|
|
# 2021滴滴预估到达时间大赛
|
|
|
|
|
|
[竞赛地址](https://www.biendata.xyz/competition/didi-eta/)
|
|
|
|
|
|
持续更新中...
|
|
|
|
|
|
|
|
|
|
|
|
**7th/Top1%,提供答疑**
|
|
|
|
|
|

|
|
|
|
|
|
**也能做到前5,但是没必要**
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
### 1.解题思路
|
|
|
|
|
|
[预估到达时间解题思路.pdf](https://github.com/ben1234560/AiLearning-Theory-Applying/blob/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/%E9%A2%84%E4%BC%B0%E5%88%B0%E8%BE%BE%E6%97%B6%E9%97%B4%E8%A7%A3%E9%A2%98%E6%80%9D%E8%B7%AF.pdf)
|
|
|
|
|
|
<img src="assets/1628668115968.png" width="700" align="middle" />
|
|
|
|
|
|
|
|
|
|
|
|
### 2. 数据说明
|
|
|
|
|
|
- 由于滴滴数据保密协议,博主也无法找到可开放数据及数据地址,故无法提供。
|
|
|
- 数据来自滴滴出行,英文(Data source: Didi Chuxing),数据出处:[https://gaia.didichuxing.com](https://gaia.didichuxing.com/)
|
|
|
|
|
|
### 3. 特征说明
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
- max_order_xt:head级别的特征,如同一sample_eta、distinct等
|
|
|
- max_170_link_sqe_for_order:link序列特征,如右格式:[link_id_1, link_id_3, link_id_20...]
|
|
|
- cross_data_dir:cross序列特征
|
|
|
- link_data_other_dir:link统计特征,如某link_id前6小时的均值、求和等
|
|
|
- head_data_dir:历史同星期的全天的统计特征
|
|
|
- win_order_data_dir:订单的滑窗特征,如当前订单时间点的前段时间的统计特征
|
|
|
- arrival_data_dir:历史到达路况状态的统计特征
|
|
|
- zsl_arrival_data_dir:同上,不同人进行构建
|
|
|
- arrival_sqe_data_dir:到达时刻的序列特征,提供给DCN的T模型进行蒸馏给S模型
|
|
|
- pre_arrival_sqe_dir:利用树模型预测的到达时刻特征
|
|
|
- zsl_link_data_dir:link统计特征,不同人构建
|
|
|
|
|
|
|
|
|
|
|
|
### 4. 模型说明
|
|
|
|
|
|
- [DCN蒸馏模型](https://github.com/ben1234560/AiLearning-Theory-Applying/tree/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/DCN%E8%92%B8%E9%A6%8F_12953)
|
|
|
- 
|
|
|
- [WDR模型](https://github.com/ben1234560/AiLearning-Theory-Applying/tree/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/WD_128544)
|
|
|
- 
|
|
|
- [LGB模型](https://github.com/ben1234560/AiLearning-Theory-Applying/tree/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/LGB_13700)
|
|
|
- 
|
|
|
|
|
|
|
|
|
|
|
|
### 5. 推荐服务器
|
|
|
|
|
|
- [智能钛Notebook-2.4.0-tf](https://console.cloud.tencent.com/tione/notebook/instance)
|
|
|
- [腾讯云服务器](https://console.cloud.tencent.com/cvm/instance/index)
|
|
|
|
|
|
|
|
|
|
|
|
### 6. 环境配置和所需依赖库
|
|
|
|
|
|
- scikit-learn
|
|
|
- tqdm
|
|
|
- pandarallel
|
|
|
- joblib
|
|
|
- lightgbm
|
|
|
- pandas
|
|
|
- numpy
|
|
|
- keras_radam
|
|
|
- tensorFlow-gpu=2.4.0
|
|
|
|
|
|
### 7. 文件说明
|
|
|
|
|
|
- [DCN蒸馏_12953](https://github.com/ben1234560/AiLearning-Theory-Applying/tree/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/%E6%BB%B4%E6%BB%B4%E2%80%94%E2%80%94%E9%A2%84%E4%BC%B0%E5%88%B0%E8%BE%BE%E6%97%B6%E9%97%B4/DCN_12953)
|
|
|
- DCN蒸馏模型(利用“未来”数据),线上分数0.12953
|
|
|
- dcn_model/[dcn_model.py](https://github.com/ben1234560/AiLearning-Theory-Applying/blob/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/DCN%E8%92%B8%E9%A6%8F_12953/dcn_model/dcn_model.py):模型代码
|
|
|
- dcn_model/[main.py](https://github.com/ben1234560/AiLearning-Theory-Applying/blob/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/DCN%E8%92%B8%E9%A6%8F_12953/dcn_model/main.py):主函数,训练和预测
|
|
|
- dcn_model/[process.py](https://github.com/ben1234560/AiLearning-Theory-Applying/blob/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/DCN%E8%92%B8%E9%A6%8F_12953/dcn_model/process.py):特征预处理
|
|
|
- dcn_model/[model_h5](https://github.com/ben1234560/AiLearning-Theory-Applying/tree/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/DCN%E8%92%B8%E9%A6%8F_12953/model_h5):存放处理信息,不影响模型结果
|
|
|
- [WD_128544](https://github.com/ben1234560/AiLearning-Theory-Applying/tree/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/WD_128544)
|
|
|
- WD模型,线上分数0.128544
|
|
|
- 其他同上
|
|
|
|
|
|
### 8. 其他说明
|
|
|
|
|
|
- 代码属于公司所有,不能提供最优代码
|
|
|
- 感谢[@xbder](https://github.com/xbder)、[@AiIsBetter](https://github.com/AiIsBetter)
|
|
|
|