|
|
@ -1380,7 +1380,7 @@
|
|
|
|
"import gensim\n",
|
|
|
|
"import gensim\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"# 读取预训练模型\n",
|
|
|
|
"# 读取预训练模型\n",
|
|
|
|
"word2vec_path = \"GoogleNews-vectors-negative300.bin\"\n",
|
|
|
|
"word2vec_path = \"GoogleNews-vectors-negative300.bin\" # 下载地址:https://s3.amazonaws.com/dl4j-distribution/GoogleNews-vectors-negative300.bin.gz\n",
|
|
|
|
"word2vec = gensim.models.KeyedVectors.load_word2vec_format(word2vec_path, binary=True)"
|
|
|
|
"word2vec = gensim.models.KeyedVectors.load_word2vec_format(word2vec_path, binary=True)"
|
|
|
|
]
|
|
|
|
]
|
|
|
|
},
|
|
|
|
},
|
|
|
@ -76194,11 +76194,17 @@
|
|
|
|
]
|
|
|
|
]
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"execution_count": null,
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"source": []
|
|
|
|
"### 总结\n",
|
|
|
|
|
|
|
|
"\n",
|
|
|
|
|
|
|
|
"* 文本数据同样需要预处理\n",
|
|
|
|
|
|
|
|
"* 预处理完对文本做Embedding\n",
|
|
|
|
|
|
|
|
"* 再利用模型训练及预测\n",
|
|
|
|
|
|
|
|
"\n",
|
|
|
|
|
|
|
|
"以目前来看神经网络比传统模型效果更好,但实际场景中往往是传统可解释的模型更优,我们知道除开技术更重要的是应用到实际场景中,从而需要告诉业务,解释给业务,这样才能发挥更大的效能。另外,可能"
|
|
|
|
|
|
|
|
]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
],
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"metadata": {
|
|
|
|