|
|
@ -1,234 +0,0 @@
|
|
|
|
# 此文件用来记录经典或有趣的数学问题
|
|
|
|
|
|
|
|
# It's really fun to swim in the ocean of mathematics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 百钱白鸡问题:1只公鸡5元,1只母鸡3元,3只小鸡1元,100元买100只鸡,问:公鸡母鸡小鸡各有多少?
|
|
|
|
|
|
|
|
# 经典三元一次方程求解,设各有x,y,z只
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 解法一:推断每种鸡花费依次轮询,运行时间最短,2019-7-24最优方案
|
|
|
|
|
|
|
|
# import time
|
|
|
|
|
|
|
|
# start = time.perf_counter_ns() # 用自带time函数统计运行时长
|
|
|
|
|
|
|
|
for x in range(0, 101, 5): # 公鸡花费x元在0-100范围包括100,步长为5
|
|
|
|
|
|
|
|
for y in range(0, 101 - x, 3): # 母鸡花费y元在0到100元减去公鸡花费钱数,步长为3
|
|
|
|
|
|
|
|
z = 100 - x - y # 小鸡花费z元为100元减去x和y
|
|
|
|
|
|
|
|
if x / 5 + y / 3 + z * 3 == 100:
|
|
|
|
|
|
|
|
print("公鸡:%d只,母鸡:%d只,小鸡:%d只" % (x / 5, y / 3, z * 3))
|
|
|
|
|
|
|
|
# pass
|
|
|
|
|
|
|
|
# end = time.perf_counter_ns()
|
|
|
|
|
|
|
|
# time1 = end - start
|
|
|
|
|
|
|
|
# print("解法一花费时间:", time1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 解法二:枚举法
|
|
|
|
|
|
|
|
# 解题思路:若只买公鸡最多20只,但要买100只,固公鸡在0-20之间不包括20;若只买母鸡则在0-33之间不包括33;若只买小鸡则在0-100
|
|
|
|
|
|
|
|
# 之间不包括100
|
|
|
|
|
|
|
|
for x in range(0, 20):
|
|
|
|
|
|
|
|
for y in range(0, 33):
|
|
|
|
|
|
|
|
z = 100 - x - y # 小鸡个数z等于100只减去公鸡x只加母鸡y只
|
|
|
|
|
|
|
|
if 5 * x + 3 * y + z / 3 == 100: # 钱数相加等于100元
|
|
|
|
|
|
|
|
print("公鸡:%d只,母鸡:%d只,小鸡:%d只" % (x, y, z))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 解法三:解法和解法一类似
|
|
|
|
|
|
|
|
# 解题思路:买一只公鸡花费5元,剩余95元(注意考虑到不买公鸡的情况),再买一只母鸡花费3元剩余92元,依次轮询下去,钱数不断减
|
|
|
|
|
|
|
|
# 少,100元不再是固定的。假设花费钱数依次为x、y、z元
|
|
|
|
|
|
|
|
for x in range(0, 101, 5): # 公鸡花费x元在0-100范围包括100,步长为5
|
|
|
|
|
|
|
|
for y in range(0, 101 - x, 3): # 母鸡花费y元在0到100元减去公鸡花费钱数,步长为3
|
|
|
|
|
|
|
|
for z in range(0, 101 - x - y):
|
|
|
|
|
|
|
|
if x / 5 + y / 3 + z * 3 == 100 and x + y + z == 100: # 花费和鸡数都是100
|
|
|
|
|
|
|
|
print("公鸡:%d只,母鸡:%d只,小鸡:%d只" % (x / 5, y / 3, z * 3))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 经典斐波那契数列
|
|
|
|
|
|
|
|
# 定义:https://wikimedia.org/api/rest_v1/media/math/render/svg/c374ba08c140de90c6cbb4c9b9fcd26e3f99ef56
|
|
|
|
|
|
|
|
# 用文字来说,就是斐波那契数列由0和1开始,之后的斐波那契系数就是由之前的两数相加而得出
|
|
|
|
|
|
|
|
# 方法一:使用递归
|
|
|
|
|
|
|
|
def fib1(n):
|
|
|
|
|
|
|
|
if n<0:
|
|
|
|
|
|
|
|
print("Incorrect input")
|
|
|
|
|
|
|
|
elif n==1:
|
|
|
|
|
|
|
|
return 0 # 第一个斐波那契数是0
|
|
|
|
|
|
|
|
elif n==2:
|
|
|
|
|
|
|
|
return 1 # 第二斐波那契数是1
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
return fib1(n-1)+fib1(n-2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(fib1(2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 方法二:使用动态编程
|
|
|
|
|
|
|
|
FibArray = [0, 1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def fib2(n):
|
|
|
|
|
|
|
|
if n < 0:
|
|
|
|
|
|
|
|
print("Incorrect input")
|
|
|
|
|
|
|
|
elif n <= len(FibArray):
|
|
|
|
|
|
|
|
return FibArray[n - 1]
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
temp_fib = fib2(n - 1) + fib2(n - 2)
|
|
|
|
|
|
|
|
FibArray.append(temp_fib)
|
|
|
|
|
|
|
|
return temp_fib
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 方法三:空间优化
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def fibonacci(n):
|
|
|
|
|
|
|
|
a = 0
|
|
|
|
|
|
|
|
b = 1
|
|
|
|
|
|
|
|
if n < 0:
|
|
|
|
|
|
|
|
print("Incorrect input")
|
|
|
|
|
|
|
|
elif n == 0:
|
|
|
|
|
|
|
|
return a
|
|
|
|
|
|
|
|
elif n == 1:
|
|
|
|
|
|
|
|
return b
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
for i in range(2,n):
|
|
|
|
|
|
|
|
c = a + b
|
|
|
|
|
|
|
|
a = b
|
|
|
|
|
|
|
|
b = c
|
|
|
|
|
|
|
|
return b
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 水仙花数:水仙花数即此数字是各位立方和等于这个数本身的数。例:153 = 1**3 + 5**3 + 3**3
|
|
|
|
|
|
|
|
# 找出1-1000之间的水仙花数
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 分别四个数字:1,2,3,4,组成不重复的三位数。问题扩展:对于给定数字或给定范围的数字,组成不重复的n位数
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 方法一:解答四个数组成不重复三位数(暂未想到更优方法)
|
|
|
|
|
|
|
|
for x in range(1, 5):
|
|
|
|
|
|
|
|
for y in range(1, 5):
|
|
|
|
|
|
|
|
for z in range(1, 5):
|
|
|
|
|
|
|
|
if (x != y) and (x != z) and (z != y):
|
|
|
|
|
|
|
|
print(x, y, z)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 计算pi小数点任意位数
|
|
|
|
|
|
|
|
from __future__ import division
|
|
|
|
|
|
|
|
import math
|
|
|
|
|
|
|
|
from time import time
|
|
|
|
|
|
|
|
time1 = time()
|
|
|
|
|
|
|
|
number = int(input('输入计算的位数:'))
|
|
|
|
|
|
|
|
number1 = number + 10 # 多计算十位方式尾数取舍影响
|
|
|
|
|
|
|
|
b = 10 ** number1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 求含4/5的首项
|
|
|
|
|
|
|
|
x1 = b * 4 // 5
|
|
|
|
|
|
|
|
# 求含1/239的首项
|
|
|
|
|
|
|
|
x2 = b // -239
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 求第一大项
|
|
|
|
|
|
|
|
he = x1 + x2
|
|
|
|
|
|
|
|
# 设置下面循环的终点,即共计算n项
|
|
|
|
|
|
|
|
number *= 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 循环初值=3,末值2n,步长=2
|
|
|
|
|
|
|
|
for i in range(3, number, 2):
|
|
|
|
|
|
|
|
# 求每个含1/5的项及符号
|
|
|
|
|
|
|
|
x1 //= -25
|
|
|
|
|
|
|
|
# 求每个含1/239的项及符号
|
|
|
|
|
|
|
|
x2 //= -57121
|
|
|
|
|
|
|
|
# 求两项之和
|
|
|
|
|
|
|
|
x = (x1 + x2) // i
|
|
|
|
|
|
|
|
# 求总和
|
|
|
|
|
|
|
|
he += x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 求出π
|
|
|
|
|
|
|
|
pi = he * 4
|
|
|
|
|
|
|
|
# 舍掉后十位
|
|
|
|
|
|
|
|
pi //= 10 ** 10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 输出圆周率π的值
|
|
|
|
|
|
|
|
pi_string = str(pi)
|
|
|
|
|
|
|
|
result = pi_string[0] + str('.') + pi_string[1:len(pi_string)]
|
|
|
|
|
|
|
|
print(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
time2 = time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(u'耗时:' + str(time2 - time1) + 's')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 使用chudnovsky算法计算
|
|
|
|
|
|
|
|
# 理解链接:https://www.craig-wood.com/nick/articles/pi-chudnovsky/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
Python3 program to calculate Pi using python long integers, BINARY
|
|
|
|
|
|
|
|
splitting and the Chudnovsky algorithm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math
|
|
|
|
|
|
|
|
from gmpy2 import mpz
|
|
|
|
|
|
|
|
from time import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def pi_chudnovsky_bs(digits):
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
Compute int(pi * 10**digits)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
This is done using Chudnovsky's series with BINARY splitting
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
C = 640320
|
|
|
|
|
|
|
|
C3_OVER_24 = C**3 // 24
|
|
|
|
|
|
|
|
def bs(a, b):
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
Computes the terms for binary splitting the Chudnovsky infinite series
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a(a) = +/- (13591409 + 545140134*a)
|
|
|
|
|
|
|
|
p(a) = (6*a-5)*(2*a-1)*(6*a-1)
|
|
|
|
|
|
|
|
b(a) = 1
|
|
|
|
|
|
|
|
q(a) = a*a*a*C3_OVER_24
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
returns P(a,b), Q(a,b) and T(a,b)
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
if b - a == 1:
|
|
|
|
|
|
|
|
# Directly compute P(a,a+1), Q(a,a+1) and T(a,a+1)
|
|
|
|
|
|
|
|
if a == 0:
|
|
|
|
|
|
|
|
Pab = Qab = mpz(1)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
Pab = mpz((6*a-5)*(2*a-1)*(6*a-1))
|
|
|
|
|
|
|
|
Qab = mpz(a*a*a*C3_OVER_24)
|
|
|
|
|
|
|
|
Tab = Pab * (13591409 + 545140134*a) # a(a) * p(a)
|
|
|
|
|
|
|
|
if a & 1:
|
|
|
|
|
|
|
|
Tab = -Tab
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
# Recursively compute P(a,b), Q(a,b) and T(a,b)
|
|
|
|
|
|
|
|
# m is the midpoint of a and b
|
|
|
|
|
|
|
|
m = (a + b) // 2
|
|
|
|
|
|
|
|
# Recursively calculate P(a,m), Q(a,m) and T(a,m)
|
|
|
|
|
|
|
|
Pam, Qam, Tam = bs(a, m)
|
|
|
|
|
|
|
|
# Recursively calculate P(m,b), Q(m,b) and T(m,b)
|
|
|
|
|
|
|
|
Pmb, Qmb, Tmb = bs(m, b)
|
|
|
|
|
|
|
|
# Now combine
|
|
|
|
|
|
|
|
Pab = Pam * Pmb
|
|
|
|
|
|
|
|
Qab = Qam * Qmb
|
|
|
|
|
|
|
|
Tab = Qmb * Tam + Pam * Tmb
|
|
|
|
|
|
|
|
return Pab, Qab, Tab
|
|
|
|
|
|
|
|
# how many terms to compute
|
|
|
|
|
|
|
|
DIGITS_PER_TERM = math.log10(C3_OVER_24/6/2/6)
|
|
|
|
|
|
|
|
N = int(digits/DIGITS_PER_TERM + 1)
|
|
|
|
|
|
|
|
# Calclate P(0,N) and Q(0,N)
|
|
|
|
|
|
|
|
P, Q, T = bs(0, N)
|
|
|
|
|
|
|
|
one_squared = mpz(10)**(2*digits)
|
|
|
|
|
|
|
|
sqrtC = (10005*one_squared).sqrt()
|
|
|
|
|
|
|
|
return (Q*426880*sqrtC) // T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# The last 5 digits or pi for various numbers of digits
|
|
|
|
|
|
|
|
check_digits = {
|
|
|
|
|
|
|
|
100 : 70679,
|
|
|
|
|
|
|
|
1000 : 1989,
|
|
|
|
|
|
|
|
10000 : 75678,
|
|
|
|
|
|
|
|
100000 : 24646,
|
|
|
|
|
|
|
|
1000000 : 58151,
|
|
|
|
|
|
|
|
10000000 : 55897,
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
|
|
digits = 100
|
|
|
|
|
|
|
|
pi = pi_chudnovsky_bs(digits)
|
|
|
|
|
|
|
|
print(pi)
|
|
|
|
|
|
|
|
#raise SystemExit
|
|
|
|
|
|
|
|
for log10_digits in range(1,9):
|
|
|
|
|
|
|
|
digits = 10**log10_digits
|
|
|
|
|
|
|
|
start =time()
|
|
|
|
|
|
|
|
pi = pi_chudnovsky_bs(digits)
|
|
|
|
|
|
|
|
print("chudnovsky_gmpy_mpz_bs: digits",digits,"time",time()-start)
|
|
|
|
|
|
|
|
if digits in check_digits:
|
|
|
|
|
|
|
|
last_five_digits = pi % 100000
|
|
|
|
|
|
|
|
if check_digits[digits] == last_five_digits:
|
|
|
|
|
|
|
|
print("Last 5 digits %05d OK" % last_five_digits)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
print("Last 5 digits %05d wrong should be %05d" % (last_five_digits, check_digits[digits]))
|
|
|
|
|