You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
20 KiB
20 KiB
类图结构
J.U.C 的锁组件中 类相对较少,从 JDK 相应的包中也能看出来,下图标记了其中最主要的几个接口和类,也是本文要分析的重点。
下图 将这几个接口和类 以类图的方式展现出来,其中包含了它们所声明的主要方法。
Lock 组件
Lock 组件的结构很简单,只有一个接口和一个实现类,源码如下。
public interface Lock {
/**
* 获取锁
*/
void lock();
/**
* 获取锁,除非当前线程中断
*/
void lockInterruptibly() throws InterruptedException;
/**
* 只有当调用时 锁是空闲的情况下,才获取锁
*/
boolean tryLock();
/**
* 如果锁在给定的等待时间内空闲且当前线程未被中断,则获取该锁
*/
boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
/**
* 释放锁
*/
void unlock();
}
public class ReentrantLock implements Lock, java.io.Serializable {
/** 提供所有实现机制的同步器,ReentrantLock 的主要方法都依赖于该对象进行实现 */
private final Sync sync;
/**
* ReentrantLock锁 的同步控制基础。它的两个子类分别实现了公平锁和非公平锁,如下。
*/
abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = -5179523762034025860L;
abstract void lock();
/**
* Performs non-fair tryLock. tryAcquire is implemented in
* subclasses, but both need nonfair try for trylock method.
*/
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
final boolean isLocked() {
return getState() != 0;
}
}
/**
* 非公平锁,基于上面的 Sync类
*/
static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
/**
* 公平锁,基于上面的 Sync类
*/
static final class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L;
final void lock() {
acquire(1);
}
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}
/**
* 无参初始化时,默认实例化 非公平锁
*/
public ReentrantLock() {
sync = new NonfairSync();
}
/**
* 可通过参数fair 控制实例化的是 公平锁还是非公平锁
*/
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
public void lock() {
sync.lock();
}
public boolean tryLock() {
return sync.nonfairTryAcquire(1);
}
public boolean tryLock(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireNanos(1, unit.toNanos(timeout));
}
public void unlock() {
sync.release(1);
}
public boolean isLocked() {
return sync.isLocked();
}
public final boolean isFair() {
return sync instanceof FairSync;
}
}
ReadWriteLock 组件
ReadWriteLock 组件的结构也很简单,与上面的 Lock 组件 不同的是,它提供了 公平的读锁写锁,以及非公平的读锁写锁。
public interface ReadWriteLock {
/**
* 获取一个 读锁
*/
Lock readLock();
/**
* 获取一个 写锁
*/
Lock writeLock();
}
public class ReentrantReadWriteLock implements ReadWriteLock, java.io.Serializable {
/** 由内部类提供的读锁 */
private final ReentrantReadWriteLock.ReadLock readerLock;
/** 由内部类提供的写锁 */
private final ReentrantReadWriteLock.WriteLock writerLock;
/** 提供所有实现机制的同步器 */
final Sync sync;
/**
* 默认创建 非公平的读锁写锁
*/
public ReentrantReadWriteLock() {
this(false);
}
/**
* 由参数 fair 指定读锁写锁是公平的还是非公平的
*/
public ReentrantReadWriteLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
readerLock = new ReadLock(this);
writerLock = new WriteLock(this);
}
/**
* 获取写锁
* 获取读锁
*/
public ReentrantReadWriteLock.WriteLock writeLock() { return writerLock; }
public ReentrantReadWriteLock.ReadLock readLock() { return readerLock; }
abstract static class Sync extends AbstractQueuedSynchronizer {
protected final boolean tryRelease(int releases) {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
int nextc = getState() - releases;
boolean free = exclusiveCount(nextc) == 0;
if (free)
setExclusiveOwnerThread(null);
setState(nextc);
return free;
}
protected final boolean tryAcquire(int acquires) {
/*
* Walkthrough:
* 1. If read count nonzero or write count nonzero
* and owner is a different thread, fail.
* 2. If count would saturate, fail. (This can only
* happen if count is already nonzero.)
* 3. Otherwise, this thread is eligible for lock if
* it is either a reentrant acquire or
* queue policy allows it. If so, update state
* and set owner.
*/
Thread current = Thread.currentThread();
int c = getState();
int w = exclusiveCount(c);
if (c != 0) {
// (Note: if c != 0 and w == 0 then shared count != 0)
if (w == 0 || current != getExclusiveOwnerThread())
return false;
if (w + exclusiveCount(acquires) > MAX_COUNT)
throw new Error("Maximum lock count exceeded");
// Reentrant acquire
setState(c + acquires);
return true;
}
if (writerShouldBlock() ||
!compareAndSetState(c, c + acquires))
return false;
setExclusiveOwnerThread(current);
return true;
}
protected final boolean tryReleaseShared(int unused) {
Thread current = Thread.currentThread();
if (firstReader == current) {
// assert firstReaderHoldCount > 0;
if (firstReaderHoldCount == 1)
firstReader = null;
else
firstReaderHoldCount--;
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current))
rh = readHolds.get();
int count = rh.count;
if (count <= 1) {
readHolds.remove();
if (count <= 0)
throw unmatchedUnlockException();
}
--rh.count;
}
for (;;) {
int c = getState();
int nextc = c - SHARED_UNIT;
if (compareAndSetState(c, nextc))
// Releasing the read lock has no effect on readers,
// but it may allow waiting writers to proceed if
// both read and write locks are now free.
return nextc == 0;
}
}
protected final int tryAcquireShared(int unused) {
/*
* Walkthrough:
* 1. If write lock held by another thread, fail.
* 2. Otherwise, this thread is eligible for
* lock wrt state, so ask if it should block
* because of queue policy. If not, try
* to grant by CASing state and updating count.
* Note that step does not check for reentrant
* acquires, which is postponed to full version
* to avoid having to check hold count in
* the more typical non-reentrant case.
* 3. If step 2 fails either because thread
* apparently not eligible or CAS fails or count
* saturated, chain to version with full retry loop.
*/
Thread current = Thread.currentThread();
int c = getState();
if (exclusiveCount(c) != 0 &&
getExclusiveOwnerThread() != current)
return -1;
int r = sharedCount(c);
if (!readerShouldBlock() &&
r < MAX_COUNT &&
compareAndSetState(c, c + SHARED_UNIT)) {
if (r == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current))
cachedHoldCounter = rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
}
return 1;
}
return fullTryAcquireShared(current);
}
/**
* Performs tryLock for write, enabling barging in both modes.
* This is identical in effect to tryAcquire except for lack
* of calls to writerShouldBlock.
*/
final boolean tryWriteLock() {
Thread current = Thread.currentThread();
int c = getState();
if (c != 0) {
int w = exclusiveCount(c);
if (w == 0 || current != getExclusiveOwnerThread())
return false;
if (w == MAX_COUNT)
throw new Error("Maximum lock count exceeded");
}
if (!compareAndSetState(c, c + 1))
return false;
setExclusiveOwnerThread(current);
return true;
}
/**
* Performs tryLock for read, enabling barging in both modes.
* This is identical in effect to tryAcquireShared except for
* lack of calls to readerShouldBlock.
*/
final boolean tryReadLock() {
Thread current = Thread.currentThread();
for (;;) {
int c = getState();
if (exclusiveCount(c) != 0 &&
getExclusiveOwnerThread() != current)
return false;
int r = sharedCount(c);
if (r == MAX_COUNT)
throw new Error("Maximum lock count exceeded");
if (compareAndSetState(c, c + SHARED_UNIT)) {
if (r == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current))
cachedHoldCounter = rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
}
return true;
}
}
}
final boolean isWriteLocked() {
return exclusiveCount(getState()) != 0;
}
}
/**
* 非公平锁
*/
static final class NonfairSync extends Sync {
final boolean writerShouldBlock() {
return false; // writers can always barge
}
final boolean readerShouldBlock() {
/* As a heuristic to avoid indefinite writer starvation,
* block if the thread that momentarily appears to be head
* of queue, if one exists, is a waiting writer. This is
* only a probabilistic effect since a new reader will not
* block if there is a waiting writer behind other enabled
* readers that have not yet drained from the queue.
*/
return apparentlyFirstQueuedIsExclusive();
}
}
/**
* 公平锁
*/
static final class FairSync extends Sync {
final boolean writerShouldBlock() {
return hasQueuedPredecessors();
}
final boolean readerShouldBlock() {
return hasQueuedPredecessors();
}
}
/**
* 读锁
*/
public static class ReadLock implements Lock, java.io.Serializable {
private final Sync sync;
protected ReadLock(ReentrantReadWriteLock lock) {
sync = lock.sync;
}
public void lock() {
sync.acquireShared(1);
}
public void lockInterruptibly() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
public boolean tryLock() {
return sync.tryReadLock();
}
public boolean tryLock(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}
public void unlock() {
sync.releaseShared(1);
}
}
/**
* 写锁
*/
public static class WriteLock implements Lock, java.io.Serializable {
private final Sync sync;
protected WriteLock(ReentrantReadWriteLock lock) {
sync = lock.sync;
}
public void lock() {
sync.acquire(1);
}
public void lockInterruptibly() throws InterruptedException {
sync.acquireInterruptibly(1);
}
public boolean tryLock( ) {
return sync.tryWriteLock();
}
public boolean tryLock(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireNanos(1, unit.toNanos(timeout));
}
public void unlock() {
sync.release(1);
}
}
public final boolean isFair() {
return sync instanceof FairSync;
}
public boolean isWriteLocked() {
return sync.isWriteLocked();
}
}
AbstractQueuedSynchronizer
最后看一下抽象类 AbstractQueuedSynchronizer,在同步组件的实现中,AQS 是核心部分,同步组件的实现者通过使用 AQS 提供的模板方法实现同步组件语义,AQS 则实现了对同步状态的管理,以及对阻塞线程进行排队,等待通知等等一些底层的实现处理。AQS 的核心包括:同步队列,独占式锁的获取和释放,共享锁的获取和释放以及可中断锁,超时等待锁获取这些特性的实现,而这些实际上则是 AQS 提供出来的模板方法。源码如下。
public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer
implements java.io.Serializable {
/**
* 当共享资源被某个线程占有,其他请求该资源的线程将会阻塞,从而进入同步队列。
* 就数据结构而言,队列的实现方式无外乎两者一是通过数组的形式,另外一种则是链表的形式。
* AQS中的同步队列则是通过链式方式进行实现,下面的内部类Node便是其实现的载体
*/
static final class Node {
/** Marker to indicate a node is waiting in shared mode */
static final Node SHARED = new Node();
/** Marker to indicate a node is waiting in exclusive mode */
static final Node EXCLUSIVE = null;
// 节点从同步队列中取消
static final int CANCELLED = 1;
// 后继节点的线程处于等待状态,如果当前节点释放同步状态会通知后继节点,
// 使得后继节点的线程能够运行;
static final int SIGNAL = -1;
// 当前节点进入等待队列中
static final int CONDITION = -2;
// 表示下一次共享式同步状态获取将会无条件传播下去
static final int PROPAGATE = -3;
// 节点状态
volatile int waitStatus;
// 当前节点/线程的前驱节点
volatile Node prev;
// 当前节点/线程的后驱节点
volatile Node next;
// 加入同步队列的线程引用
volatile Thread thread;
// 等待队列中的下一个节点
Node nextWaiter;
final boolean isShared() {
return nextWaiter == SHARED;
}
final Node predecessor() throws NullPointerException {
Node p = prev;
if (p == null)
throw new NullPointerException();
else
return p;
}
Node() { // Used to establish initial head or SHARED marker
}
Node(Thread thread, Node mode) { // Used by addWaiter
this.nextWaiter = mode;
this.thread = thread;
}
Node(Thread thread, int waitStatus) { // Used by Condition
this.waitStatus = waitStatus;
this.thread = thread;
}
}
/**
* AQS实际上通过头尾指针来管理同步队列,同时实现包括获取锁失败的线程进行入队,
* 释放锁时对同步队列中的线程进行通知等核心方法。
*/
private transient volatile Node head;
private transient volatile Node tail;
/**
* 获取独占式锁
*/
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
/**
* 释放独占式锁
*/
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
/**
* 获取可中断式锁
*/
public final void acquireInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
if (!tryAcquire(arg))
doAcquireInterruptibly(arg);
}
/**
* 获取共享锁
*/
public final void acquireShared(int arg) {
if (tryAcquireShared(arg) < 0)
doAcquireShared(arg);
}
/**
* 释放共享锁
*/
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}
}