|
|
@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
package 动态规划.q1143_最长公共子序列;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
|
|
|
* 动态规划 dp[i + 1][j + 1] = Math.max(dp[i+1][j], dp[i][j+1]) o(m*n)
|
|
|
|
|
|
|
|
*
|
|
|
|
|
|
|
|
* 若题目为最长公共子串,则在c1,c2不相等时不做处理(赋值0),在遍历过程中记录最大值即可
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
public class Solution {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public int longestCommonSubsequence(String text1, String text2) {
|
|
|
|
|
|
|
|
int m = text1.length();
|
|
|
|
|
|
|
|
int n = text2.length();
|
|
|
|
|
|
|
|
int[][] dp = new int[m + 1][n + 1];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < m; i++) {
|
|
|
|
|
|
|
|
for (int j = 0; j < n; j++) {
|
|
|
|
|
|
|
|
char c1 = text1.charAt(i);
|
|
|
|
|
|
|
|
char c2 = text2.charAt(j);
|
|
|
|
|
|
|
|
if (c1 == c2) {
|
|
|
|
|
|
|
|
dp[i + 1][j + 1] = dp[i][j] + 1;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
dp[i + 1][j + 1] = Math.max(dp[i + 1][j], dp[i][j + 1]);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return dp[m][n];
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|