Min-heap implementation

pull/68/head
Louie Tan 8 years ago
parent 4c672de8e6
commit 4de7d1473c

@ -0,0 +1,52 @@
# Implements a min-heap. For max-heap, simply reverse all comparison orders.
#
# Note on alternate subroutine namings (used in some textbooks):
# - _bubble_up = siftdown
# - _bubble_down = siftup
def _bubble_up(heap, i):
while i > 0:
parent_i = (i - 1) // 2
if heap[i] < heap[parent_i]:
heap[i], heap[parent_i] = heap[parent_i], heap[i]
i = parent_i
continue
break
def _bubble_down(heap, i):
startpos = i
newitem = heap[i]
left_i = 2 * i + 1
while left_i < len(heap):
# Pick the smaller of the L and R children
right_i = left_i + 1
if right_i < len(heap) and not heap[left_i] < heap[right_i]:
child_i = right_i
else:
child_i = left_i
# Break if heap invariant satisfied
if heap[i] < heap[child_i]:
break
# Move the smaller child up.
heap[i], heap[child_i] = heap[child_i], heap[i]
i = child_i
left_i = 2 * i + 1
def heapify(lst):
for i in reversed(range(len(lst) // 2)):
_bubble_down(lst, i)
def heappush(heap, item):
heap.append(item)
_bubble_up(heap, len(heap) - 1)
def heappop(heap):
if len(heap) == 1:
return heap.pop()
min_value = heap[0]
heap[0] = heap[-1]
del heap[-1]
_bubble_down(heap, 0)
return min_value
Loading…
Cancel
Save