# 2021滴滴预估到达时间大赛 [竞赛地址](https://www.biendata.xyz/competition/didi-eta/) 持续更新中... **7th/Top1%,提供答疑** ![1628602069041](assets/1628602069041.png) **也能做到前5,但是没必要** ![1628602545539](assets/1628602545539.png) ### 1.解题思路 [预估到达时间解题思路.pdf](https://github.com/ben1234560/AiLearning-Theory-Applying/blob/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/%E9%A2%84%E4%BC%B0%E5%88%B0%E8%BE%BE%E6%97%B6%E9%97%B4%E8%A7%A3%E9%A2%98%E6%80%9D%E8%B7%AF.pdf) ### 2. 数据说明 - 由于滴滴数据保密协议,博主也无法找到可开放数据及数据地址,故无法提供。 - 数据来自滴滴出行,英文(Data source: Didi Chuxing),数据出处:[https://gaia.didichuxing.com](https://gaia.didichuxing.com/) ### 3. 特征说明 ![1628670345575](assets/1628670345575.png) ![1628670144983](assets/1628670144983.png) - max_order_xt:head级别的特征,如同一sample_eta、distinct等 - max_170_link_sqe_for_order:link序列特征,如右格式:[link_id_1, link_id_3, link_id_20...] - cross_data_dir:cross序列特征 - link_data_other_dir:link统计特征,如某link_id前6小时的均值、求和等 - head_data_dir:历史同星期的全天的统计特征 - win_order_data_dir:订单的滑窗特征,如当前订单时间点的前段时间的统计特征 - arrival_data_dir:历史到达路况状态的统计特征 - zsl_arrival_data_dir:同上,不同人进行构建 - arrival_sqe_data_dir:到达时刻的序列特征,提供给DCN的T模型进行蒸馏给S模型 - pre_arrival_sqe_dir:利用树模型预测的到达时刻特征 - zsl_link_data_dir:link统计特征,不同人构建 ### 4. 模型说明 - [DCN蒸馏模型](https://github.com/ben1234560/AiLearning-Theory-Applying/tree/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/DCN%E8%92%B8%E9%A6%8F_12953) - ![1628669063602](assets/1628669063602.png) - [WDR模型](https://github.com/ben1234560/AiLearning-Theory-Applying/tree/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/WD_128544) - ![1628669073291](assets/1628669073291.png) - [LGB模型](https://github.com/ben1234560/AiLearning-Theory-Applying/tree/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/LGB_13700) - ![1628669152380](assets/1628669152380.png) ### 5. 推荐服务器 - [智能钛Notebook-2.4.0-tf](https://console.cloud.tencent.com/tione/notebook/instance) - [腾讯云服务器](https://console.cloud.tencent.com/cvm/instance/index) ### 6. 环境配置和所需依赖库 - scikit-learn - tqdm - pandarallel - joblib - lightgbm - pandas - numpy - keras_radam - tensorFlow-gpu=2.4.0 ### 7. 文件说明 - [DCN蒸馏_12953](https://github.com/ben1234560/AiLearning-Theory-Applying/tree/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/%E6%BB%B4%E6%BB%B4%E2%80%94%E2%80%94%E9%A2%84%E4%BC%B0%E5%88%B0%E8%BE%BE%E6%97%B6%E9%97%B4/DCN_12953) - DCN蒸馏模型(利用“未来”数据),线上分数0.12953 - dcn_model/[dcn_model.py](https://github.com/ben1234560/AiLearning-Theory-Applying/blob/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/DCN%E8%92%B8%E9%A6%8F_12953/dcn_model/dcn_model.py):模型代码 - dcn_model/[main.py](https://github.com/ben1234560/AiLearning-Theory-Applying/blob/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/DCN%E8%92%B8%E9%A6%8F_12953/dcn_model/main.py):主函数,训练和预测 - dcn_model/[process.py](https://github.com/ben1234560/AiLearning-Theory-Applying/blob/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/DCN%E8%92%B8%E9%A6%8F_12953/dcn_model/process.py):特征预处理 - dcn_model/[model_h5](https://github.com/ben1234560/AiLearning-Theory-Applying/tree/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/DCN%E8%92%B8%E9%A6%8F_12953/model_h5):存放处理信息,不影响模型结果 - [WD_128544](https://github.com/ben1234560/AiLearning-Theory-Applying/tree/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/ACM%20SIGSPATIAL%202021%20GISCUP/WD_128544) - WD模型,线上分数0.128544 - 其他同上 ### 8. 其他说明 - 代码属于公司所有,不能提供最优代码 - 感谢[@xbder](https://github.com/xbder)、[@AiIsBetter](https://github.com/AiIsBetter)