You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1 line
8.2 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

{"cells":[{"cell_type":"code","execution_count":5,"metadata":{},"outputs":[],"source":"# 百钱白鸡问题1只公鸡5元1只母鸡3元3只小鸡1元100元买100只鸡公鸡母鸡小鸡各有多少\n# 经典三元一次方程求解设各有xyz只\n\n# 解法一推断每种鸡花费依次轮询运行时间最短2019-7-24最优方案\n# import time\n# start = time.perf_counter_ns() # 用自带time函数统计运行时长\nfor x in range(0, 101, 5): # 公鸡花费x元在0-100范围包括100步长为5\n for y in range(0, 101 - x, 3): # 母鸡花费y元在0到100元减去公鸡花费钱数步长为3\n z = 100 - x - y # 小鸡花费z元为100元减去x和y\n if x / 5 + y / 3 + z * 3 == 100:\n print(\"公鸡:%d只母鸡%d只小鸡%d只\" % (x / 5, y / 3, z * 3))\n # pass\n# end = time.perf_counter_ns()\n# time1 = end - start\n# print(\"解法一花费时间:\", time1)\n\n# 解法二:解法和解法一类似\n# 解题思路买一只公鸡花费5元剩余95元(注意考虑到不买公鸡的情况)再买一只母鸡花费3元剩余92元依次轮询下去钱数不断减\n# 少100元不再是固定的。假设花费钱数依次为x、y、z元\nfor x in range(0, 101, 5): # 公鸡花费x元在0-100范围包括100步长为5\n for y in range(0, 101 - x, 3): # 母鸡花费y元在0到100元减去公鸡花费钱数步长为3\n for z in range(0, 101 - x - y):\n if x / 5 + y / 3 + z * 3 == 100 and x + y + z == 100: # 花费和鸡数都是100\n print(\"公鸡:%d只母鸡%d只小鸡%d只\" % (x / 5, y / 3, z * 3))\n\n# 解法三:枚举法\n# 解题思路若只买公鸡最多20只但要买100只固公鸡在0-20之间不包括20;若只买母鸡则在0-33之间不包括33;若只买小鸡则在0-100\n# 之间不包括100\nfor x in range(0, 20):\n for y in range(0, 33):\n z = 100 - x - y # 小鸡个数z等于100只减去公鸡x只加母鸡y只\n if 5 * x + 3 * y + z / 3 == 100: # 钱数相加等于100元\n print(\"公鸡:%d只母鸡%d只小鸡%d只\" % (x, y, z))"},{"cell_type":"code","execution_count":2,"metadata":{},"outputs":[],"source":"# 经典斐波那契数列\n# 定义:https://wikimedia.org/api/rest_v1/media/math/render/svg/c374ba08c140de90c6cbb4c9b9fcd26e3f99ef56\n# 用文字来说就是斐波那契数列由0和1开始之后的斐波那契系数就是由之前的两数相加而得出\n\n# 方法一:使用递归\ndef fib1(n):\n if n<0:\n print(\"Incorrect input\")\n elif n==1:\n return 0 # 第一个斐波那契数是0\n elif n==2:\n return 1 # 第二斐波那契数是1\n else:\n return fib1(n-1)+fib1(n-2)\n\nprint(fib1(2))\n\n\n# 方法二:使用动态编程\nFibArray = [0, 1]\n\n\ndef fib2(n):\n if n < 0:\n print(\"Incorrect input\")\n elif n <= len(FibArray):\n return FibArray[n - 1]\n else:\n temp_fib = fib2(n - 1) + fib2(n - 2)\n FibArray.append(temp_fib)\n return temp_fib\n\n# 方法三:空间优化\ndef fibonacci(n):\n a = 0\n b = 1\n if n < 0:\n print(\"Incorrect input\")\n elif n == 0:\n return a\n elif n == 1:\n return b\n else:\n for i in range(2,n):\n c = a + b\n a = b\n b = c\n return b"},{"cell_type":"code","execution_count":3,"metadata":{},"outputs":[],"source":"# 水仙花数水仙花数即此数字是各位立方和等于这个数本身的数。例153 = 1**3 + 5**3 + 3**3\n# 找出1-1000之间的水仙花数\n# 分别四个数字1,2,3,4组成不重复的三位数。问题扩展对于给定数字或给定范围的数字组成不重复的n位数\n\n# 方法一:解答四个数组成不重复三位数(暂未想到更优方法)\nfor x in range(1, 5):\n for y in range(1, 5):\n for z in range(1, 5):\n if (x != y) and (x != z) and (z != y):\n print(x, y, z)"},{"cell_type":"code","execution_count":null,"metadata":{},"outputs":[],"source":"# 计算pi小数点任意位数\nfrom __future__ import division\nimport math\nfrom time import time\ntime1 = time()\nnumber = int(input('输入计算的位数:'))\nnumber1 = number + 10 # 多计算十位方式尾数取舍影响\nb = 10 ** number1\n# 求含4/5的首项\nx1 = b * 4 // 5\n# 求含1/239的首项\nx2 = b // -239\n\n# 求第一大项\nhe = x1 + x2\n# 设置下面循环的终点即共计算n项\nnumber *= 2\n\n# 循环初值=3末值2n,步长=2\nfor i in range(3, number, 2):\n # 求每个含1/5的项及符号\n x1 //= -25\n # 求每个含1/239的项及符号\n x2 //= -57121\n # 求两项之和\n x = (x1 + x2) // i\n # 求总和\n he += x\n\n# 求出π\npi = he * 4\n# 舍掉后十位\npi //= 10 ** 10\n\n# 输出圆周率π的值\npi_string = str(pi)\nresult = pi_string[0] + str('.') + pi_string[1:len(pi_string)]\nprint(result)\n\ntime2 = time()\n\nprint(u'耗时:' + str(time2 - time1) + 's')\n\n\n# 使用chudnovsky算法计算\n# 参考链接https://www.craig-wood.com/nick/articles/pi-chudnovsky/\n\n\"\"\"\nPython3 program to calculate Pi using python long integers, BINARY\nsplitting and the Chudnovsky algorithm\n\n\"\"\"\n\nimport math\nfrom gmpy2 import mpz\nfrom time import time\n\ndef pi_chudnovsky_bs(digits):\n \"\"\"\n Compute int(pi * 10**digits)\n\n This is done using Chudnovsky's series with BINARY splitting\n \"\"\"\n C = 640320\n C3_OVER_24 = C**3 // 24\n def bs(a, b):\n \"\"\"\n Computes the terms for binary splitting the Chudnovsky infinite series\n\n a(a) = +/- (13591409 + 545140134*a)\n p(a) = (6*a-5)*(2*a-1)*(6*a-1)\n b(a) = 1\n q(a) = a*a*a*C3_OVER_24\n\n returns P(a,b), Q(a,b) and T(a,b)\n \"\"\"\n if b - a == 1:\n # Directly compute P(a,a+1), Q(a,a+1) and T(a,a+1)\n if a == 0:\n Pab = Qab = mpz(1)\n else:\n Pab = mpz((6*a-5)*(2*a-1)*(6*a-1))\n Qab = mpz(a*a*a*C3_OVER_24)\n Tab = Pab * (13591409 + 545140134*a) # a(a) * p(a)\n if a & 1:\n Tab = -Tab\n else:\n # Recursively compute P(a,b), Q(a,b) and T(a,b)\n # m is the midpoint of a and b\n m = (a + b) // 2\n # Recursively calculate P(a,m), Q(a,m) and T(a,m)\n Pam, Qam, Tam = bs(a, m)\n # Recursively calculate P(m,b), Q(m,b) and T(m,b)\n Pmb, Qmb, Tmb = bs(m, b)\n # Now combine\n Pab = Pam * Pmb\n Qab = Qam * Qmb\n Tab = Qmb * Tam + Pam * Tmb\n return Pab, Qab, Tab\n # how many terms to compute\n DIGITS_PER_TERM = math.log10(C3_OVER_24/6/2/6)\n N = int(digits/DIGITS_PER_TERM + 1)\n # Calclate P(0,N) and Q(0,N)\n P, Q, T = bs(0, N)\n one_squared = mpz(10)**(2*digits)\n sqrtC = (10005*one_squared).sqrt()\n return (Q*426880*sqrtC) // T\n\n# The last 5 digits or pi for various numbers of digits\ncheck_digits = {\n 100 : 70679,\n 1000 : 1989,\n 10000 : 75678,\n 100000 : 24646,\n 1000000 : 58151,\n 10000000 : 55897,\n}\n\nif __name__ == \"__main__\":\n digits = 100\n pi = pi_chudnovsky_bs(digits)\n print(pi)\n #raise SystemExit\n for log10_digits in range(1,9):\n digits = 10**log10_digits\n start =time()\n pi = pi_chudnovsky_bs(digits)\n print(\"chudnovsky_gmpy_mpz_bs: digits\",digits,\"time\",time()-start)\n if digits in check_digits:\n last_five_digits = pi % 100000\n if check_digits[digits] == last_five_digits:\n print(\"Last 5 digits %05d OK\" % last_five_digits)\n else:\n print(\"Last 5 digits %05d wrong should be %05d\" % (last_five_digits, check_digits[digits]))\n"},{"cell_type":"code","execution_count":null,"metadata":{},"outputs":[],"source":""}],"nbformat":4,"nbformat_minor":2,"metadata":{"language_info":{"name":"python","codemirror_mode":{"name":"ipython","version":3}},"orig_nbformat":2,"file_extension":".py","mimetype":"text/x-python","name":"python","npconvert_exporter":"python","pygments_lexer":"ipython3","version":3}}