You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
source-code-hunter/docs/JDK/collection/ConcurrentHashMap.md

7.0 KiB

HashMap 源码中主要了解其核心源码及实现逻辑。ConcurrentHashMap 就不再重复那些数据结构相关的内容咯,这里重点看一下它的并发安全实现。源码如下。

public class ConcurrentHashMap<K,V> extends AbstractMap<K,V> implements ConcurrentMap<K,V>, 
		Serializable {

    /* --------- 常量及成员变量的设计 几乎与HashMap相差无几 -------- */

    /**
     * 最大容量
     */
    private static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * 默认初始容量
     */
    private static final int DEFAULT_CAPACITY = 16;

    /**
     * 单个数组最大容量
     */
    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

    /**
     * 默认并发等级,也就分成多少个单独上锁的区域
     */
    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;

    /**
     * 扩容因子
     */
    private static final float LOAD_FACTOR = 0.75f;

    /**
     * 
     */
    transient volatile Node<K,V>[] table;

    /**
     * 
     */
    private transient volatile Node<K,V>[] nextTable;

    /* --------- 系列构造方法,依然推荐在初始化时根据实际情况设置好初始容量 -------- */
    public ConcurrentHashMap() {
    }

    public ConcurrentHashMap(int initialCapacity) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException();
        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
                   MAXIMUM_CAPACITY :
                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
        this.sizeCtl = cap;
    }

    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
        this.sizeCtl = DEFAULT_CAPACITY;
        putAll(m);
    }

    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
        this(initialCapacity, loadFactor, 1);
    }

    public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
            initialCapacity = concurrencyLevel;   // as estimated threads
        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
            MAXIMUM_CAPACITY : tableSizeFor((int)size);
        this.sizeCtl = cap;
    }

    /** 
     * ConcurrentHashMap 的核心就在于其put元素时 利用synchronized局部锁 和 
     * CAS乐观锁机制 大大提升了本集合的并发能力比JDK7的分段锁性能更强
     */
    public V put(K key, V value) {
        return putVal(key, value, false);
    }

	/**
	 * 当前指定数组位置无元素时使用CAS操作 将 Node键值对 放入对应的数组下标。
	 * 出现hash冲突则用synchronized局部锁锁住若当前hash对应的节点是链表的头节点遍历链表
	 * 若找到对应的node节点则修改node节点的val否则在链表末尾添加node节点倘若当前节点是
	 * 红黑树的根节点,在树结构上遍历元素,更新或增加节点
	 */
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
        int hash = spread(key.hashCode());
        int binCount = 0;
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            	// 注意这是一个CAS的方法将新节点放入指定位置不用加锁阻塞线程
            	// 也能保证并发安全
                if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }
            // 当前Map在扩容先协助扩容在更新值
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else { // hash冲突
                V oldVal = null;
                // 局部锁,有效减少锁竞争的发生
                synchronized (f) { // f 是 链表头节点/红黑树根节点
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                // 若节点已经存在,修改该节点的值
                                if (e.hash == hash && ((ek = e.key) == key ||
                                    	 (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                // 节点不存在,添加到链表末尾
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        // 如果该节点是 红黑树节点
                        else if (f instanceof TreeBin) {
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                // 链表节点超过了8链表转为红黑树
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        // 统计节点个数检查是否需要resize
        addCount(1L, binCount);
        return null;
    }
}

与JDK1.7在同步机制上的区别 总结如下:
JDK1.7 使用的是分段锁机制其内部类Segment 继承了 ReentrantLock将 容器内的数组划分成多段区域每个区域对应一把锁相比于HashTable确实提升了不少并发能力但在数据量庞大的情况下性能依然不容乐观只能通过不断的增加锁来维持并发性能。而JDK1.8则使用了 CAS乐观锁 + synchronized局部锁 处理并发问题,锁粒度更细,即使数据量很大也能保证良好的并发性。