162 103 42 4 4.4427 87 97 +41 1 24.7 83 187 108.2 60 3 4.5433 78 168 +35 1 21.1 82 156 87.8 50 3 4.5109 95 68 +25 2 24.3 95 162 98.6 54 3 3.8501 87 49 +25 1 26 92 187 120.4 56 3 3.9703 88 68 +61 2 32 103.67 210 85.2 35 6 6.107 124 245 +31 1 29.7 88 167 103.4 48 4 4.3567 78 184 +30 2 25.2 83 178 118.4 34 5 4.852 83 202 +19 1 19.2 87 124 54 57 2 4.1744 90 137 +42 1 31.9 83 158 87.6 53 3 4.4659 101 85 +63 1 24.4 73 160 91.4 48 3 4.6347 78 131 +67 2 25.8 113 158 54.2 64 2 5.2933 104 283 +32 1 30.5 89 182 110.6 56 3 4.3438 89 129 +42 1 20.3 71 161 81.2 66 2 4.2341 81 59 +58 2 38 103 150 107.2 22 7 4.6444 98 341 +57 1 21.7 94 157 58 82 2 4.4427 92 87 +53 1 20.5 78 147 84.2 52 3 3.989 75 65 +62 2 23.5 80.33 225 112.8 86 2.62 4.8752 96 102 +52 1 28.5 110 195 97.2 60 3 5.2417 85 265 +46 1 27.4 78 171 88 58 3 4.8283 90 276 +48 2 33 123 253 163.6 44 6 5.425 97 252 +48 2 27.7 73 191 119.4 46 4 4.852 92 90 +50 2 25.6 101 229 162.2 43 5 4.7791 114 100 +21 1 20.1 63 135 69 54 3 4.0943 89 55 +32 2 25.4 90.33 153 100.4 34 4.5 4.5326 83 61 +54 1 24.2 74 204 109 82 2 4.1744 109 92 +61 2 32.7 97 177 118.4 29 6 4.9972 87 259 +56 2 23.1 104 181 116.4 47 4 4.4773 79 53 +33 1 25.3 85 155 85 51 3 4.5539 70 190 +27 1 19.6 78 128 68 43 3 4.4427 71 142 +67 2 22.5 98 191 119.2 61 3 3.989 86 75 +37 2 27.7 93 180 119.4 30 6 5.0304 88 142 +58 1 25.7 99 157 91.6 49 3 4.4067 93 155 +65 2 27.9 103 159 96.8 42 4 4.6151 86 225 +34 1 25.5 93 218 144 57 4 4.4427 88 59 +46 1 24.9 115 198 129.6 54 4 4.2767 103 104 +35 1 28.7 97 204 126.8 64 3 4.1897 93 182 +37 1 21.8 84 184 101 73 3 3.912 93 128 +37 1 30.2 87 166 96 40 4.15 5.0106 87 52 +41 1 20.5 80 124 48.8 64 2 4.0254 75 37 +60 1 20.4 105 198 78.4 99 2 4.6347 79 170 +66 2 24 98 236 146.4 58 4 5.0626 96 170 +29 1 26 83 141 65.2 64 2 4.0775 83 61 +37 2 26.8 79 157 98 28 6 5.0434 96 144 +41 2 25.7 83 181 106.6 66 3 3.7377 85 52 +39 1 22.9 77 204 143.2 46 4 4.3041 74 128 +67 2 24 83 143 77.2 49 3 4.4308 94 71 +36 2 24.1 112 193 125 35 6 5.1059 95 163 +46 2 24.7 85 174 123.2 30 6 4.6444 96 150 +60 2 25 89.67 185 120.8 46 4.02 4.5109 92 97 +59 2 23.6 83 165 100 47 4 4.4998 92 160 +53 1 22.1 93 134 76.2 46 3 4.0775 96 178 +48 1 19.9 91 189 109.6 69 3 3.9512 101 48 +48 1 29.5 131 207 132.2 47 4 4.9345 106 270 +66 2 26 91 264 146.6 65 4 5.5683 87 202 +52 2 24.5 94 217 149.4 48 5 4.585 89 111 +52 2 26.6 111 209 126.4 61 3 4.6821 109 85 +46 2 23.5 87 181 114.8 44 4 4.7095 98 42 +40 2 29 115 97 47.2 35 2.77 4.3041 95 170 +22 1 23 73 161 97.8 54 3 3.8286 91 200 +50 1 21 88 140 71.8 35 4 5.112 71 252 +20 1 22.9 87 191 128.2 53 4 3.8918 85 113 +68 1 27.5 107 241 149.6 64 4 4.92 90 143 +52 2 24.3 86 197 133.6 44 5 4.5747 91 51 +44 1 23.1 87 213 126.4 77 3 3.8712 72 52 +38 1 27.3 81 146 81.6 47 3 4.4659 81 210 +49 1 22.7 65.33 168 96.2 62 2.71 3.8918 60 65 +61 1 33 95 182 114.8 54 3 4.1897 74 141 +29 2 19.4 83 152 105.8 39 4 3.5835 83 55 +61 1 25.8 98 235 125.8 76 3 5.112 82 134 +34 2 22.6 75 166 91.8 60 3 4.2627 108 42 +36 1 21.9 89 189 105.2 68 3 4.3694 96 111 +52 1 24 83 167 86.6 71 2 3.8501 94 98 +61 1 31.2 79 235 156.8 47 5 5.0499 96 164 +43 1 26.8 123 193 102.2 67 3 4.7791 94 48 +35 1 20.4 65 187 105.6 67 2.79 4.2767 78 96 +27 1 24.8 91 189 106.8 69 3 4.1897 69 90 +29 1 21 71 156 97 38 4 4.654 90 162 +64 2 27.3 109 186 107.6 38 5 5.3083 99 150 +41 1 34.6 87.33 205 142.6 41 5 4.6728 110 279 +49 2 25.9 91 178 106.6 52 3 4.5747 75 92 +48 1 20.4 98 209 139.4 46 5 4.7707 78 83 +53 1 28 88 233 143.8 58 4 5.0499 91 128 +53 2 22.2 113 197 115.2 67 3 4.3041 100 102 +23 1 29 90 216 131.4 65 3 4.585 91 302 +65 2 30.2 98 219 160.6 40 5 4.5218 84 198 +41 1 32.4 94 171 104.4 56 3 3.9703 76 95 +55 2 23.4 83 166 101.6 46 4 4.5218 96 53 +22 1 19.3 82 156 93.2 52 3 3.989 71 134 +56 1 31 78.67 187 141.4 34 5.5 4.0604 90 144 +54 2 30.6 103.33 144 79.8 30 4.8 5.1417 101 232 +59 2 25.5 95.33 190 139.4 35 5.43 4.3567 117 81 +60 2 23.4 88 153 89.8 58 3 3.2581 95 104 +54 1 26.8 87 206 122 68 3 4.382 80 59 +25 1 28.3 87 193 128 49 4 4.382 92 246 +54 2 27.7 113 200 128.4 37 5 5.1533 113 297 +55 1 36.6 113 199 94.4 43 4.63 5.7301 97 258 +40 2 26.5 93 236 147 37 7 5.5607 92 229 +62 2 31.8 115 199 128.6 44 5 4.8828 98 275 +65 1 24.4 120 222 135.6 37 6 5.5094 124 281 +33 2 25.4 102 206 141 39 5 4.8675 105 179 +53 1 22 94 175 88 59 3 4.9416 98 200 +35 1 26.8 98 162 103.6 45 4 4.2047 86 200 +66 1 28 101 195 129.2 40 5 4.8598 94 173 +62 2 33.9 101 221 156.4 35 6 4.9972 103 180 +50 2 29.6 94.33 300 242.4 33 9.09 4.8122 109 84 +47 1 28.6 97 164 90.6 56 3 4.4659 88 121 +47 2 25.6 94 165 74.8 40 4 5.5255 93 161 +24 1 20.7 87 149 80.6 61 2 3.6109 78 99 +58 2 26.2 91 217 124.2 71 3 4.6913 68 109 +34 1 20.6 87 185 112.2 58 3 4.3041 74 115 +51 1 27.9 96 196 122.2 42 5 5.0689 120 268 +31 2 35.3 125 187 112.4 48 4 4.8903 109 274 +22 1 19.9 75 175 108.6 54 3 4.1271 72 158 +53 2 24.4 92 214 146 50 4 4.4998 97 107 +37 2 21.4 83 128 69.6 49 3 3.8501 84 83 +28 1 30.4 85 198 115.6 67 3 4.3438 80 103 +47 1 31.6 84 154 88 30 5.1 5.1985 105 272 +23 1 18.8 78 145 72 63 2 3.912 86 85 +50 1 31 123 178 105 48 4 4.8283 88 280 +58 2 36.7 117 166 93.8 44 4 4.9488 109 336 +55 1 32.1 110 164 84.2 42 4 5.2417 90 281 +60 2 27.7 107 167 114.6 38 4 4.2767 95 118 +41 1 30.8 81 214 152 28 7.6 5.1358 123 317 +60 2 27.5 106 229 143.8 51 4 5.1417 91 235 +40 1 26.9 92 203 119.8 70 3 4.1897 81 60 +57 2 30.7 90 204 147.8 34 6 4.7095 93 174 +37 1 38.3 113 165 94.6 53 3 4.4659 79 259 +40 2 31.9 95 198 135.6 38 5 4.804 93 178 +33 1 35 89 200 130.4 42 4.76 4.9273 101 128 +32 2 27.8 89 216 146.2 55 4 4.3041 91 96 +35 2 25.9 81 174 102.4 31 6 5.3132 82 126 +55 1 32.9 102 164 106.2 41 4 4.4308 89 288 +49 1 26 93 183 100.2 64 3 4.5433 88 88 +39 2 26.3 115 218 158.2 32 7 4.9345 109 292 +60 2 22.3 113 186 125.8 46 4 4.2627 94 71 +67 2 28.3 93 204 132.2 49 4 4.7362 92 197 +41 2 32 109 251 170.6 49 5 5.0562 103 186 +44 1 25.4 95 162 92.6 53 3 4.4067 83 25 +48 2 23.3 89.33 212 142.8 46 4.61 4.7536 98 84 +45 1 20.3 74.33 190 126.2 49 3.88 4.3041 79 96 +47 1 30.4 120 199 120 46 4 5.1059 87 195 +46 1 20.6 73 172 107 51 3 4.2485 80 53 +36 2 32.3 115 286 199.4 39 7 5.4723 112 217 +34 1 29.2 73 172 108.2 49 4 4.3041 91 172 +53 2 33.1 117 183 119 48 4 4.382 106 131 +61 1 24.6 101 209 106.8 77 3 4.8363 88 214 +37 1 20.2 81 162 87.8 63 3 4.0254 88 59 +33 2 20.8 84 125 70.2 46 3 3.7842 66 70 +68 1 32.8 105.67 205 116.4 40 5.13 5.4931 117 220 +49 2 31.9 94 234 155.8 34 7 5.3982 122 268 +48 1 23.9 109 232 105.2 37 6 6.107 96 152 +55 2 24.5 84 179 105.8 66 3 3.5835 87 47 +43 1 22.1 66 134 77.2 45 3 4.0775 80 74 +60 2 33 97 217 125.6 45 5 5.4467 112 295 +31 2 19 93 137 73 47 3 4.4427 78 101 +53 2 27.3 82 119 55 39 3 4.8283 93 151 +67 1 22.8 87 166 98.6 52 3 4.3438 92 127 +61 2 28.2 106 204 132 52 4 4.6052 96 237 +62 1 28.9 87.33 206 127.2 33 6.24 5.4337 99 225 +60 1 25.6 87 207 125.8 69 3 4.1109 84 81 +42 1 24.9 91 204 141.8 38 5 4.7958 89 151 +38 2 26.8 105 181 119.2 37 5 4.8203 91 107 +62 1 22.4 79 222 147.4 59 4 4.3567 76 64 +61 2 26.9 111 236 172.4 39 6 4.8122 89 138 +61 2 23.1 113 186 114.4 47 4 4.8122 105 185 +53 1 28.6 88 171 98.8 41 4 5.0499 99 265 +28 2 24.7 97 175 99.6 32 5 5.3799 87 101 +26 2 30.3 89 218 152.2 31 7 5.1591 82 137 +30 1 21.3 87 134 63 63 2 3.6889 66 143 +50 1 26.1 109 243 160.6 62 4 4.625 89 141 +48 1 20.2 95 187 117.4 53 4 4.4188 85 79 +51 1 25.2 103 176 112.2 37 5 4.8978 90 292 +47 2 22.5 82 131 66.8 41 3 4.7536 89 178 +64 2 23.5 97 203 129 59 3 4.3175 77 91 +51 2 25.9 76 240 169 39 6 5.0752 96 116 +30 1 20.9 104 152 83.8 47 3 4.6634 97 86 +56 2 28.7 99 208 146.4 39 5 4.7274 97 122 +42 1 22.1 85 213 138.6 60 4 4.2767 94 72 +62 2 26.7 115 183 124 35 5 4.7875 100 129 +34 1 31.4 87 149 93.8 46 3 3.8286 77 142 +60 1 22.2 104.67 221 105.4 60 3.68 5.6276 93 90 +64 1 21 92.33 227 146.8 65 3.49 4.3307 102 158 +39 2 21.2 90 182 110.4 60 3 4.0604 98 39 +71 2 26.5 105 281 173.6 55 5 5.5683 84 196 +48 2 29.2 110 218 151.6 39 6 4.92 98 222 +79 2 27 103 169 110.8 37 5 4.6634 110 277 +40 1 30.7 99 177 85.4 50 4 5.3375 85 99 +49 2 28.8 92 207 140 44 5 4.7449 92 196 +51 1 30.6 103 198 106.6 57 3 5.1475 100 202 +57 1 30.1 117 202 139.6 42 5 4.625 120 155 +59 2 24.7 114 152 104.8 29 5 4.5109 88 77 +51 1 27.7 99 229 145.6 69 3 4.2767 77 191 +74 1 29.8 101 171 104.8 50 3 4.3944 86 70 +67 1 26.7 105 225 135.4 69 3 4.6347 96 73 +49 1 19.8 88 188 114.8 57 3 4.3944 93 49 +57 1 23.3 88 155 63.6 78 2 4.2047 78 65 +56 2 35.1 123 164 95 38 4 5.0434 117 263 +52 2 29.7 109 228 162.8 31 8 5.1417 103 248 +69 1 29.3 124 223 139 54 4 5.0106 102 296 +37 1 20.3 83 185 124.6 38 5 4.7185 88 214 +24 1 22.5 89 141 68 52 3 4.654 84 185 +55 2 22.7 93 154 94.2 53 3 3.5264 75 78 +36 1 22.8 87 178 116 41 4 4.654 82 93 +42 2 24 107 150 85 44 3 4.654 96 252 +21 1 24.2 76 147 77 53 3 4.4427 79 150 +41 1 20.2 62 153 89 50 3 4.2485 89 77 +57 2 29.4 109 160 87.6 31 5 5.3327 92 208 +20 2 22.1 87 171 99.6 58 3 4.2047 78 77 +67 2 23.6 111.33 189 105.4 70 2.7 4.2195 93 108 +34 1 25.2 77 189 120.6 53 4 4.3438 79 160 +41 2 24.9 86 192 115 61 3 4.382 94 53 +38 2 33 78 301 215 50 6.02 5.193 108 220 +51 1 23.5 101 195 121 51 4 4.7449 94 154 +52 2 26.4 91.33 218 152 39 5.59 4.9053 99 259 +67 1 29.8 80 172 93.4 63 3 4.3567 82 90 +61 1 30 108 194 100 52 3.73 5.3471 105 246 +67 2 25 111.67 146 93.4 33 4.42 4.585 103 124 +56 1 27 105 247 160.6 54 5 5.0876 94 67 +64 1 20 74.67 189 114.8 62 3.05 4.1109 91 72 +58 2 25.5 112 163 110.6 29 6 4.7622 86 257 +55 1 28.2 91 250 140.2 67 4 5.366 103 262 +62 2 33.3 114 182 114 38 5 5.0106 96 275 +57 2 25.6 96 200 133 52 3.85 4.3175 105 177 +20 2 24.2 88 126 72.2 45 3 3.7842 74 71 +53 2 22.1 98 165 105.2 47 4 4.1589 81 47 +32 2 31.4 89 153 84.2 56 3 4.1589 90 187 +41 1 23.1 86 148 78 58 3 4.0943 60 125 +60 1 23.4 76.67 247 148 65 3.8 5.1358 77 78 +26 1 18.8 83 191 103.6 69 3 4.5218 69 51 +37 1 30.8 112 282 197.2 43 7 5.3423 101 258 +45 1 32 110 224 134.2 45 5 5.4116 93 215 +67 1 31.6 116 179 90.4 41 4 5.4723 100 303 +34 2 35.5 120 233 146.6 34 7 5.5683 101 243 +50 1 31.9 78.33 207 149.2 38 5.45 4.5951 84 91 +71 1 29.5 97 227 151.6 45 5 5.0239 108 150 +57 2 31.6 117 225 107.6 40 6 5.9584 113 310 +49 1 20.3 93 184 103 61 3 4.6052 93 153 +35 1 41.3 81 168 102.8 37 5 4.9488 94 346 +41 2 21.2 102 184 100.4 64 3 4.585 79 63 +70 2 24.1 82.33 194 149.2 31 6.26 4.2341 105 89 +52 1 23 107 179 123.7 42.5 4.21 4.1589 93 50 +60 1 25.6 78 195 95.4 91 2 3.7612 87 39 +62 1 22.5 125 215 99 98 2 4.4998 95 103 +44 2 38.2 123 201 126.6 44 5 5.0239 92 308 +28 2 19.2 81 155 94.6 51 3 3.8501 87 116 +58 2 29 85 156 109.2 36 4 3.989 86 145 +39 2 24 89.67 190 113.6 52 3.65 4.804 101 74 +34 2 20.6 98 183 92 83 2 3.6889 92 45 +65 1 26.3 70 244 166.2 51 5 4.8978 98 115 +66 2 34.6 115 204 139.4 36 6 4.9628 109 264 +51 1 23.4 87 220 108.8 93 2 4.5109 82 87 +50 2 29.2 119 162 85.2 54 3 4.7362 95 202 +59 2 27.2 107 158 102 39 4 4.4427 93 127 +52 1 27 78.33 134 73 44 3.05 4.4427 69 182 +69 2 24.5 108 243 136.4 40 6 5.8081 100 241 +53 1 24.1 105 184 113.4 46 4 4.8122 95 66 +47 2 25.3 98 173 105.6 44 4 4.7622 108 94 +52 1 28.8 113 280 174 67 4 5.273 86 283 +39 1 20.9 95 150 65.6 68 2 4.4067 95 64 +67 2 23 70 184 128 35 5 4.654 99 102 +59 2 24.1 96 170 98.6 54 3 4.4659 85 200 +51 2 28.1 106 202 122.2 55 4 4.8203 87 265 +23 2 18 78 171 96 48 4 4.9053 92 94 +68 1 25.9 93 253 181.2 53 5 4.5433 98 230 +44 1 21.5 85 157 92.2 55 3 3.8918 84 181 +60 2 24.3 103 141 86.6 33 4 4.6728 78 156 +52 1 24.5 90 198 129 29 7 5.2983 86 233 +38 1 21.3 72 165 60.2 88 2 4.4308 90 60 +61 1 25.8 90 280 195.4 55 5 4.9972 90 219 +68 2 24.8 101 221 151.4 60 4 3.8712 87 80 +28 2 31.5 83 228 149.4 38 6 5.3132 83 68 +65 2 33.5 102 190 126.2 35 5 4.9698 102 332 +69 1 28.1 113 234 142.8 52 4 5.2781 77 248 +51 1 24.3 85.33 153 71.6 71 2.15 3.9512 82 84 +29 1 35 98.33 204 142.6 50 4.08 4.0431 91 200 +55 2 23.5 93 177 126.8 41 4 3.8286 83 55 +34 2 30 83 185 107.2 53 3 4.8203 92 85 +67 1 20.7 83 170 99.8 59 3 4.0254 77 89 +49 1 25.6 76 161 99.8 51 3 3.9318 78 31 +55 2 22.9 81 123 67.2 41 3 4.3041 88 129 +59 2 25.1 90 163 101.4 46 4 4.3567 91 83 +53 1 33.2 82.67 186 106.8 46 4.04 5.112 102 275 +48 2 24.1 110 209 134.6 58 4 4.4067 100 65 +52 1 29.5 104.33 211 132.8 49 4.31 4.9836 98 198 +69 1 29.6 122 231 128.4 56 4 5.451 86 236 +60 2 22.8 110 245 189.8 39 6 4.3944 88 253 +46 2 22.7 83 183 125.8 32 6 4.8363 75 124 +51 2 26.2 101 161 99.6 48 3 4.2047 88 44 +67 2 23.5 96 207 138.2 42 5 4.8978 111 172 +49 1 22.1 85 136 63.4 62 2.19 3.9703 72 114 +46 2 26.5 94 247 160.2 59 4 4.9345 111 142 +47 1 32.4 105 188 125 46 4.09 4.4427 99 109 +75 1 30.1 78 222 154.2 44 5.05 4.7791 97 180 +28 1 24.2 93 174 106.4 54 3 4.2195 84 144 +65 2 31.3 110 213 128 47 5 5.247 91 163 +42 1 30.1 91 182 114.8 49 4 4.5109 82 147 +51 1 24.5 79 212 128.6 65 3 4.5218 91 97 +53 2 27.7 95 190 101.8 41 5 5.4638 101 220 +54 1 23.2 110.67 238 162.8 48 4.96 4.9127 108 190 +73 1 27 102 211 121 67 3 4.7449 99 109 +54 1 26.8 108 176 80.6 67 3 4.9558 106 191 +42 1 29.2 93 249 174.2 45 6 5.0039 92 122 +75 1 31.2 117.67 229 138.8 29 7.9 5.7236 106 230 +55 2 32.1 112.67 207 92.4 25 8.28 6.1048 111 242 +68 2 25.7 109 233 112.6 35 7 6.0568 105 248 +57 1 26.9 98 246 165.2 38 7 5.366 96 249 +48 1 31.4 75.33 242 151.6 38 6.37 5.5683 103 192 +61 2 25.6 85 184 116.2 39 5 4.9698 98 131 +69 1 37 103 207 131.4 55 4 4.6347 90 237 +38 1 32.6 77 168 100.6 47 4 4.625 96 78 +45 2 21.2 94 169 96.8 55 3 4.4543 102 135 +51 2 29.2 107 187 139 32 6 4.382 95 244 +71 2 24 84 138 85.8 39 4 4.1897 90 199 +57 1 36.1 117 181 108.2 34 5 5.2679 100 270 +56 2 25.8 103 177 114.4 34 5 4.9628 99 164 +32 2 22 88 137 78.6 48 3 3.9512 78 72 +50 1 21.9 91 190 111.2 67 3 4.0775 77 96 +43 1 34.3 84 256 172.6 33 8 5.5294 104 306 +54 2 25.2 115 181 120 39 5 4.7005 92 91 +31 1 23.3 85 190 130.8 43 4 4.3944 77 214 +56 1 25.7 80 244 151.6 59 4 5.118 95 95 +44 1 25.1 133 182 113 55 3 4.2485 84 216 +57 2 31.9 111 173 116.2 41 4 4.3694 87 263 +64 2 28.4 111 184 127 41 4 4.382 97 178 +43 1 28.1 121 192 121 60 3 4.0073 93 113 +19 1 25.3 83 225 156.6 46 5 4.7185 84 200 +71 2 26.1 85 220 152.4 47 5 4.6347 91 139 +50 2 28 104 282 196.8 44 6 5.3279 95 139 +59 2 23.6 73 180 107.4 51 4 4.6821 84 88 +57 1 24.5 93 186 96.6 71 3 4.5218 91 148 +49 2 21 82 119 85.4 23 5 3.9703 74 88 +41 2 32 126 198 104.2 49 4 5.4116 124 243 +25 2 22.6 85 130 71 48 3 4.0073 81 71 +52 2 19.7 81 152 53.4 82 2 4.4188 82 77 +34 1 21.2 84 254 113.4 52 5 6.0936 92 109 +42 2 30.6 101 269 172.2 50 5 5.4553 106 272 +28 2 25.5 99 162 101.6 46 4 4.2767 94 60 +47 2 23.3 90 195 125.8 54 4 4.3307 73 54 +32 2 31 100 177 96.2 45 4 5.1874 77 221 +43 1 18.5 87 163 93.6 61 2.67 3.7377 80 90 +59 2 26.9 104 194 126.6 43 5 4.804 106 311 +53 1 28.3 101 179 107 48 4 4.7875 101 281 +60 1 25.7 103 158 84.6 64 2 3.8501 97 182 +54 2 36.1 115 163 98.4 43 4 4.6821 101 321 +35 2 24.1 94.67 155 97.4 32 4.84 4.852 94 58 +49 2 25.8 89 182 118.6 39 5 4.804 115 262 +58 1 22.8 91 196 118.8 48 4 4.9836 115 206 +36 2 39.1 90 219 135.8 38 6 5.4205 103 233 +46 2 42.2 99 211 137 44 5 5.0106 99 242 +44 2 26.6 99 205 109 43 5 5.5797 111 123 +46 1 29.9 83 171 113 38 4.5 4.585 98 167 +54 1 21 78 188 107.4 70 3 3.9703 73 63 +63 2 25.5 109 226 103.2 46 5 5.9506 87 197 +41 2 24.2 90 199 123.6 57 4 4.5218 86 71 +28 1 25.4 93 141 79 49 3 4.1744 91 168 +19 1 23.2 75 143 70.4 52 3 4.6347 72 140 +61 2 26.1 126 215 129.8 57 4 4.9488 96 217 +48 1 32.7 93 276 198.6 43 6.42 5.1475 91 121 +54 2 27.3 100 200 144 33 6 4.7449 76 235 +53 2 26.6 93 185 122.4 36 5 4.8903 82 245 +48 1 22.8 101 110 41.6 56 2 4.1271 97 40 +53 1 28.8 111.67 145 87.2 46 3.15 4.0775 85 52 +29 2 18.1 73 158 99 41 4 4.4998 78 104 +62 1 32 88 172 69 38 4 5.7838 100 132 +50 2 23.7 92 166 97 52 3 4.4427 93 88 +58 2 23.6 96 257 171 59 4 4.9053 82 69 +55 2 24.6 109 143 76.4 51 3 4.3567 88 219 +54 1 22.6 90 183 104.2 64 3 4.3041 92 72 +36 1 27.8 73 153 104.4 42 4 3.4965 73 201 +63 2 24.1 111 184 112.2 44 4 4.9345 82 110 +47 2 26.5 70 181 104.8 63 3 4.1897 70 51 +51 2 32.8 112 202 100.6 37 5 5.7746 109 277 +42 1 19.9 76 146 83.2 55 3 3.6636 79 63 +37 2 23.6 94 205 138.8 53 4 4.1897 107 118 +28 1 22.1 82 168 100.6 54 3 4.2047 86 69 +58 1 28.1 111 198 80.6 31 6 6.0684 93 273 +32 1 26.5 86 184 101.6 53 4 4.9904 78 258 +25 2 23.5 88 143 80.8 55 3 3.5835 83 43 +63 1 26 85.67 155 78.2 46 3.37 5.037 97 198 +52 1 27.8 85 219 136 49 4 5.1358 75 242 +65 2 28.5 109 201 123 46 4 5.0752 96 232 +42 1 30.6 121 176 92.8 69 3 4.2627 89 175 +53 1 22.2 78 164 81 70 2 4.1744 101 93 +79 2 23.3 88 186 128.4 33 6 4.8122 102 168 +43 1 35.4 93 185 100.2 44 4 5.3181 101 275 +44 1 31.4 115 165 97.6 52 3 4.3438 89 293 +62 2 37.8 119 113 51 31 4 5.0434 84 281 +33 1 18.9 70 162 91.8 59 3 4.0254 58 72 +56 1 35 79.33 195 140.8 42 4.64 4.1109 96 140 +66 1 21.7 126 212 127.8 45 4.71 5.2781 101 189 +34 2 25.3 111 230 162 39 6 4.9767 90 181 +46 2 23.8 97 224 139.2 42 5 5.366 81 209 +50 1 31.8 82 136 69.2 55 2 4.0775 85 136 +69 1 34.3 113 200 123.8 54 4 4.7095 112 261 +34 1 26.3 87 197 120 63 3 4.2485 96 113 +71 2 27 93.33 269 190.2 41 6.56 5.2417 93 131 +47 1 27.2 80 208 145.6 38 6 4.804 92 174 +41 1 33.8 123.33 187 127 45 4.16 4.3175 100 257 +34 1 33 73 178 114.6 51 3.49 4.1271 92 55 +51 1 24.1 87 261 175.6 69 4 4.4067 93 84 +43 1 21.3 79 141 78.8 53 3 3.8286 90 42 +55 1 23 94.67 190 137.6 38 5 4.2767 106 146 +59 2 27.9 101 218 144.2 38 6 5.1874 95 212 +27 2 33.6 110 246 156.6 57 4 5.0876 89 233 +51 2 22.7 103 217 162.4 30 7 4.8122 80 91 +49 2 27.4 89 177 113 37 5 4.9053 97 111 +27 1 22.6 71 116 43.4 56 2 4.4188 79 152 +57 2 23.2 107.33 231 159.4 41 5.63 5.0304 112 120 +39 2 26.9 93 136 75.4 48 3 4.1431 99 67 +62 2 34.6 120 215 129.2 43 5 5.366 123 310 +37 1 23.3 88 223 142 65 3.4 4.3567 82 94 +46 1 21.1 80 205 144.4 42 5 4.5326 87 183 +68 2 23.5 101 162 85.4 59 3 4.4773 91 66 +51 1 31.5 93 231 144 49 4.7 5.2523 117 173 +41 1 20.8 86 223 128.2 83 3 4.0775 89 72 +53 1 26.5 97 193 122.4 58 3 4.1431 99 49 +45 1 24.2 83 177 118.4 45 4 4.2195 82 64 +33 1 19.5 80 171 85.4 75 2 3.9703 80 48 +60 2 28.2 112 185 113.8 42 4 4.9836 93 178 +47 2 24.9 75 225 166 42 5 4.4427 102 104 +60 2 24.9 99.67 162 106.6 43 3.77 4.1271 95 132 +36 1 30 95 201 125.2 42 4.79 5.1299 85 220 +36 1 19.6 71 250 133.2 97 3 4.5951 92 57