From 6ca48876923f6ca87e1c9804dc9d122c60113ef1 Mon Sep 17 00:00:00 2001 From: benjas <909336740@qq.com> Date: Fri, 19 Feb 2021 00:16:32 +0800 Subject: [PATCH] Add. Summary --- .../NLP处理实例.ipynb | 16 +++++++++++----- 1 file changed, 11 insertions(+), 5 deletions(-) diff --git a/机器学习竞赛实战_优胜解决方案/机器学习实战小项目/文本特征处理方法对比/NLP处理实例.ipynb b/机器学习竞赛实战_优胜解决方案/机器学习实战小项目/文本特征处理方法对比/NLP处理实例.ipynb index 74aa39a..178f790 100644 --- a/机器学习竞赛实战_优胜解决方案/机器学习实战小项目/文本特征处理方法对比/NLP处理实例.ipynb +++ b/机器学习竞赛实战_优胜解决方案/机器学习实战小项目/文本特征处理方法对比/NLP处理实例.ipynb @@ -1380,7 +1380,7 @@ "import gensim\n", "\n", "# 读取预训练模型\n", - "word2vec_path = \"GoogleNews-vectors-negative300.bin\"\n", + "word2vec_path = \"GoogleNews-vectors-negative300.bin\" # 下载地址:https://s3.amazonaws.com/dl4j-distribution/GoogleNews-vectors-negative300.bin.gz\n", "word2vec = gensim.models.KeyedVectors.load_word2vec_format(word2vec_path, binary=True)" ] }, @@ -76194,11 +76194,17 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "### 总结\n", + "\n", + "* 文本数据同样需要预处理\n", + "* 预处理完对文本做Embedding\n", + "* 再利用模型训练及预测\n", + "\n", + "以目前来看神经网络比传统模型效果更好,但实际场景中往往是传统可解释的模型更优,我们知道除开技术更重要的是应用到实际场景中,从而需要告诉业务,解释给业务,这样才能发挥更大的效能。另外,可能" + ] } ], "metadata": {