You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

99 lines
5.3 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# 2021滴滴预估到达时间大赛
[竞赛地址](https://www.biendata.xyz/competition/didi-eta/)
持续更新中...
**7th/Top1%,提供答疑**
![1628602069041](assets/1628602069041.png)
**也能做到前5但是没必要**
![1628602545539](assets/1628602545539.png)
### 1.解题思路
[预估到达时间解题思路.pdf](https://github.com/ben1234560/AiLearning-Theory-Applying/blob/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/%E9%A2%84%E4%BC%B0%E5%88%B0%E8%BE%BE%E6%97%B6%E9%97%B4%E8%A7%A3%E9%A2%98%E6%80%9D%E8%B7%AF.pdf)
<img src="assets/1628668115968.png" width="700" align="middle" />
### 2. 数据说明
- 由于滴滴数据保密协议,博主也无法找到可开放数据及数据地址,故无法提供。
- 数据来自滴滴出行英文Data source: Didi Chuxing数据出处[https://gaia.didichuxing.com](https://gaia.didichuxing.com/)
### 3. 特征说明
![1628670345575](assets/1628670345575.png)
![1628670144983](assets/1628670144983.png)
- max_order_xthead级别的特征如同一sample_eta、distinct等
- max_170_link_sqe_for_orderlink序列特征如右格式[link_id_1, link_id_3, link_id_20...]
- cross_data_dircross序列特征
- link_data_other_dirlink统计特征如某link_id前6小时的均值、求和等
- head_data_dir历史同星期的全天的统计特征
- win_order_data_dir订单的滑窗特征如当前订单时间点的前段时间的统计特征
- arrival_data_dir历史到达路况状态的统计特征
- zsl_arrival_data_dir同上不同人进行构建
- arrival_sqe_data_dir到达时刻的序列特征提供给DCN的T模型进行蒸馏给S模型
- pre_arrival_sqe_dir利用树模型预测的到达时刻特征
- zsl_link_data_dirlink统计特征不同人构建
### 4. 模型说明
- [DCN蒸馏模型](https://github.com/ben1234560/AiLearning-Theory-Applying/tree/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/DCN%E8%92%B8%E9%A6%8F_12953)
- ![1628669063602](assets/1628669063602.png)
- [WDR模型](https://github.com/ben1234560/AiLearning-Theory-Applying/tree/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/WD_128544)
- ![1628669073291](assets/1628669073291.png)
- [LGB模型](https://github.com/ben1234560/AiLearning-Theory-Applying/tree/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/LGB_13700)
- ![1628669152380](assets/1628669152380.png)
### 5. 推荐服务器
- [智能钛Notebook-2.4.0-tf](https://console.cloud.tencent.com/tione/notebook/instance)
- [腾讯云服务器](https://console.cloud.tencent.com/cvm/instance/index)
### 6. 环境配置和所需依赖库
- scikit-learn
- tqdm
- pandarallel
- joblib
- lightgbm
- pandas
- numpy
- keras_radam
- tensorFlow-gpu=2.4.0
### 7. 文件说明
- [DCN蒸馏_12953](https://github.com/ben1234560/AiLearning-Theory-Applying/tree/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/%E6%BB%B4%E6%BB%B4%E2%80%94%E2%80%94%E9%A2%84%E4%BC%B0%E5%88%B0%E8%BE%BE%E6%97%B6%E9%97%B4/DCN_12953)
- DCN蒸馏模型利用“未来”数据线上分数0.12953
- dcn_model/[dcn_model.py](https://github.com/ben1234560/AiLearning-Theory-Applying/blob/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/DCN%E8%92%B8%E9%A6%8F_12953/dcn_model/dcn_model.py):模型代码
- dcn_model/[main.py](https://github.com/ben1234560/AiLearning-Theory-Applying/blob/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/DCN%E8%92%B8%E9%A6%8F_12953/dcn_model/main.py):主函数,训练和预测
- dcn_model/[process.py](https://github.com/ben1234560/AiLearning-Theory-Applying/blob/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/DCN%E8%92%B8%E9%A6%8F_12953/dcn_model/process.py):特征预处理
- dcn_model/[model_h5](https://github.com/ben1234560/AiLearning-Theory-Applying/tree/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/DCN%E8%92%B8%E9%A6%8F_12953/model_h5):存放处理信息,不影响模型结果
- [WD_128544](https://github.com/ben1234560/AiLearning-Theory-Applying/tree/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/WD_128544)
- WD模型线上分数0.128544
- 其他同上
### 8. 其他说明
- 代码属于公司所有,不能提供最优代码
- 感谢[@xbder](https://github.com/xbder)、[@AiIsBetter](https://github.com/AiIsBetter)